
CSC 480/580 Principles of Machine Learning

01 Decision Trees

Jason Pacheco

1*some slides are from Daniel Hsu and Francesco Orabona with their permission

Example: course recommendation

• Build a software: given a student, recommend a set of courses that s/he would like

2

course description
student info.

function
(=model)

rating ∈ {+, −}

Examples:
• which courses has taken before?
• likes morning class?

Examples:
• Is it a systems course?
• Is it a morning class?

I’ll explain
1. What kind of functions we’ll be using
2. How to train one from data

Model: Decision Tree

3

Model: Decision Tree: Example

Use questions to arrive at a conclusion.

4

Terminology:

• (Question, Answer) → (Feature, Feature Value)

• “Like” / “Nah” → Label

• {(A set of (Question & Answer)’s, Label)} → Train Data

Input: the course & student info

node
root node
leaf node
internal node

parent
children
ancestor
subtree
depth

• Key advantage of decision trees: intepretability

• Useful in consequential settings, e.g. medical
treatment, loan approval, etc.

Basic tree terminology

Q: How many nodes are there?

Q: What’s the depth of this tree?

• Test: predict using a decision tree:

• Training: how to design a learning algorithm 𝒜 that can build trees 𝑓 from training data?

6

guess = prediction

left = no
right = yes

Prediction using a decision tree
test point: the data point to be classified
(vs train point: data point to be used for training)

How to train

7

Train dataset
Define the labeled train data 𝑆 = 𝑥𝑖 , 𝑦𝑖 𝑖=1

𝑛

8

Labels

Features

Feature
Values

(Labeled) Data Point

To make this a binary classification,
we map

{+2,+1,0} ⇒ “Liked” (+)
 {-1,-2} ⇒ “Nah” (-)

Features can be a function of
the user being recommended;
e.g., are you a morning person?

feature vector ∈ ℝ𝑑 label ∈ {+, −}

How to train:

• Given: A (training) dataset with n data points 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛 with C classes.

• Compute the most common class 𝑐∗ in the dataset.

𝑐∗ ≔ arg max
𝑐∈{1,…,𝐶}

𝑖=1

𝑛

𝐈{𝑦𝑖 = 𝑐}

• Output a classifier 𝑓 𝑥 = 𝑐∗.

Stupid enough classifier! Always try to beat this classifier.

Often, state-of-the-art ML algorithms perform barely better than the majority vote
classifier..
 happens when there is no association between features and labels in the dataset

The most basic classifier you can think of.

9

Background: Majority vote classifier

𝐈 𝐴 ≔ ቊ
1 if 𝐴 is true
0 otherwise

∈ {1, … , 𝐶}

∈ ℝ𝑑

“indicator function”(break ties arbitrarily)

• Suppose the ML algorithm has trained a function 𝑓 using the dataset 𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛

• Train set accuracy:

ෞacc 𝑓 ≔
1

𝑛

𝑖=1

𝑛

𝐈{𝑓 𝑥𝑖 = 𝑦𝑖}

• Train set error: ෞerr 𝑓 =
1

𝑛
σ𝑖=1

𝑛 𝐈{𝑓 𝑥𝑖 ≠ 𝑦𝑖} = 1 − ෞacc 𝑓

• Q: We have 100 train set (images) consisting of 5 cats, 80 dogs, and 15 lions. What is the
train set accuracy of the majority vote classifier? What is the error?

10

Background: Train set accuracy/error

Training: The ideal criterion

• The training data 𝐷 = 𝑥𝑖 , 𝑦𝑖 𝑖=1
𝑛

11

𝑥𝑖 ∈ 𝑦, 𝑛 𝑑 𝑦𝑖 ∈ {+, −}

መ𝑓 ≔ arg max
𝑓∈DecisionTrees

1

𝑛

𝑖=1

𝑛

𝐈{𝑓 𝑥𝑖 = 𝑦𝑖}

The issue:

• Naïve search: 𝑂(𝑑𝑑) time complexity
• It’s NP-Hard -- don’t expect to have an efficient algorithm.

Solution:
• Perform greedy approximation!

It’s called “empirical risk minimization (ERM)” (empirical risk = training set error)

The main principle governing most of the ML algorithms.

12

How to train a decision tree 12

10

10

11

9

10

10

10

10

Baseline: ‘majority vote’ classifier

Q: What is the train set accuracy? 0.60

How to train a decision tree

Baseline: ‘majority vote’ classifier

Q: What is the train set accuracy?

Suppose we place the node AI at the root.
Let us set the prediction at each leaf node
as the majority vote.

What is the train set accuracy now? Use
weighted average.

9

20
⋅

6

9
 +

11

20
⋅

9

11
=

15

20
= 0.75

+-

AI

N Y

0.60

improved!

13

AI=YAI=N

10

10

11

9

10

10

10

10

How to train a decision tree

Suppose placing the node Systems at the root.

What is the train set accuracy now?

10

20
⋅

10

10
+

10

20
⋅

8

10
=

18

20
= 0.9

-+

Systems

N Y

even better!

What would you do to build a depth-1 tree?

try out each feature and choose the one
that leads to the largest accuracy!

10

10

11

9

10

10

10

10

15

How to train a decision tree

What about depth 2?

-+

Systems

N Y

Which nodes to put at each leaf node?

Focus on (2). Try placing AI

(1) (2)

15

10

10

11

9

10

10

10

10

16

How to train a decision tree

+

Systems

N Y

+-

AI

N Y

Q: How many training data
points fall here? 10

Q: How many training data points
arrive at these two leaves? How
many for each label?6 (0+, 6-) 4 (2+, 2-)

Q: What is the train set accuracy, conditioning on
Systems=Y?

6

10
⋅

6

6
+

4

10
⋅

2

4
=

8

10

Try all the other nodes and pick the one with the largest (local) acc.!

Then, repeat the same for Systems=N branch!

‘local’ train set accuracy

Q: what prediction should we use for each leaf?

⇒ But this has 1.0 local train set acc. No need to expand anymore!

Move onto expanding nodes at depth 2!

16

10

10

11

9

10

10

10

10

17

How to train a decision tree 17

+

Systems

N Y

+-

AI

N Y

6 (0+, 6-) 4 (2+, 2-)

18

How to train a decision tree

Overall idea:
1. Set the root node as a leaf node.
2. Grab a leaf node for whose ‘local’ train accuracy

is not 1.0.
3. Loop through features to find a feature 𝑓∗ that

maximizes the ’local’ train accuracy and replace
the leaf node with a node with feature 𝑓∗; add its
leaf nodes and set their predictions by majority
vote.
(note: skip the features used by an ancestor)

4. Repeat 2-3 until there is no more ‘expandable’
leaf node.

18

10

10

11

9

10

10

10

10
(i) local train acc. is not 1.0 and
(ii) ancestors did not use all the features yet

19

guess=majority vote

has the same role as computing
𝑁𝑂

𝑌𝐸𝑆 + |𝑁𝑂|
 ෞ𝑎𝑐𝑐 𝑁𝑂 +

𝑌𝐸𝑆

𝑌𝐸𝑆 + |𝑁𝑂|
 ෞ𝑎𝑐𝑐 (𝑌𝐸𝑆)

unambiguous
= achieves 100% local acc. when
using the majority vote

Type of features

• Binary

• Categorical: values in {1, … , 𝐶}
• Option 1: Instead of 2 children, have C children.

• Option 2: Derive C features of the form “feature=c?” for every 𝑐 ∈ 𝐶.

• Real value

• Sort the values.

• Find the breakpoints: For every two adjacent points with opposite labels, compute the midpoint.

• Derive features like “weight ≤ breakpoint”

e.g., occupation, blood type

Q: How about features of the form “feature∈ 𝐷” for every 𝐷 ⊂ 𝐶?

e.g., weight, age, price

↑ binary features!

20

computational complexity ↑

Types of labels

• Binary

• Accuracy is not sensitive to node purity…we will look at alternatives

• Multiclass: What changes do we need to make?

• Almost none! Just extend the definition of accuracy to multiclass.

• Real Value

• This is a regression problem…we will get back to this

21

ෞacc 𝑓 ≔
1

𝑛

𝑖=1

𝑛

𝐈{𝑓 𝑥𝑖 = 𝑦𝑖}

Variations: binary case

22

classification error here
 = 1 – accuracy
(verify yourself)

(black)

(blue)

(red)

Let 𝑞 is the fraction of data points with

feature=Y.

Modification:

 Set score[f] as

 𝑞 ⋅ −𝑢 𝑌𝐸𝑆 + 1 − 𝑞 ⋅ (−𝑢 𝑁𝑂)

“label uncertainty”

23

If the number of classes is >2

Regression
• Classification vs Regression

• Both supervised learning

• Regression has real-valued labels.

• Examples: Price prediction. Property value prediction.

• Standard measure of performance: mean squared error:
1

𝑛
σ𝑖=1

𝑛 𝑓 𝑥𝑖 − 𝑦𝑖
2

• Changes needed:
• How to make predictions at the leaf node?

• How to adjust score[f]?

24

Average labels of the data at the leaf;
denote by ത𝑦𝑌𝐸𝑆 and ത𝑦𝑁𝑂.

Use negative squared error
𝑌𝐸𝑆

𝑌𝐸𝑆 + |𝑁𝑂|
⋅ −

1

|𝑌𝐸𝑆|

𝑖∈𝑌𝐸𝑆

ത𝑦𝑌𝐸𝑆 − 𝑦𝑖
2 +

𝑁𝑂

𝑌𝐸𝑆 + |𝑁𝑂|
−

1

|𝑁𝑂|

𝑖∈𝑁𝑂

ത𝑦𝑁𝑂 − 𝑦𝑖
2

Q: why are we using squared error (f-y)^2 rather than absolute error |f-y|? my opinion: convenience & tradition

(notations from the decision tree pseudocode)

Comparison: For classification

ෞ𝑒𝑟𝑟 𝑓 =
1

𝑛

𝑖=1

𝑛

𝐈{𝑓 𝑥𝑖 ≠ 𝑦𝑖}

“Spurious” patterns can be learned

25

note axis-parallel decision boundaries

Unlearn spurious patterns by pruning

26

Split the given data into train set and validation set

• Build a decision tree based on the train set

• min_error ← compute the validation set error

• While true

• For each non-leaf node, pretend that it is a leaf node and then compute the validation set error (but do not make it a leaf node
yet)

• current_error ← the smallest validation set error above.

• If current_error ≥ min_error

• Break

• Else

• Prune the one that reduces the validation set error the most

• min_error ← current_error

original validation set error: 35%

50%

27

Q: what would be the majority vote accuracy?

error rate computed on test set data
⇒ test set data should not have been part of the train set!

Time complexity

• d: number of binary features, m: the number of data points

28

The worst-case configuration has 𝑂 𝑚 leaf nodes ⇒ O(m) internal node

⇒ Each internal node pays O(dm) for choosing which feature

⇒ Total: 𝑂(𝑑𝑚2)

	Slide 1: CSC 480/580 Principles of Machine Learning 01 Decision Trees
	Slide 2: Example: course recommendation
	Slide 3: Model: Decision Tree
	Slide 4: Model: Decision Tree: Example
	Slide 5: Basic tree terminology
	Slide 6: Prediction using a decision tree
	Slide 7: How to train
	Slide 8: Train dataset
	Slide 9: Background: Majority vote classifier
	Slide 10: Background: Train set accuracy/error
	Slide 11: Training: The ideal criterion
	Slide 12: How to train a decision tree
	Slide 13: How to train a decision tree
	Slide 14: How to train a decision tree
	Slide 15: How to train a decision tree
	Slide 16: How to train a decision tree
	Slide 17: How to train a decision tree
	Slide 18: How to train a decision tree
	Slide 19
	Slide 20: Type of features
	Slide 21: Types of labels
	Slide 22: Variations: binary case
	Slide 23: If the number of classes is >2
	Slide 24: Regression
	Slide 25: “Spurious” patterns can be learned
	Slide 26: Unlearn spurious patterns by pruning
	Slide 27
	Slide 28: Time complexity

