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Probability and Statistics

 Probability provides a mathematical formalism to reason about
randomness

 Statistics deals with data and encompasses
 Data collection / organization
* Interpretation of data

« Answering questions from data (statistical inference, hypothesis
testing)

* Fitting models to data (estimation)

o Statistics uses probability to address these tasks



Probability and Statistics

Probability describes how to generate data

Probability

/_\

Data generating process Observed data

\_//

Inference / Estimation

Statistics describes how data were generated

[ Source: Wasserman, L. 2004 ]
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 Parameter Estimation
 Method of Moments
« Maximum Likelihood Estimation



Intuition Check

Suppose that we toss a coin 100 times. We don’t know Iif the
coin is fair or biased...

Question 1 Suppose that we observe 52 heads and 48 tails. Is the coin
fair? Why or why not?

Question 2 Now suppose that out of 100 tosses we observed 73 heads
and 27 tails. Is the coin fair? Why or why not? 0

Question 3 How might we estimate the bias of the coin \
with 73 heads and 27 tails?

| .



Estimating Coin Bias

We can model each coin toss as a Bernoulli random variable,
X ~ Bernoulli(n) =78 (1 —m)'™*  where X €{0,1}

Recall that 7t is the coin bias (probability of heads) and that,
EX|=mn

Suppose we observe N coin flips z1, ...,z x5, estimate 7 as,

T = %Z =T

This is the empirical mean or sample mean




Estimating Gaussian Parameters

Suppose we observe the heights of N student
at UA, and we model them as Gaussian:

{zihi ~N(p,0%)

How can we estimate the mean?

X 1 Sample mean
=N Z Ty ~ M T

How can we estimate the variance?

Variance estimator uses
e LS ae? oo e

N 0 estimate. This is a plug-in
v estimator.




Parameter Estimation

We have a model in the form of a probability distribution, with
unknown parameters of interest 6,

p(X;0)
Observe data, typically independent identically distributed (iid),
12d
{zi}i ~ p(;6)
Compute an estimator to approximate parameters of interest,

O({z:}) ~ 6

Many different types of estimators, each with different properties



Definitions

A statistic is a function of the data that does not depend on any
unknown parameter.

Examples An estimator ((z) is a
« Sample mean & statistic used to infer the
. Sample variance s2 unknqu parameters of
. Sample STDEV s a Statistical model.

- Standardized scores (x; — Z)/s
* Order statistics (1), Z(2), ..., ZT(n)

. -m __ 1 n m
Sample (noncentral) moments " = =~ > ., 7}



Intuition Check

Suppose that we toss a coin 100 times. We observe 52
heads and 48 tails...

Question 1 | define an estimator that is always =0, regardless of the
observation. Is this an estimator? Why or why not?

Question 2 Is the estimator above a good estimator? Why
or why not? 0

Question 3 What are some properties that could define \
a good estimator?

| .



Two Desirable Estimator Properties

» Consistency Given enough data, the estimator converges to
the true parameter value

lim é(a:l,...,xn) — 0

n—oo

This convergence can be measured in a number of ways: in
probability, in distribution, absolutely

» Efficiency It should have low error with the least data, e.q.
MSE(6) = E[(0 — 0)?]

Mean squared error should be small



Method of Moments

A simple way to estimate parameters...

Suppose we have K parameters 6 = (64, ..., 0 )with j'" moment,
a;j(0) = Eq[X]

and the jth sample moment,
) I«
Gj(x) = - Z_; T;

...match moments to sample moments



Method of Moments

Defines a system of K equations and K unknowns

9.3 Definition. The method of moments estimator Efn s defined to be
the value of 6 such that

[ Source: Wasserman, L. 2004 ]



MoM Example: Estimating Coin Bias

Remember how we estimated coin bias...

We can model each coin toss as a Bernoulli random variable,
X ~ Bernoulli(n) = 7% (1 —7)'"*  where X €{0,1}
Recall that 7 is the coin bias (probability of heads) and that,
EX|=n
Suppose we observe N coin flips x4, ..., x5, estimate 7 as,
1 N
= N;azn%E[X] —

... this is method of moments with a change of notation



MoM Example: Estimating Coin Bias

Remember how we estimated coin bias...

We can model each coin toss as a Bernoulli random variable,

X ~ Bernoulli(d) =65 (1 —-60)'"*  where X €1{0,1}

Recall that 6 is the coin bias (probability of heads) and that,
041(9) — EQ[X] — 9

Suppose we observe N coin flips z1,...,x N, estimate g as,
1 N
@1:N;$n Oél(g):(g:@l

... this is method of moments with a change of notation



MoM Example: Estimating Normal Parameters

0.5 Example. Let Xi,...,X,, ~ Normal(u,c?). Then, a; = FEp(X1) = pu

&

and ap = Eg(X7) = Vp(X) + (Eg(X1))? = 02 + pu®. We need to solve the

equations’
T
o= % X
i=1
: _. 1 v ..
4t = =) X7
"=

This is a system of 2 equations with 2 unknowns. The solution is

ﬁ — Xn.
1 n o
5 = (XX
i=]

[ Source: Wasserman, L. 2004 ]



Intuition Check

Suppose that we toss a coin 100 times. We observe 73
heads and 27 talils...

Question Let & be the coin bias (probability of heads). What is a more
likely estimate? What is your reasoning?

A: 6 = 0.73, strong preference for heads

B: 6 = 0.50, fair coin (we observed unlucky outcomes) 0

Likelihood (informally) Probability of the observed
outcomes from model with parameters 6 \

| .



Likelihood (Intuitively)

Suppose we observe N data points from a Gaussian
model and wish to estimate model parameters...

High Low Low
Likelihood Likelihood (mean) Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function
describes all evidence of a parameter that is contained in the data.




Likelihood Function

Suppose z; ~ p(z;0), then what is the joint probability over N
independent identically distributed (iid) observationsz,...,zN7?

N
1=1
» We call this the likelihood function, often denoted £ (0)

* |t is a function of the parameter 8, the data are fixed
* Describes how well parameter § describes data (goodness of fit)

How could we use this to estimate a parameter 0 ?



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests

maximizes the likelihood function. "
" flz) == sm(.l J—|—1

OMLE — arg max Ly (0) = Hp(a:i; 0) g

0 ]
Question How do we find the MLE? /
0
Answer Remember calculus... 2N o ;
['(—2) = —5.99
Approach

Unique, closed-| | . Compute derivative 4£x

Yes form solution Set 4 <ol o
- Set to zero and solve
Is L (6) convex? AL _ oy GULE
: d
No Gradient-based| siill have to compute
optimization derivative. ..




Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and
doesn’t change the answer (logarithm is an increasing function)

N
AMLE __ _ y
6 = arg max log Ln(0) = ; log p(x;;0)

MLE

— Mormal Likelihood
- [ormal Log-Likelinood

Derivative is a linear operator so,

N

d d
7108 L (0) = > g logp(w;;0)

1=1

Ca, |I:IE||'f,'-,l

| | |
Ll P = = = Pl L =4

One term per data point

Can be computed in parallel — - .
(big data) | ' 5



Maximum Likelihood

[ Source: Wasserman, L. 2004 ]

Example Suppose we have N coin
tosses with X, ..., X,, ~ Bernoulli(p) but
we don’t know the coin bias p. The
likelihood function is,

n

[:n (p) — Hpaji (1 o p)l_mi — ps(l o p)n—S 0.0 0;2 0.4 0.6 0.8 _1;0 -
=1 Likelihood function for Bernoulli
where S = > . x,;. The log-likelihood is, with n=20 and »_; z; = 12 heads

log L,,(p) = Slogp + (n— S)log(1 — p)

Set the derivative of log L,,(p) to zero and solve,

Maximum likelihood is

n
1
pMLE — S/n = — E X; equivalent to sample
n - 1 mean in Bernoulli
7=



Maximum Likelihood

Example Let X1,..., X, ~ N(u,0?) with parameters 6 = (i, o)
and the likelihood function (ignoring some constants) is:

1 1 |
L-n.(,uﬁ. J) - H — exp {— 52 (Xf,;_ — ;,.5)’3}

a

=]

R nS? o ] n(X — u)?
= 202 [ 202

Where X = 3. X; and 5% = 1 > (X; — X)? are sample mean
and sample variance, respectively.



Maximum Likelihood

Continuing, write log-likelihood as:

nS?  n(X — p)?

U p,0) = —nlogo —

202 202
Solve zero-gradient conditions:
OL( 1, ol (.,
(fu’ o) =0 and (‘.)ng) = 0,
oL do

To obtain maximum likelihood estimates of mean / STDEV:




Maximum Likelihood Properties

1) The MLE is a consistent estimator:

lim QMLE -0,
n—oC

Roughly, converges to the true value with high probability.

2) The MLE is a asymptotically efficient: roughly, has the lowest mean
squared error among all consistent estimators.

3) The MLE is a asymptotically Normal: roughly, the estimator (which
IS a random variable) approaches a Normal distribution (more later).

4) The MLE is a functionally invariant: if 9™ F is the MLE of 6 then
g(OMLE) is the MLE of ¢(#) .



Intuition Check
Compare the results of two coin flip experiments...

Experiment 1 Flip 100 times and observe 73 heads, 27 tails

Experiment 2 Flip 1,000 times and observe 730 heads, 270 tails

Question The MLE estimate of coin bias for both experiments
is equivalent § = 0.73. Which should we trust more? Why? 0

Takeaway The estimate é(X) Is a function of random \
data. So, itis a random variable. It has a distribution.

| .



Administrative ltems

* HW2 Due tonight @ 11:59pm
 HW3 Out first thing tomorrow

* Lecture title slides had wrong class number (oops!)



» Confidence Intervals
* Overview
» Bootstrap confidence intervals



Confidence Intervals

Intuition Find an interval such that we are pretty sure it encompasses
the true parameter value.

Given data X, ..., X,, and confidence a € (0,1)
find interval (a, b) such that,

PO (a,b)>1—a

In English the interval (a,b) contains the true
parameter value 6 with probability at least 1 — o

* Intervals must be computed from data a(X¢,...,X,) and b(X1,...,X,)
* Interval (a,b) is random, parameter g is not random (it is fixed)

* Requires that we know the distribution of the estimator 0



Confidence Intervals of the Normal Distribution

Many estimators follow a normal distribution with enough data (central

0.3 0.4

0.2

0.0 0.1

limit theorem)

A Normal RV falls within 20 of
the mean with 95% probability

P € (—20,20)) > 0.95

The interval (—30, 30) covers
34.1% 34 1% ~99%, super high confidence

—-30 —20 —-1lo 0 lo 20 30

For various reasons, 95% has become standard confidence level



Warning

Question How should we interpret a confidence interval (e.q. 95%)?

P(0 € (a(X),b(X))) > 0.95

Hint Think about what is random and what is not... This is NOT a

probability statement
about 4.

Wrong The true parameter value lies in the interval (a,b) with
probability at least 95%

Right Interval (a,b) contains the true parameter value with
probability at least 95%

This is commonly misinterpreted



Warning

Question How should we interpret a confidence interval (e.q. 95%)?
P € (a(X),b(X))) >0.95

Hint Think about what is random and what is not...

Wrong In this experiment there is a 95% chance that our
Interval contains the true parameter value.

Right If | repeat this experiment many times the interval will
contain the true parameter value 95% of the time.

True but useless... we
only have one dataset
(one experiment)

This is commonly misinterpreted



Interpretation

On day 1, you collect data and construct a 95 percent confidence
interval for a parameter #;. On day 2, you collect new data and con-
struct a 95 percent confidence interval for an unrelated parameter 6-.
On day 3, you collect new data and construct a 95 percent confi-
dence interval for an unrelated parameter 3. You continue this way
constructing confidence intervals for a sequence of unrelated param-
eters #1,60>,... Then 95 percent of your intervals will trap the true
parameter value. There is no need to introduce the idea of repeating

the same experiment over and over.

[ Source: Wasserman, L. 2004 ]



Bootstrap Confidence Intervals

Suppose we observe data X, Xs,...,X,, ~ P(X;0):

1. Sample new “dataset” x:,..., x* uniformly from X, ..., x,, with replacement
2. Compute estimate 4,,(x*,..., X*)
2. Repeat B times to get set of estimators 4, 1,0,,.,,...,0m.5
3. Compute sample mean and sample variance of estimators,
Oboot = + S O 0ot = 5 LS O — Oboot)?

3. 95% Confidence Interval: 6, ... & 20100t

Assumes Normally-distributed estimates 0,



Bootstrap Example

Example Suppose we have LSAT scores and GPA for 15 law students
and wish to estimate the correlation between LSAT and GPA:

LSAT 576 635 5b8 578 666 580 bbb 661
651 605 653 575 B45 572 594

-,
3

o™
r ]

GPA

GPA 3.39 3.30 2.81 3.03 3.44 3.07 3.00 3.43 3

3.36 3.13 3.12 2.74 2.76 2.88 3.96 -

95% Bootstrap confidence interval from
B=1000 estimates of the correlation,

78 & .274 = (.51, 1.00)

150

100

Q Should we trust this confidence
interval? Why or why not?

50

[ Source: Wasserman, L. 2004 ]

560 580 600 620 640 660

LSAT

95% Interval

A
4 \
— ___--.IIIIIIIl

0.2

Bootstrap Samples




Bootstrap Example

95% Interval

Eight subjects who used medical patches to
infuse a hormone into the blood using three
treatments: placebo, old-patch, new-patch

[ \
subject  placebo old new old — placebo  new — old
1 9243 17649 16449 8406 -1200
2 9671 12013 14614 2342 2601
3 11792 19979 17274 8187 -2705
4 13357 21816 23798 8459 1982 _
il 9055 13850 12560 4795 -1290 ]
5 6290 9806 10157 3516 351 II ||II
7 12412 17208 16570 4796 638 | m II_II_.

80

60

40

2

—

8 18806 29044 26325 10238 -2719 }

Estimate whether relative efficacy  Bootstrap B=1,000 samples
IS the same under new drug, yields 95% confidence interval,

E[new — old] 6 € (—0.24,0.15)

Elold — placebo) Q Is this more trustworthy than in
previous example?

O =




 Estimator Properties
» Estimator Bias / Mean Squared Error
» Law of Large Numbers / Central Limit Theorem



Estimator Mean

An estimator §(X)is a RV so we can compute its moments

Example Let X;,..., Xn N Bernoulli(p)

and estimate p be the sample mean,

Question What is the expected value of p?

o[ 15 x|2 TEm® b

(a) Linearity of Expectation Operator (b) Mean of Bernoulli RV =p

P(6(X))

E[p

Conclusion On average p = p (itis unbiased)



Unbiased Estimator

Definition Estimator /(X) is an unbiased estimator of ¢ if,

E[0(X)] =0
Ex. Let Xi,..., Xy be drawn (iid) from any distribution with Var(X) = 2 and,
~ 1 A2 1 A2
ZWZXZ o ZEZ(Xi_N)
_ v ¢ Source of bias:
Then the sample variance is a biased estimator, plug-in mean estimate
N —1
Z E = boring algebra = ~ o’

Correcting bias yields unbiased variance estimator:

N 2 1 2
/\: A — Xi_A
V=517 T o1 2 2



Estimator Variance

Example Let X4,..., Xy e Bernoulh( ) and estimate p be the

sample mean. Calculate the variance of p:

Var(p Var( ZX) N —Var (ZX) 2 ;2 ZVar

© 1 _ o= L
—N2;p(1 p) = p(1—p) =  Var(X)

(a) Var(cX) = ¢?Var(X) (b) Independent RVs (c) Var(X) = p(1-p) for Bernoulli

In General Variance of sample mean X for RV with variance o2

2
STDEV of sample mean = o Decreases linearly with
'° Var(X) 4

decreases as /N — W number of samples N



Bias-Variance Tradeoff

Is an unbiased estimator “better” than a biased one? It depends...

Evaluate the quality of estimate § using mean squared error,

A

MSE() = B |(6 — 6)?| = bias®(9) + Var(9)

 MSE for unbiased estimators is just,

~ A

MSE(6) = Var(9)
e Bias-variance is fundamental tradeoff in
statistical estimation
 MSE increases as square of bias

 Estimators with small bias (but low
variance) can have lower MSE than < Estimator Bias e
unbiased estimators




Bias-Variance Tradeoff

Suppose an archer takes multiple shots at a target...

Low Variance High Variance
9]
o

: .
g
—

Accurate Accurate

Precise Not Precise
W
8
[a'm]
<
L0
T

Not Accurate Not Accurate
Precise Not Precise




Bias-Variance Decomposition

A

MSE(6) = E :(é(X) _ 9)2}

_E _(é — E[f] + E[§] — 9)2}
= E[(0 — E[f])?] + 2(E[f] — 0)E[§ — E[4] + E[(6 — 0)]
= (B[] - 9)2 + E[(0 — E[0])?

= bias?(0) + Var(9)



Law of Large Numbers (LLN)

We now know the sample mean is an unbiased estimator, namely:

E[Xx] = - S B[X)] = B[X,

6 Average dice roll by number of rolls

But, expected value is not always high S
probability. Will we achieve the true mean?

. \ Yes, with high <5
Jim Xy — BlX] probability
This is the law of large numbers

« Weak Law: Converges to mean with high probability
« Strong Law: Stronger notion of convergence (if variance is finite)

Number of trials

But what is the distribution of X n?



Central Limit Theorem (CLT)

Let X1,..., Xy be iid with mean 1 and variance o then Xy
approaches a Normal distribution with mean p and variance %-

_ 0'2
lim Xy — N (,LL, —)

N — o0 N

Alternatively written as,

lim @(XN — ) — N (0,1)

N — 00 o)

Comments
« LLN says estimates X “pile up” near true mean, CLT says how they pile up
* Pretty remarkable since we make no assumption about how X, are distributed

« Variance of X; must be finite, i.e. 72 <



Confidence Intervals of the Normal Distribution
CLT is why we often derive confidence intervals from Normal

A Normal RV falls within 20 of

; _ the mean with 95% probability
. P € (—20,20)) > 0.95
p
-
o 34.19 34.1%
i
(:5 —
0.1% 0.1%
S I _ |
o

CLT says sample mean approaches normal in the infinite limit only!



Classical Statistics Review

 Statistical Estimation infers unknown parameters 6 of a distribution
p(X;60) from observed data X, ..., X,

» There are many estimators 6§, we have seen 3: Method of Moments,
Maximum Likelihood, Sample Average (sometimes equivalent)

* An estimator is a function of the data é(Xl, ..., X,),Iitisarandom
variable, so it has a distribution

» Confidence Intervals measure uncertainty of an estimator, e.qg.
PO € (a(X),b(X))) >0.95
« Bootstrap A simple method for estimating confidence intervals

Caution
» Confidence intervals are often misinterpreted!
» Bootstrap confidence intervals we have seen assume normal distribution



Classical Statistics Review
« Estimator bias describes systematic error of an estimator

 Mean squared error (MSE) measures estimator quality / efficiency,

A

MSE(9) = E [(9 — 9)2} = bias?(#) 4+ Var ()

 Law of Large Numbers (LLN) guarantees that sample mean
approaches (piles up near) true mean in the limit of infinite data

* Central Limit Theorem (CLT) says sample mean approaches a
Normal distribution with enough data.

 LLN and CLT are asymptotic statements and do not hold for finite data
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