
CSC380: Principles of Data Science

Classical Statistics and Estimation

Prof. Jason Pacheco
TA: Enfa Rose George                    TA: Saiful Islam Salim



Probability and Statistics

• Probability provides a mathematical formalism to reason about 
randomness

• Statistics deals with data and encompasses
• Data collection / organization
• Interpretation of data
• Answering questions from data (statistical inference, hypothesis 

testing)
• Fitting models to data (estimation)

• Statistics uses probability to address these tasks



Probability and Statistics

Probability describes how to generate data

Inference / Estimation

Statistics describes how data were generated
[ Source: Wasserman, L. 2004 ]
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Intuition Check

Suppose that we toss a coin 100 times.  We don’t know if the 
coin is fair or biased…

Question 2 Now suppose that out of 100 tosses we observed 73 heads 
and 27 tails.  Is the coin fair?  Why or why not?

Question 3 How might we estimate the bias of the coin
with 73 heads and 27 tails?

Question 1 Suppose that we observe 52 heads and 48 tails.  Is the coin 
fair?  Why or why not?



Estimating Coin Bias

We can model each coin toss as a Bernoulli random variable,

where

Recall that    is the coin bias (probability of heads) and that,

Suppose we observe N coin flips                  , estimate     as,

This is the empirical mean or sample mean



Estimating Gaussian Parameters

Suppose we observe the heights of N students 
at UA, and we model them as Gaussian:

How can we estimate the mean?

How can we estimate the variance?
Variance estimator uses 

our previous mean 
estimate.  This is a plug-in 

estimator.

Sample mean



Parameter Estimation

We have a model in the form of a probability distribution, with 
unknown parameters of interest    ,

Observe data, typically independent identically distributed (iid),

Compute an estimator to approximate parameters of interest,

Many different types of estimators, each with different properties



Definitions

A statistic is a function of the data that does not depend on any 
unknown parameter.

Examples
• Sample mean
• Sample variance
• Sample STDEV
• Standardized scores 
• Order statistics

• Sample (noncentral) moments 

An estimator is a
statistic used to infer the
unknown parameters of
a statistical model.



Intuition Check

Suppose that we toss a coin 100 times.  We observe 52 
heads and 48 tails…

Question 2 Is the estimator above a good estimator?  Why
or why not?

Question 3 What are some properties that could define
a good estimator?

Question 1 I define an estimator that is always          , regardless of the 
observation.  Is this an estimator?  Why or why not?



Two Desirable Estimator Properties

 Consistency Given enough data, the estimator converges to 
the true parameter value

This convergence can be measured in a number of ways: in 
probability, in distribution, absolutely

 Efficiency It should have low error with the least data, e.g.

Mean squared error should be small



Method of Moments

A simple way to estimate parameters…

Suppose we have K parameters                           with jth moment,

and the jth sample moment,

…match moments to sample moments



Method of Moments

Defines a system of K equations and K unknowns

[ Source: Wasserman, L. 2004 ]



MoM Example: Estimating Coin Bias

We can model each coin toss as a Bernoulli random variable,

where

Recall that    is the coin bias (probability of heads) and that,

Suppose we observe N coin flips                  , estimate     as,

Remember how we estimated coin bias…

… this is method of moments with a change of notation
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MoM Example: Estimating Normal Parameters

[ Source: Wasserman, L. 2004 ]



A:               , strong preference for heads

Intuition Check

Suppose that we toss a coin 100 times.  We observe 73 
heads and 27 tails…

Question Let     be the coin bias (probability of heads).  What is a more 
likely estimate?  What is your reasoning?

B:               , fair coin (we observed unlucky outcomes)

Likelihood (informally) Probability of the observed 
outcomes from model with parameters 



Likelihood (Intuitively)
Suppose we observe N data points from a Gaussian 

model and wish to estimate model parameters…

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function 
describes all evidence of a parameter that is contained in the data.



Likelihood Function

• We call this the likelihood function, often denoted 
• It is a function of the parameter   , the data are fixed
• Describes how well parameter    describes data (goodness of fit)

Suppose                   , then what is the joint probability over N 
independent identically distributed (iid) observations                 ?

How could we use this to estimate a parameter    ?



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests, 
maximizes the likelihood function.

Question How do we find the MLE?
Answer Remember calculus…

Is            convex?

Unique, closed-
form solution

Gradient-based
optimization

Yes

No

Approach
• Compute derivative
• Set to zero and solve

Still have to compute 
derivative…



Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and 
doesn’t change the answer (logarithm is an increasing function)

Derivative is a linear operator so,
MLE

One term per data point
Can be computed in parallel 

(big data)



Maximum Likelihood
[ Source: Wasserman, L. 2004 ]

Likelihood function for Bernoulli 
with n=20 and                  heads

Example Suppose we have N coin 
tosses with                                           but 
we don’t know the coin bias  .  The 
likelihood function is,

where                  .  The log-likelihood is,

Set the derivative of                  to zero and solve,
Maximum likelihood is 
equivalent to sample 

mean in Bernoulli



Maximum Likelihood
Example Let                                       with parameters
and the likelihood function (ignoring some constants) is:

Where                       and                                   are sample mean
and sample variance, respectively.



Maximum Likelihood
Continuing, write log-likelihood as:

Solve zero-gradient conditions:

To obtain maximum likelihood estimates of mean / STDEV:



Maximum Likelihood Properties

1) The MLE is a consistent estimator:

Roughly, converges to the true value with high probability. 

2) The MLE is a asymptotically efficient: roughly, has the lowest mean 
squared error among all consistent estimators. 

3) The MLE is a asymptotically Normal: roughly, the estimator (which 
is a random variable) approaches a Normal distribution (more later).

4) The MLE is a functionally invariant: if           is the MLE of     then
is the MLE of        . 



Question The MLE estimate of coin bias for both experiments
is equivalent              .  Which should we trust more?  Why?

Intuition Check

Compare the results of two coin flip experiments…

Experiment 1 Flip 100 times and observe 73 heads, 27 tails

Experiment 2 Flip 1,000 times and observe 730 heads, 270 tails

Takeaway The estimate         is a function of random 
data.  So, it is a random variable.  It has a distribution.  



Administrative Items

• HW2 Due tonight @ 11:59pm

• HW3 Out first thing tomorrow

• Lecture title slides had wrong class number (oops!)
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In English the interval          contains  the true 
parameter value    with probability at least

Confidence Intervals

Intuition Find an interval such that we are pretty sure it encompasses 
the true parameter value.

Given data                    and confidence
find interval          such that,

• Intervals must be computed from data                         and
• Interval (a,b) is random, parameter    is not random (it is fixed) 
• Requires that we know the distribution of the estimator



Confidence Intervals of the Normal Distribution
Many estimators follow a normal distribution with enough data (central 

limit theorem)
A Normal RV falls within      of 
the mean with 95% probability

The interval                 covers 
~99%, super high confidence

For various reasons, 95% has become standard confidence level



Warning

Question How should we interpret a confidence interval (e.g. 95%)?

Wrong The true parameter value lies in the interval (a,b) with 
probability at least 95%

Hint Think about what is random and what is not…

Right Interval (a,b) contains the true parameter value with 
probability at least 95%

This is commonly misinterpreted

This is NOT a 
probability statement 

about   .



Warning

Question How should we interpret a confidence interval (e.g. 95%)?

Wrong In this experiment there is a 95% chance that our 
interval contains the true parameter value.

Hint Think about what is random and what is not…

Right If I repeat this experiment many times the interval will 
contain the true parameter value 95% of the time. 

This is commonly misinterpreted

True but useless… we 
only have one dataset 

(one experiment)



Interpretation

[ Source: Wasserman, L. 2004 ]



Bootstrap Confidence Intervals

Suppose we observe data                                            :

1. Sample new “dataset”                  uniformly from                 with replacement

2. Compute estimate 

2. Repeat B times to get set of estimators  

3. Compute sample mean and sample variance of estimators,

3. 95% Confidence Interval: 

Assumes Normally-distributed estimates      .



Bootstrap Example
Example Suppose we have LSAT scores and GPA for 15 law students 
and wish to estimate the correlation between LSAT and GPA:

95% Bootstrap confidence interval from 
B=1000 estimates of the correlation,

Q Should we trust this confidence 
interval?  Why or why not?

95% Interval

[ Source: Wasserman, L. 2004 ]



Bootstrap Example
Eight subjects who used medical patches to 
infuse a hormone into the blood using three 
treatments: placebo, old-patch, new-patch

Estimate whether relative efficacy 
is the same under new drug,

Bootstrap B=1,000 samples 
yields 95% confidence interval,

95% Interval

Q Is this more trustworthy than in 
previous example?



• Parameter Estimation
• Method of Moments
• Maximum Likelihood Estimation

• Confidence Intervals
• Overview
• Bootstrap confidence intervals

• Estimator Properties
• Estimator Bias / Mean Squared Error
• Law of Large Numbers / Central Limit Theorem



Estimator Mean

An estimator         is a RV so we can compute its moments

Example Let                          
and estimate    be the sample mean,

Question What is the expected value of   ?   

(a) Linearity of Expectation Operator (b) Mean of Bernoulli RV = p

Conclusion On average            (it is unbiased)



Unbiased Estimator

Ex. Let                     be drawn (iid) from any distribution with                        and,

Then the sample variance is a biased estimator,

Definition Estimator          is an unbiased estimator of    if,

Correcting bias yields unbiased variance estimator:

Source of bias:
plug-in mean estimate



Estimator Variance

Example Let                                             and estimate    be the 
sample mean.  Calculate the variance of    : 

(b) Independent RVs(a) (c) Var(X) = p(1-p) for Bernoulli

In General Variance of sample mean     for RV with variance   ,  
Decreases linearly with
number of samples N

STDEV of sample mean
decreases as     



Bias-Variance Tradeoff

Is an unbiased estimator “better” than a biased one?  It depends…

Evaluate the quality of estimate    using mean squared error,

• MSE for unbiased estimators is just,

• Bias-variance is fundamental tradeoff in 
statistical estimation

• MSE increases as square of bias
• Estimators with small bias (but low 

variance) can have lower MSE than 
unbiased estimators

MSE

Estimator Bias



Bias-Variance Tradeoff

Suppose an archer takes multiple shots at a target…

Accurate
Precise

Accurate
Not Precise

Not Accurate
Not Precise

Not Accurate
Precise



Bias-Variance Decomposition



Law of Large Numbers (LLN)

We now know the sample mean is an unbiased estimator, namely:

Yes, with high 
probability

This is the law of large numbers
• Weak Law: Converges to mean with high probability
• Strong Law: Stronger notion of convergence (if variance is finite)

But, expected value is not always high 
probability. Will we achieve the true mean? 

But what is the distribution of      ?



Central Limit Theorem (CLT)

Let                     be iid with mean    and variance      then 
approaches a Normal distribution with mean    and variance        

Alternatively written as,

Comments
• LLN says estimates        “pile up” near true mean, CLT says how they pile up
• Pretty remarkable since we make no assumption about how Xi are distributed
• Variance of Xi must be finite, i.e. 



Confidence Intervals of the Normal Distribution
CLT is why we often derive confidence intervals from Normal

A Normal RV falls within      of 
the mean with 95% probability

CLT says sample mean approaches normal in the infinite limit only!



Classical Statistics Review
• Statistical Estimation infers unknown parameters   of a distribution

from observed data
• There are many estimators   , we have seen 3: Method of Moments, 

Maximum Likelihood, Sample Average (sometimes equivalent)
• An estimator is a function of the data                        , it is a random 

variable, so it has a distribution
• Confidence Intervals measure uncertainty of an estimator, e.g.

• Bootstrap A simple method for estimating confidence intervals

Caution
• Confidence intervals are often misinterpreted!
• Bootstrap confidence intervals we have seen assume normal distribution



Classical Statistics Review
• Estimator bias describes systematic error of an estimator

• Mean squared error (MSE) measures estimator quality / efficiency,

• Law of Large Numbers (LLN) guarantees that sample mean 
approaches (piles up near) true mean in the limit of infinite data

• Central Limit Theorem (CLT) says sample mean approaches a 
Normal distribution with enough data.  

• LLN and CLT are asymptotic statements and do not hold for finite data
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