Computer
Science

CSC380: Principles of Data Science

Nonlinear Models

Prof. Jason Pacheco
TA: Enfa Rose George TA: Saiful Islam Salim

Outline

» Basis Functions
» Support Vector Machine Classifier
» Kernels

» Neural Networks

» Basis Functions
» Support Vector Machine Classifier
> Kernels

» Neural Networks

Linear Models

[Image: Murphy, K. (2012)]. [Image: Hastie et al. (2001)]

Linear Regression Fit a linear Logistic Regression Learn a
function to the data, decision boundary that is linear in the
- data,
y=w r+b logit(o(w!z)) = w! x

Nonlinear Data

0 5 10 15 20 \

What if our data are not What if classes are not
well-described by a linear linearly-separable?
function?

[Source: Murphy, K. (2012)]

Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes
that occur of a certain magnitude. Our data are given by,

FIGURE 5-3A: WORLDWIDE EARTHQUAKE FREQUENCIES, JANUARY 1964-MARCH 2012

7000 1
6000 -

5000 -

* N
4000-. \ o) i
N\ Fitting a linear regression

3000 ¥ \ is notvery helpful

2000 4

Annual Frequency
Earthquakes of at least this magnitude

==

(=]

)

o
!

0

45 50 55 60 65 720 725 80 85 90 95 100
Magnitude

[Source: Silver, N. (2012)]

Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes
that occur of a certain magnitude. Our data are given by,

FIGURE 5-3B: WORLDWIDE EARTHQUAKE FREQUENCIES, JANUARY 1964—-MARCH 2012,
LOGARITHMIC SCALE

10000

1000
3
& A But plotting outputs on
2 E a logarithmic scale reveals
£E 1 a strong linear relationship...
-]
& 2 1
P~
: o
< 9 0.1
T
£
K 0.01 1
0.[]014-5 50 55 60 65 720 75 80 85 90 95 100

Magnitude

[Source: Silver, N. (2012)]

Example: Earthquake Prediction

Suppose that we want to predict the number of earthquakes
that occur of a certain magnitude. Our data are given by,

[Source: Silver, N. (2012)]

FIGURE 5-3A: WORLDWIDE EARTHQUAKE FREQUENCIES, JANUARY 1964-MARCH 2012

Annual Frequency:

Earthquakes of at least this magnitude

7000

6000

5000

4000 -

3000 1

2000 4

1000 4

0 ' :
45 50 55 6.0 65

70 /5 80 85 90 95 100
Magnitude

Idea Instead of fitting ordinary
linear regression,

Y = w! x
First take the logarithm of
input values X,

Yy = wt log(z)

Basis Functions

* A basis function can be any function of the input features X
* Define a set of m basis functions ¢ (x), ..., ¢ (x)
* Fit a linear regression model in terms of basis functions,

Y = Zwi¢i($) =w' ¢(x)

* Regression model is linear in the basis transformations
* Model is nonlinear in the data X

Common “All-Purpose” Basis Functions

e Linear basis functions recover the original linear model,

¢m (CU) = T Returns mt" dimension of X

* Quadratic ¢,,(x) = 27 or ¢m(x) = x;2, capture 2" order interactions

« An order p polynomial ¢ — x4, 22, ..., z" captures higher-order
nonlinearities (but requires O(d’) parameters)

* Nonlinear transformation of single inputs,

¢ — (log(zj), /75, -)

* An indicator function specifies a region of the input,

Om(x) = I(L,y, < 2, < Upy)

sklearn.preprocessing.PolynomialFeatures

degree : int or tuple (min_degree, max_degree), default=2
If a single int is given, it specifies the maximal degree of the polynomial features. If a tuple (min_degree,
max_degree) is passed, then min_degree is the minimum and max_degree is the maximum polynomial degree
of the generated features. Note that min_degree=0 and min_degree=1 are equivalent as outputting the degree

zero term is determined by include bias.

interaction_only : bool, default=False
If True, only interaction features are produced: features that are products of at most degree distinct input

features, i.e. terms with power of 2 or higher of the same input feature are excluded:

e included: x[@], x[1], x[@] * x[1], etc.
e excluded: x[@] ** 2, x[@] ** 2 * x[1], etc.

include bias : bool, default=True
If True (default), then include a bias column, the feature in which all polynomial powers are zero (i.e. a column

of ones - acts as an intercept term in a linear model).

order : {'C’, ‘F'}, default="C’
Order of output array in the dense case. 'F' order is faster to compute, but may slow down subsequent

estimators.

Example: Polynomial Basis Functions

Create three two-dimensional data points [0,1], [2,3], [4,9]:

>>> X = np.arange(6).reshape(3, 2)
>>> X
array([[6, 1],

[2, 3],

[4, 5]1])

Compute quadratic features (1, 21, z2, ¥7, ¥172, 73) |

»>>> poly = PolynomialFeatures(degree=2)

»>> poly.fit_transform(X)

array([[1., ., 1., e., e., 1.],
[1., 2., 3., 4., 6., 9.],
[1., 4., 5., 16., 20., 25.]1])

These are now our new data and ready to fit a model...

Example: Polynomial Regression

Create a 3-rd order polynomial (cubic) regression,

from sklearn.preprocessing import PolynomialFeatures

X = np.arange ()
y =3 -2 % x + x *¥% 2 — x %%k 3
Yy

array([3, 1, -5, -21, -531)

Create cubic features (1, z, 22, 23),

from sklearn.linear model import LinearRegression
poly = PolynomialFeatures (degree=3)

¥ new = poly.fit transform(x[:,np.newaxis])
x:new B
array([[1., 0., ., 0.1,

[1., 1., 1., 1.1,

[1., 2., 4., 8.1,

[1., 3., 9., 27.],

[1., 4., le., €4.]1])

Example: Polynomial Regression

model = LinearRegression(fit intercept=False) .fit(x new, y)
ypred = model.predict (x new)

plt.scatter (x,vy) -

plt.plot (x, ypred, '-")

plt.xlabel ("X")

plt.ylabel ("Y")

plt.show ()

[
)
(=]

A

|
L
=

A

|
£
=

i

|
Ln
=

A

0.0 0.5 10 15 20 £ 30 < 10 40

Linear Regression

Recall the ordinary least squares solution is given by,

(1 11 ... 1D \ ”
< 1 To1 ... Zap v (;) UJOLS _ (XTX)_ley
\ 1 v ... anp / yn
Design Matrix Vector of
(each training input on a column) Training labels

Can similarly solve in terms of basis functions,

(1 d1(z1) .. dm(z1)
o= ¢1(:$2) d)M:(x?) wOLS _ (@T@)—l@Ty
\ 1 di(zn) .. dmlzn))

Example: Piecewise Linear Regression

[Source: Hastie et al. (2001)]

Decompose the input space into 3
regions with indicator basis functions,

Fit linear regression model,

Yy = wi1¢1(x) + wapa(x) + wsps(z)

Effectively fits 3 linear regressions
Regression lines are discontinuous independenﬂy to data in each region

at boundary points

Example: Piecewise Linear Regression

[Source: Hastie et al. (2001)]

&2

Enforce constraint that lines agree at
boundary points,

p1(x) =

p2(x) =
p3(z) = (T — 51)
pa(z) = (r — &2)+

Where (...)+ means the positive part

An improvement, but generally prefer smoother functions...

[Source: Hastie et al. (2001)]

Discontinuous Continuous
| ; | : Replace linear basis
. |) . | o functions with
o £° ol | Cj o 85 o | | :
/ONJl\ O i /@g/ /ON:J' O i/@g/ pOIynomIaI,
I \ o | 5 | ° | oo o | Vi 1 - -
F¥oNe °° 0 - ° o 1 L) — 1 9 X)) — T
:%v i@%M ¢ () ; ¢ () \
o L [o= ale) =
| | | | 3
Continuous First Derivative Continuous Second Derivative ¢5 (:U) — (55 o 61)_|_
3
i i i i de(z) = (x — &)
% (0] | | O % O | I Q
o .8° % | | | oy ' | s :
L. o7 |[ASX. . 2| Additional constraints
N N = /" 7| ensure smooth 15t and
i g i i i 2nd derivatives at
] o, boundaries

§1 &2 &1 &2

10

_1{] -

=15 -

—20

Polynomial Splines

11

I
I
]
|
1

\

1
1
l
|
I

]

— ground truth
—— degree 3
degree 4
degree 5
B-spline
@ training points

::_:\ \\\// /V\\

/

I
I
]
|
1

\

\
|

I

These piecewise regression
functions are called splines

Supported in Scikit-Learn

\| preprocessing.SplineTransformer

Caution Polynomial basis
functions often yield poor out-of-
sample predictions with higher
order producing more extreme
predictions

Data Preprocessing

» Generally the first step in data science involves preprocessing
or transforming data in some way
* Filling in missing values (imputation)
» Centering / normalizing / Z-scoring data
* Efc.

* We then fit our models to this preprocessed data

* One way to view preprocessing is simply as computing some
basis function ¢(z), nothing more

Basis Functions

PROs
* More flexible modeling that is nonlinear in the original data
* Increases model complexity and expressivity

CONs

* Typically requires more parameters to be learned

* More sensitive to overfitting training data

* Requires more regularization to avoid overtfitting

* Need to find good basis functions (feature engineering)

Outline

» Support Vector Machine Classifier

Classification as Regression

S ASSNNE S O U S T v s S

S R R NN A ~ N A N R

P R ORI, SV AR RORNPORE U SN SRS N

Purchased

0.2 e b

P ISR SN WS NN WS . S A N A

0.0 b e b S S R S B

10.0 125 150 175 200 25 25.0
Age

e This is a discriminant function, since it discriminates between classes

* |tis alinear function and so is a linear discriminant

» Green line is the decision boundary (also linear)

215

Recall our linear regression can be
used for classification via the rule,

0 ifwlz<0.5

Class = .
1 ifw'z>=0.5

Generalizes to
higher-dimensional
features

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

https://towardsdatascience.com/why-linear-regression-is-not-suitable-for-binary-classification-c64457be8e28

Linear Decision Boundary

Least squares regression yields decision boundary based on least
squares solution...

[Source: http://www-bcf.usc.edu/~gareth/ISL/ |

http://www-bcf.usc.edu/%7Egareth/ISL/

Linear Decision Boundary

...any boundary that separates classes is equivalently good on training

data

0’3— m_
N_ N_
< - <
o — o
‘T_ -

| | | | | | | [| |

-1 0 1 2 3 1 0 1 2 3

Xi X

[Source: http://www-bcf.usc.edu/~gareth/ISL/ |

http://www-bcf.usc.edu/%7Egareth/ISL/

Classifier Margin

The margin measures minimum
distance between each class and the
decision boundary

Observation Decision boundaries with
larger margins are more likely to
generalize to unseen data

X
1

Idea Learn the classifier with the largest
margin that still separates the data...

...we call this a max-margin classifier

[Source: http://www-bcf.usc.edu/~gareth/ISL/ |

http://www-bcf.usc.edu/%7Egareth/ISL/

Max-Margin Classifier

Recall that the linear model is given by

'
y(z) =wlz+b y=0
y <0 \

Let classes be {—1, 1} so classification
rule is,

1 ify(z) <0
1 ify(x) >=0

\

Class = ¢

Decision boundary is now at y(x) = 0 and
distance to the margin S, Known as the distance from a

y(x) point to a plane equation:
wiki/Distance from a_point to_a plane

]|

Where the norm of the weights is |w| = Vwlw = />, w?

https://en.wikipedia.org/wiki/Distance_from_a_point_to_a_plane

Max-Margin Classifier
For training data {(z,,, vy,)} we only care about the margin for correctly-
classified points where,
The margin of correctly-classified points is then given by,

YnY(Zn) _ Yn(w” zn +b)

arg max {min
wb Um0 ol

Max-Margin Classifier

Maximize the
minimum margin

A
a8 N\
{ : yn(men + b) }
arg max < min
T]
\\§ J

Minimum margin over
all training data

Find the parameters (w,b) that maximize the smallest
margin over all the training data

[Source: http://www-bcf.usc.edu/~gareth/ISL/ |

http://www-bcf.usc.edu/%7Egareth/ISL/

Nonlinear Max-Margin Classifier

Just as in the linear models we can
introduce basis transformations,

y(x) = w" ¢(z) +b

Max-margin learning is similar,

arg max < min
w,b { n lw]

Decision boundary is linear in the transformed data, but
nonlinear in the original data space

[Source: Bishop, C. PRML]

Nonlinear Max-Margin Classifier

Data Space

Decision boundary is linear in the transformed data, but

Basis Space

nonlinear in the original data space

10

Max-Margin Classifier

Learning objective is hard to solve in this form...

arg max {min yn(w! ¢(z,,) + D) }

T o]

But we can scale parameters w — sw and b — xb without changing
margin...so we can set the nearest point to the margin so that,

yn(’ngb(mn) T b) =1
And for all other points not near the margin,

yn(ngb(xn) +b) > 1

Now we just have to satisfy these constraints...

Support Vector Machine (Primal)

To learn the classifier, we solve the following constrained
optimization problem...

1

. minimize = ||w]|? This is known as the
e . . 2 primal optimization
— el subject to
e e T Yyn(w' x, +b)>1 forn=1,...,N
R This is a convex (quadratic) optimization

problem that can be solved efficiently

« Data are D-dimensional vectors
* Margins determined by nearest data points called support vectors
* We call this a support vector machine (SVM)

Support Vector Machine (Dual)

All other points are outside the margin

2 _ .. and constraints are loose:
| .t — > T
o I S Yn(w* ¢(xy) +0) > 1
e @ . Support vectors are tight to the margin,
iy . , % and satisfy constraints with equality:
P Gy Yn(w' d(an) +b) =1

SVM Dual Problem Find the support vectors (set of constraints that
hold with equality) that define the largest margin

SVM in Scikit-Learn

SVM with linear decision boundaries,

sklearn.svm.LinearSVC

Sepal width

Call options include...

penalty : {'[T°, 2}, default="12" Sepal length

Specifies the norm used in the penalization. The ’I2' penalty is the standard used in SVC. The 'I1" leads to
coef_ vectors that are sparse.

dual : bool, default="True Only showing linear
Select the algorithm to either solve the dual or primal optimization problem. Prefer dual=False when for a reason that will
n_samples > n_features. be clear soon...

C : float, default=1.0

Regularization parameter. The strength of the regularization is inversely proportional to C. Must be strictly
positive.

Other options for controlling optimizer (e.g. convergence tolerance ‘tol’)

https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC

» Basis Functions
» Support Vector Machine Classifier
» Kernels

» Neural Networks

Support Vector Machine (Dual)

SVM Dual Problem Find the support vectors (set of constraints that
hold with equality) that define the largest margin

_ . L. For each data point, introduce a new
__ %y L optimization variable (dual variable),
@@ I After solving, SVM classifies a new point as:
8 oo) N
R y(@) = > Angnd(@) 6 (x)
: : : . n=1

* Dual variables are nonzero \,, > 0 for any support vector
« Exactly zero for non-support vectors A\,, = 0
 Classifier only needs to store support vectors (sparse representation)

Kernel Functions

Basis transform Basis transform
on new point on training point

N \ /

_/
Interaction with training points
in transformed basis space

Idea Define a new function as the inner product with basis transforms,
K(T,) = ¢(x)T¢($n)

We can now represent the classifier without even knowing the basis,

N
We call this_a y(a;) — Z)\nynl-{,(ﬂi, .’En)

“kernel function”

Kernel SVM In Scikit Learn

SVC with linear kernel SVC with RBF kernel SVC with polynomial (degree 3) kernel

P ¢
. ak ¥
80

= Sl]
- 'l o ¥
L] o []

Sepal width
Sepal width
Sepal width

o

Sepal length Sepal length

Sepal length

T

k(x,2') =a' 2’ k(z,2') = exp(—7||lx — 2'||*) r(z,z) = (212’ +¢)?

—~~ Note: No explicit basis function
» General kernel-based SVM lives in:

sklearn.svm.svc (kernel=‘kernel name’)
» Supports most major kernel types
* Generally use kernel when number of features > number data

https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC

sklearn.svm.SVC

kernel : {’linear’, ‘poly’, 'rbf’, 'sigmoid’, ‘precomputed’}, default="rbf’
Specifies the kernel type to be used in the algorithm. It must be one of ‘linear’, ‘poly’, rbf’, 'sigmoid’,
‘precomputed’ or a callable. If none is given, ‘rbf’ will be used. If a callable is given it is used to pre-compute
the kernel matrix from data matrices; that matrix should be an array of shape (n_samples, n_samples).

gamma : {'scale’, ‘auto’} or float, default="scale’
Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid'.

* if gamma="scale" (default) is passed then it uses 1 / (n_features * X.var()) as value of gamma,
e if 'auto’, uses 1/ n_features.

max_iter : int, default=-1
Hard limit on iterations within solver, or -1 for no limit.

verbose : bool, default=False
Enable verbose output. Note that this setting takes advantage of a per-process runtime setting in libsvm that,
if enabled, may not work properly in a multithreaded context.

class weight : dict or "balanced’, default=None
Set the parameter C of class i to class_weight[i]*C for SVC. If not given, all classes are supposed to have weight
one. The “balanced” mode uses the values of y to automatically adjust weights inversely proportional to class
frequencies in the input data as n_samples / (n_classes * np.bincount(y)).

Example: Fisher’s lris Dataset

Classify among 3 species of Iris flowers...

Iris setosa Iris versicolor Iris virginica

Four features (in centimeters)
 Petal length / width
« Sepal length / width

Example: Fisher's Iris Dataset

Iris Data (red=setosa,green=versicolor,blue=virginica)

Sepal.Length

‘&&
Sy
0'6
&
B
gi'
45 55 65 7.5

Fairly easy to separate

3.0 4.0

2.0

3 Iy setosa from others using a
G| % A E i linear classifier

25

1.5

0.5

. =:' e ;, eeee
2. ’: : i:;;.._h
ped | e ke : .

3“.@ bl 4710 Need to use nonlinear basis /
i i e kernel representation to
Rt - g.,I_ oy ~ Dbetter separate other classes

R P Y L X £

.é:;i' 8 . ::,E.: o ;‘g < Petal. Width
ol e

IIIIIIIIIIIIIII

45 55 65 75 1 2 3 4 5 6 7

Example: Fisher's Iris Dataset

Train 8-degree polynomial kernel SVM classifier,

from sklearn.svm import SVC

svclassifier = SVC(kernel="poly", degr

svclassifier.fit(X _train, y train)

Generate predictions on held-out test data,

y pred = svclassifier.predict(X test)

Show confusion matrix and classification accurac

precision fl-score support

[[11 @ o]

yrint(confusion matrix(y test, y pred))
: { - 7= . | [@ 12 1]

Tris-setosa 1.00 1. 1.00 11

print(classification report(y test, y pred)) Iris-versicolor 1.00

[@ © 6]] Iris-virginica 0.86

avg / total 0.97

[Source: https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/]

https://stackabuse.com/implementing-svm-and-kernel-svm-with-pythons-scikit-learn/

Kernel Functions

A kernel function is an inner-product of some basis function
computed on two inputs

M
k(r,x') = () (') =) dilx)di())
i=1

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

k(z,z') € R k(z,2') >0

Kernel functions can be interpreted as a measure of
distance between two inputs

Kernel Functions

Example The linear basis ¢(x) = = produces the kernel,

k(z, ') = ¢p(x)" ¢(2’) = 2" 2]

It is often easier to directly specify the kernel rather than the
basis function...

Example Gaussian kernel models similarity according to an
unnormalized Gaussian distribution,

/ 1 /N2 Note Despite the name,
HZ(.CC, X) = CXpP | —5 3 (ZU — &) this is not a Gaussian
20 probability density.

Also called a radial basis function (RBF)

Kernel Functions

Given any set of data {z;}/., a necessary and sufficient
condition of a valid kernel function is that the nxn gram matrix,

k(z1,r1) k(x1,22) ... K(T1,20)

k(xs,x1) kK(xo,x2) ... K(T2,2,)
K =

K(Tn, 1) K(Tp,T2) ... K(Tn,Tn)

Is @ symmetric positive semidefinite matrix.

Techniques for Constructing New Kernels.

Given valid kernels £, (x.x") and k> (x., x"), the following new kernels will also

be valid:

[Source: Bishop, C.]

k(x,
k(x,
k(x,
k(x,
k(x,
k(x,
k(x,
k(x,
k(x,
k(x,

T T T T

T

R TR

T

T
e e M M M M M M M e

ckq(x,x")
fx)k(x.x") f(x)
q (k1(x,x"))
exp (k1 (x,x"))
ky(x,X") + ka(x,X)
kl(x x')ka(x,x")
ks ((x), p(X))

TAX
ko (Xa, X)) + kp(Xp, X))
ka(Xa, X)b (Xb, X))

(6.13)
(6.14)
(6.15)
(6.16)
(6.17)
(6.18)
(6.19)
(6.20)
(6.21)
(6.22)

Why Kernel Functions?
At this point you should be slightly confused...
* We learned how to fit linear models

* We learned how to introduce nonlinearities by using basis functions
« Kernels are just inner products of basis functions

...then why do we need Kernels?

Why Kernel Functions?

* Most linear models have an equivalent form in terms of kernels
« Can directly specify kernel function without knowing basis functions

« Kernels can be more intuitive to specify since they capture meaningful
distance / difference between two data points

 Kernel-based models can be more flexible than basis functions

« Example The RBF (Gaussian) kernel corresponds to infinite-
dimensional basis functions. Classifiers based on RBF kernel can
perfectly separate any data.

Kernel Ridge Regression

Recall the solution of L2-regularized linear regression (ridge regression),

& _ 1 | :5132) wridge _ (q:)Tq) +)\I)—lq:)Ty
\ 1 di(on) .. ulan) /

Define the kernel matrix and vector as,

k(x1,r1) k(x1,22) ... K(x1,2h)
. / k(xe,x1) kK(xa,x2) ... K(x2,Xp) \
K=o & =
\ K(Tn, 1) K(Tn,x2) ... KT, T,))

k(x)" = (6(z) ¢(z1), ..., o) dlzn))

Kernel Ridge Regression

The learned regression function (for a new point) is then,

Solution to ridge regression — [(@T(I) —|—)\I) -1 (I)TY] g Cb(ﬂ?)
ah = b'a =¢(z)" (D' @+ A)"'®"y]
Substitute kernel — k(X)T (K —|—)\I) _1y A:‘?):r:lr:loazgnazft:‘ii:aural

regression

Can now express regression without explicitly
specifying basis functions

Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual
1 ¢i(z) ... omlz) k(xy,r1) kK(x,22) ... K(x1,TH)
/ 1 gbl(il?g) e @M(CCQ) \ / ’i(ﬂj% 171) I{(:C?a 332) s f€($2,$n) \
d — _ | K= : . . .
\ 1 @1(581\7) qu(.CUN)) \ R(mmxl) H’(Ime) Ii(:l?n,a?n))
w=(®T® + \I)"'®"y w=k(x)" (K+) 'y
A\ ~ _J \/_/
MxM Matrix Inversion NxN Matrix Inversion
O(M3) O(N°)

Number of training data N greater than basis functions M

sklearn.kernel_ridge.KernelRidge

alpha : float or array-like of shape (n_targets,), default=1.0
Regularization strength; must be a positive float. Regularization improves the conditioning of the problem and
reduces the variance of the estimates. Larger values specify stronger regularization. Alpha corresponds to 1 /
(2C) in other linear models such as LogisticRegression Or LinearSVC. If an array is passed, penalties are
assumed to be specific to the targets. Hence they must correspond in number. See Ridge regression and

classification for formula.

kernel : str or callable, default="linear"
Kernel mapping used internally. This parameter is directly passed to pairwise_kernel. If kernel is a string, it

must be one of the metrics in pairwise.PAIRWISE_KERNEL_FUNCTIONS. If kernel is “precomputed”, X is assumed
to be a kernel matrix. Alternatively, if kernel is a callable function, it is called on each pair of instances (rows)
and the resulting value recorded. The callable should take two rows from X as input and return the
corresponding kernel value as a single number. This means that callables from sklearn.metrics.pairwise are
not allowed, as they operate on matrices, not single samples. Use the string identifying the kernel instead.

gamma : float, default=None
Gamma parameter for the RBF, laplacian, polynomial, exponential chi2 and sigmoid kernels. Interpretation of

the default value is left to the kernel; see the documentation for sklearn.metrics.pairwise. Ignored by other

kernels.

Example: Kernel Ridge Regression

Generate some sinusoidal (periodic) data,
X =15 * rng.rand(16©, 1)
y = np.sin(X).ravel()
y += 3 * (8.5 - rng.rand(X.shape[@])) # add noise

Define an exponentiated sinusoidal kernel,

-2
from sklearn.gausslan process.kernels import ExpSineSquared ex L 2 S (ﬂ-d(x'“ aj])/p)
kernel = ExpSineSquared(length scale=4.64, periodicity=12.9) b l2

Fit kernel ridge regression,

from sklearn.kernel ridge import KernelRidge
kr = KernelRidge (kernel=kernel, alpha=0.001).£fit(X,vy)

Plot results,

X plot = np.linspace(0, 20, 10000)[:, None]
y kr = kr.predict (X plot)
plt.scatter (X,v)

plt.plot (X plot, y kr) 1 . : 1 r | ’ . r
plt.show () 00 25 50 75 100 125 150 175 200

» Basis Functions
» Support Vector Machine Classifier
» Kernels

» Neural Networks

Basis Functions

Basis functions transform linear models into nonlinear ones...

Classification

Linear Regression (Logistic Regression)
Y IwT:c Y = JI(wT:U)
y =w' ¢() y =o(w’ ¢(z))

...but it is often difficult to find a good basis transformation

Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well...

Data Space Warped Space
&% NeuralNet . e
T Y . . © b
% I'u,ll | > [ST e——— ®-—_ _____________-_____
w

Ignore the circled points...|
reused these from the SVM slides

...this is essentially what standard neural networks do...

Neural Networks

* Flexible nonlinear transformations of data
* Resulting transformation is easily fit with a linear model
 Relatively efficient learning procedure scales to massive data

* Apply to many Machine Learning / Data Science problems
* Regression
» Classification
« Dimensionality reduction
* Function approximation
* Many application-specific problems

Neural Networks

Forms of NNs are used all over the place nowadays...

Wha's in These Photos?
[4w B et s I saric ilg—

1% Chat (Ofine)

FB Auto Tagging Self-Driig Cars

S | — Machine Translation

DETECT LANGUAGE ENGLISH SPANISH FRENCH v Pl SPANISH ENGLISH ARABIC v
Hello world! X jHola Mundo! 2, A d
o) 12 / 5000 . L D] [_D 4 <

Send feedback

Rosenblatt’'s Perceptron

Despite recent attention, In 1957 Frank Rosenblatt constructed

neural networks are fairly old the first (single layer) neural network
known as a “perceptron”

perceptron

N

e A\ . J :

He demonstrated that it is capable of
recognizing characters projected onto a
20x20 “pixel” array of photosensors

Rosenblatt’'s Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)

Perceptron

Mosaic of Projection area System Response
Sensory (In some models) (A-units) Units
Points f ! 1
Output Signal * O- w ZC —I_ b
...... ey R) |===—e——eegge= Output Signa :‘] 1 (
e o oe
.':o' E) P "fo
.o- ',.-"...' 6° ‘.c' ﬂ'
:’ °. v.‘:-.':‘ - ’0 -o .: :: ..‘ oo
0"-"‘. O.D-':, Ra
8, - a®® ¢ "o et 0f
oo- ‘:.’t‘a‘ Op...aoo‘- £ .
o '. . [® 00 1 *
1 Hy O output
o : -, & :. 'l L] I
N I
Topographic Random L
Connec| tions Connections R
———— — Feedback
Circuits .
s L3
-_——————
FIG. 2 — Organization of a perceptron.

In Rosenblatt’s perceptron, the inputs are tied directly to output

“Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
The perceptron is just logistic regression in disguise

Multilayer Perceptron

Hidden layer
perceptrons
Input layer . .
perceptrons l l Adding hidden layers
allows NN to learn

arbitrary functions

output

This is the quintessential Neural Network...
...also called Feed Forward Neural Net or Artificial Neural Net

[Source: http://neuralnetworksanddeeplearning.com]

http://neuralnetworksanddeeplearning.com/

Modern Deep Neural networks add many hidden layers

5 = -'9"

48

Modern Neural Networks

Max
pooling

128

’ §

-
- e R
el i
x, =)
ey S N Y
. PR
s o
aLe LS
~ Te S
S v .
T ‘
. e
DA
- Plarar o]
. - I
s N
> P

192

192

i o L s
N S Tala
’ 13-
L [e L
‘

13

13

s |
13

Max
pooling

192

h 13:-'_-:*--

13

[as]

soag \dense

dense’

192

128 Max
pooling

2048

dense

...and have many millions of parameters to learn

[Source: Krizhevsky et al. (NIPS 2012)]

2048

1000

Handwritten Digit Classification

Classifying handwritten digits is the "Hello World” of NNs

O Hl /1 1g A [1] 3] 1] [4 [3] Each character is centered
SR el 1] 7 [H[Z] 6] [5 M in a 28x28=784 pixel
77142 ¢Y 327 > grayscale image
P [70 560 FH (e []

& 17]19 1% 9] 8] s] 8] 13 [

o027 2109444

6|84 A6 [r Qa1

7zl 1] 382/ 12275

03678090 «e

2l 4l 6l g] 0 7] 18 3] /] 5]

Modified National Institute of

Standards and Technology

(MNIST) database contains 60k
training and 10k test images

aircAruvnKKk |

[Source : 3Blue1Brown : hitps://www.youtube.com/waich?v

7

IS a

Image pixe
ica

Each
numer in

icated

[0,1] ind
by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes
at the previous layer...

W1T1 + W22 + ... + WpTy

Then applies a nonlinear
function to the result

o(wir1 +wexs + ...+ wpx, + b)

Often, we also introduce /

a constant bias parameter

Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

o(wix1 + woko + ... + WyTy

An early choice was the logistic function,
1

b) = o(w! z +b)

14

S

T p— 0-5
O'(w .CU"_b)_ 1_|_€—(wa—|—13))/
Later found to lead to slow learning and ridge R B R
functions like the rectified linear unit (ReLU), TR

o(w!z + b) = max(0,w’ z + b)

Or the smooth Gaussian error linear unit (GeLU),

vV = wa + b U('U) — ’U(I)(’U) ¢ Gaussian CDF

2.0 A

1.54

1.0 A

0.5 1

0.0

Multilayer Perceptron

Final layer is typically a linear
model...for classification this is
a Logistic Regression

1

\ Vector of activations from

previous layer

Recall that for multiclass
logistic regression with K
classes,

p(Class = k | z) o o(wi x + by)

[Source : 3Blue1Brown :

T84 x16+4+16x16 + 16x10
weights

16 +16 + 10
biases

13,002

Each parameter has some impact
on the output...need to tweak
(learn) all parameters
simultaneously to improve
prediction accuracy

(84

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

For each training example,
predict label and adjust
weights...

) [P =T NS
R~ [NSIMN RN
=N A HONG
N TS YATESRSINES
= cbl >0l foa [O]
NN [QRS

INRSINN N[QS| S[he)
n{ ISR U
QLD NN

XTrain

Wrong!

SODOOOOD

~ N
o <f Yo
n/.
el
-
o
el
-
— O . O o
| -
0 B
<t M . <t hmm
— .
O O - D~ © o
S 3
N - —
° B
J 35
- N ©
T O O
ﬂ —
< =
S o O
1T I
e o

Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class...

(0.43 =0 (ll)
((} 28 — () lli))
(0.19 — 0.00)?
()
(
(

+
|
I

Input

P

0.88 — 1.00)“+
0.72 — 0.00) +
0.01 — 0 (H:) +
(0.64 — 0.00)%+
()86—1"“*) -+

(
(0.
(063 — 0 (H})—'

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk]

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

Our cost function for it input is error in terms of weights / biases...

Cost; (w1, ..., wn,b1,...,by,)

\ J
Y

13,002 Parameters
in this network

..minimize cost over all training data...
min £(w, b) Zcost (W1, ... W, b1,y ..., by)

w,b

This is a super hlgh-dlmen3|onal optimization (13,002
dimensions in this example)...how do we solve it?

Gradient descent!

Training Multilayer Perceptron

Need to find zero derivative (gradient) solution...

Convex Cost Function Non-convex Cost Function High-Dimensional Non-convex
| f(x) = sin (2?) + 1
\ A= (-2,251)

[

2_

YAY! Super Boo!

Actually, the situation is much worse, since the cost is super
(13,002) high dimensional...but we proceed as if...

| -
Q
(7))
o =
()
N C -
J) C...Im.
A S+
1 £ ©
O
“M.S =
O+ 0O
T - e
~ 35 0
OO (Y e e
cC s ;
= =2 R
S @) N ol P r__
CCC rililed
= 9 c =i
8 o

e

challeng

%

the Multilayer Perceptron

INing

Tra

R— = G
.- =
o L
q.l mp— |u._.u.|...r-__.
’-.Ih.h-_. F_
L= .q..mrul
o~ g
. B
Y 1...IE_ e
L. AT R
e - NOPRRE: e
Hida 1.0

A

T

Example

Play with a small multilayer perceptron on a
binary classification task...

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Computing the Derivative

So we need to compute derivatives of a super complicated
function...

d d
_ E . D d bias term
dwﬁ(w) i dw Costi(w) rofopresim;]iiitffr)

Recall the derivative chain rule

d d
T flow) = 2= 1(gw) (7o)
\ v J —

Derivative of f atits Differentiate g with

argument g(w) respect to w
e.g. treat g(w) as a variable

Derivative Chain Rule

Alternatively we can write this as...
d / /
——flg(w)) = fg(w))g (w)

Example Derivative of the logistic function,

d d 1
Ea(z) T dzltez
flz) = i g(z) =1+ e o'(z) = f (96(2)9 (2)

Backpropagation
[Source : 3Blue1Brown : hitps://www.youtube.com/watch?v=aircAruvnKK]

Activation at final layer involves
weighted combination of
activations at previous layer...
o(w! x)

Which involves a weighted
combination of the layer before
it...

o (wy, o (wy, 1))

And so on...

0 (W 0 (wy, 10 (W, _50(...)))

https://www.youtube.com/watch?v=aircAruvnKk

Backpropagation

Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative

Example
d

——0o(z) =0(2)(1 - U(Z))j

d d
o-0(0(2)) = 0(0(2))(1 —o(0(2))) 0 (2)

This is simply the derivative chain rule applied through the
entire network, from the output to the input

Backpropagation

* Implementation-wise all we need is a function that computes
the derivative of each nonlinear activation

* We can repeatedly call this function, starting at the end of the
network and moving backwards

* [n practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly very

» Can do this efficiently on graphical processing units (GPUS)
on extremely large training datasets

Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer
perceptron that approximates f(x) with arbitrary accuracy.

« Specific cases for arbitrary depth (number of hidden layers) and
arbitrary width (number of nodes in a layer)

* Not a constructive proof (doesn’'t guarantee you can learn parameters)
« Corollary : The multilayer perceptron is a universal turing machine

* Also means it can easily overfit training data (regularization is critical)

Regularization

With four parameters | can fit an elephant. With five |
can make him wiggle his trunk. - John von Neumann

w = arg min Cost(w) + « - Regularizer(Model)

w

Our example model has 13,002
parameters...that’s a lot of elephants!
Regularization is critical to avoid overfitting...

...numerous regularization schemes
are used in training neural networks

Regularization : Weight Decay

In neural network speak, adding an L2 penalty is called weight decay

w = arg min Cost(w) + %HWHQ
w

alpha 0.10 alpha 0.32 alpha 1.00 alpha 3.16 alpha 10.00

alpha 3.16 alpha 10.00

alpha 1.00 alpha 10.00

alpha 0.32

Regularization

* L1 regularization and L1+L2 (elastic net) regularization

* Dropout Each iteration randomly selects a small number of
edges to temporarily exclude from the network (weights=0)

* Intuition Avoids predictions that are overly sensitive to any small
number of edges

« Early stopping Just as it sounds...stop the network before
reaching a local minimum...dumb-but-effective

sklearn.neural network.MLPClassifier

hidden_layer sizes : tuple, length = n_layers - 2, default=(100,)
The ith element represents the number of neurons in the ith hidden layer.

activation : {‘identity’, ‘logistic’, ‘tanh’, ‘relu’}, default="relu’
Activation function for the hidden layer.

solver : {’lbfgs’, ‘'sgd’, ‘adam’}, default="adam’
The solver for weight optimization.

alpha : float, default=0.0001
L2 penalty (regularization term) parameter.

learning_rate : {'constant’, ‘invscaling’, ‘adaptive’}, default="constant’
Learning rate schedule for weight updates.
early stopping : bool, default=False
Whether to use early stopping to terminate training when validation score is not improving. If set to true,

Scikit-Learn : Multilayer Perceptron

Fetch MNIST data from www.openml.orqg :

X, y = fetch openml("mnist_784", version=1, return_X_y=True)
X =X/ 255.0

Train test split (60k / 10k),

X_train, X_test
y_train, y_test

X[:60000], X[60000:]
y[:60000], y[60868:]

Create MLP classifier instance, mlp = MiPClassifier(

_ _ hidden_layer_sizes=(590,),
 Single hidden layer (50 nodes) max_iter=10,

» Use stochastic gradient descent alpha=le-d,

solver="sgd",

« Maximum of 10 learning iterations verbose=10,

random_state=1,

« Small L2 regularization alpha=1e-4 learning_rate_init=0.1,

http://www.openml.org/

Scikit-Learn : Multilayer Perceptron

Iteration 1, loss = ©.32009978
. . Iteration 2, loss = ©.15347534
Fit the MLP and print stuff... e B o & ()
Iteration 4, loss = ©.89279764
mlp.'Fit(X tr*ain, y tr*ain} Iteration 5, loss = ©.87889367
- - Iteration 6, loss = ©.87178497
print("Training set score: %" % mlp.score(X_train, y_train)) Iteration 7, loss = ©.06282111
print("Test set score: %" % mlp.score(X test, y test)) Iteration 8, loss = 9.05530783
Iteration 9, loss = ©.84968484
Iteration 10, loss = ©.84645355
. . . Training set score: ©.986860
Visualize the weights for each node... Test set score: 0.970000

vmin, vmax = mlp.coefs [0].min(), mlp.coefs [0].max()
for coef, ax in zip(mlp.coefs [0].T, axes.ravel()):
ax.matshow (coef. reshape(28 28), cmap=plt.cm.gray,
kmln— .9 * yvmin, vmax=0.5 * vmax)
ax.set xticks(())
ax.set yticks(())

..magnitude of weights indicates which
input features are important in prediction

More Advanced Topics

Many other NN architectures exist beyond MLP

« Convolutional NN (CNN) For image processing / computer viz.

« Recurrent NN (RNN) For sequence data (e.g. acoustic signals, video, etc.)
long short-term memory (LSTM) is popular

« Generative Adversarial Nets (GANs) For generating creepy deepfakes
* Restricted Boltzmann Machine (RBM) Another generative model

Many open areas being researched
* More reliable uncertainty estimates

* Robustness to exploits

* Interpretability

 Better scalability

Resources

There are tons of excellent resources for learning about neural
networks online...here are two quick ones:

3Blue1Brown Youtube channel has a nice four-part intro:
https://www.youtube.com/watch?v=aircAruvnKk

Free book by Michael Nielson uses MNIST example in Python:
http://neuralnetworksanddeeplearning.com/

Prof. Stephen Bethard often teaches an excellent class:
ISTA 457 / INFO 557

https://www.youtube.com/watch?v=aircAruvnKk
http://neuralnetworksanddeeplearning.com/

	CSC380: Principles of Data Science
	Outline
	Outline
	Linear Models
	Nonlinear Data
	Example: Earthquake Prediction
	Example: Earthquake Prediction
	Example: Earthquake Prediction
	Basis Functions
	Common “All-Purpose” Basis Functions
	Slide Number 11
	Example: Polynomial Basis Functions
	Example: Polynomial Regression
	Example: Polynomial Regression
	Linear Regression
	Example: Piecewise Linear Regression
	Example: Piecewise Linear Regression
	Slide Number 18
	Polynomial Splines
	Data Preprocessing
	Basis Functions
	Outline
	Classification as Regression
	Linear Decision Boundary
	Linear Decision Boundary
	Classifier Margin
	Max-Margin Classifier
	Max-Margin Classifier
	Max-Margin Classifier
	Nonlinear Max-Margin Classifier
	Nonlinear Max-Margin Classifier
	Max-Margin Classifier
	Support Vector Machine (Primal)
	Support Vector Machine (Dual)
	SVM in Scikit-Learn
	Outline
	Support Vector Machine (Dual)
	Kernel Functions
	Kernel SVM in Scikit Learn
	Slide Number 40
	Example: Fisher’s Iris Dataset
	Example: Fisher’s Iris Dataset
	Example: Fisher’s Iris Dataset
	Kernel Functions
	Kernel Functions
	Kernel Functions
	Slide Number 47
	Why Kernel Functions?
	Why Kernel Functions?
	Kernel Ridge Regression
	Kernel Ridge Regression
	Kernel Ridge Regression
	Slide Number 53
	Example: Kernel Ridge Regression
	Outline
	Basis Functions
	Learning Basis Functions
	Neural Networks
	Neural Networks
	Rosenblatt’s Perceptron
	Rosenblatt’s Perceptron
	Multilayer Perceptron
	Modern Neural Networks
	Handwritten Digit Classification
	Multilayer Perceptron for MNIST Classification
	Feedforward Procedure
	Nonlinear Activation functions
	Multilayer Perceptron
	Slide Number 69
	Training Multilayer Perceptron
	Training Multilayer Perceptron
	Training Multilayer Perceptron
	Training Multilayer Perceptron
	Training the Multilayer Perceptron
	Example
	Computing the Derivative
	Derivative Chain Rule
	Backpropagation
	Backpropagation
	Backpropagation
	Universal Approximation Theorem
	Regularization
	Regularization : Weight Decay
	Regularization
	Slide Number 85
	Scikit-Learn : Multilayer Perceptron
	Scikit-Learn : Multilayer Perceptron
	More Advanced Topics
	Resources

