06 Linear Classification; Perceptron

Jason Pacheco

Department of Computer Science

A THE UNIVERSITY
. OF ARIZONA

*slides credit: built upon CSC 580 lecture slides by Chicheng Zhang & Kwang-Sung Jun
1

Linear classifiers

* Example application: spam filtering using bag-of-words m

‘ . ¢

I S T [P T

Email 1
Email 2 0 0 1 1 -1

* If 0.124 - Xfree + 2.5 - Xpffer + =+ — 2.31 * Xjecture > 2.12 then
* return “spam”

* else

e return “nonspam”

* end

Linear models: biological motivation

* Firing of a neuron depends on:
 Whether the incoming neurons are firing

e The strength of the connections

e The McCulloch-Pitts neural model:

a neuron Implements a linear threshold function

hw (x) = sign({w, x))

Math review: inner product between vectors

e Given vector u,v € RY,

(u,v) = Xy u; - v

* Geometric interpretation:
(w,v) = [lull; - lv]]z - cos(8(w, v))
where 8(u,v) € [0,] is the angle between them

= (signed) length of v’s projection onto u (o]

e Observe that cos(@(u, v)) € [—1,+1]

= Cauchy-Schwarz inequality: (w, v) € [—|[ullz||v]l2, [lull2]lv]]2]

Linear classifiers: geometric view o~ j

Homogeneous linear classifier h,,(x) = sign({w, x))

Scale-insensitive
Decision boundary: line in 2d, plane in 3d, hyperplane in general

Non-homogeneous linear classifier h,, , (x) = sign({w, x) + b)

which decision boundary corresponds to offset b > 0? Blue or yellow?

 Sometimes convenient to view non-homogeneous. as homogeneous via feature augmentatio\n
hy, p(x) = sign({(w, b), (x,1)))

oo

~ ~

w X

Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)

e For training homogeneous linear classifiers

A

e sied

Initialize wy; < (0, ...,0) ¢
i.nl;ox S
Fort =12, ..m: -mm
d Emaill 1 0
Process example x; € R EE—— 5 1 1 1
. A~ .]
Calculate prediction y, = sign(w; - x;) P
Ty B A
LS w _.-"'-'
Update: if ; = - NN -
pdate: Ity = V¢, Weg1 < Wi, Q,{S‘f’*—\- ~ a
otherwise, Wi, 1 < W; + Vi Xt. gl RN
, - ~
: : : S/ hN
* Properties: (1) Online (2) Error-driven | h

Perceptron for nonhomogeneous linear classifiers

* |dea: reduce to training homogeneous linear classifiers
hy b (x) = sign({(w, b), (x,1))) = sign((w, X))

Multiple passes over the data

Algorithm 5 PERCEPTRONTRAIN(D, Maxlter)
v wy 4o, forall d=1...D // initialize weights
= b+o // initialize bias H passes
. for iter = 1 ... MaxlIter do
for all (x,y) € D do

activation = decision

EANE U

a<— 2111):1 wy xg+0b // compute activation for this example
if ya < o then value
7 wy < wy +yxg, forall d=1...D // update weights
8: b« b+y // update bias
o end if
o end for
«: end for

12: return ZUO, wl, ceey ZUD, b

Algorithm 6 PERCEPTRONTEST(Ww(, W1, ..., Wp, b, X)

u 44— Z?: LWy g+ b // compute activation for the test example
> return siGgn(a)

Perceptron: practical issues

* H : Maxlter = # =# h
yperparameter: Maxlter = #passes = #epochs o +het

e Sk

% eqodn) e
e Data shuffling: v e (o= Qi)

* A non-random training data sequence +++ ++ --- ..., ---

* Drawback: only update using the first few examples in each segment

e ik

* Better: permute the data sequence for every pass

¥ Lol

Perceptron: convergence properties

Question: Foriter=1,2,....
Does the Perceptron’s iterate w converge? For (X; }’) €S:

Calculate prediction ¥ = sign(w - x)
ify+y,wew+yx.

* Important notion: linear separability

e A dataset S is linearly separable if there exists

w such that for all (x,y) € S, sign({w, x)) =y Observations:

. " - * Inseparable ¢ does not converge
+ e Separable = converge?

Q: how long does it take to
T - - - converge?

Figure 4.10: separable data Figure 4.11: inseparable data

Linear classification margins

e Measures easiness of a dataset for linear classification

 Easier dataset = faster convergence

* Margin of a linear classifier w on S

min y{(w, x), w separates S
margin(S,w) = {(xY)ES
—00, otherwise
 “Wiggle room” of won S
* Margin of dataset S: margin(S) = max margin(S,w)

wi||w||z=1
* See book for definition of margins for nonhomogeneous linear classifiers

10

The Perceptron convergence theorem

Theorem (Perceptron Convergence Theorem, Novikoff 1962): Suppose the Perceptron
algorithm is run on a dataset S; Assume:

* margin(S) = v, i.e. there exists w*, ||w*|[, = 1, y{(w*,x) = y forall (x,y) € S
* Forall(x,y) €S, x|, <1

then the Perceptron algorithm makes at most 1/y2 updates throughout the process.

Can also be phrased as an online learning mistake bound guarantee

Proof of Perceptron Convergence Theorem

* Denote w®) the value of w after the k-th update; w(® = (0, ..., 0)

« Idea: track the progression of (W), w*) and ”W(k)”z

e At the k-th update:
(W(k),W*> — (W(k—l) + yX,W*) > (W(k_l),W*> + Y
2 B 2
[w [= Jlw® =D + yx|]

= W(k_l)

+ 2(w®D, yx) + || x|I3

< [[wDl" +1

N N NN

Proof of Perceptron Convergence Theorem

* Therefore, if a total of k mistakes are made, then:

(W w*) = ky,and |[w®| < Vk

”Wt+1”

(Wt+1; W*>

#updates

Proof of Perceptron Convergence Theorem

* Let M = #mistakes made up to time step n

(Wn+1:W*> = My, and ”Wn+1” < \/M

 Meanwhile, by Cauchy-Schwarz,

(Wn+1; W*> < “Wn+1” . ”W*” = ”Wn+1”

e This impliesthat M y < VM = M < 1/y?

e This holds for all n, which concludes the proof

Practical versions: voting Perceptron

-+
* Naive Perceptron: return the last iterate w(X)
* Drawback: * 0"
e say making one pass, last example is an outlier
e Last update may ruin a previously trained good model <
€{-1,+1}
* A more robust output classifier: Figure 4.11: inseparable data
T K
ol _ (k
h(x) = sign) he() | = z e, 0 (x)

= |

Linear classifier at iteration t Number of times t when hy = h

Has good predictive performance, but computationally expensive to maintain

15

Practical versions: averaged Perceptron

1

h(x) = sign({w, x)), where w = G

This is equivalent to Sign((zlgzo ¢k k), x))

Efficient implementation

(avoid extensive bookkeeping when no update)

Exercise: show that the final outputis w

R0 ¢ W) is the averaged predictor

Algorithm 7 AVERAGEDPERCEPTRONTRAIN(D, MaxlIter)

v w <+ {0,0,...0) , b<+o // initialize weights and bias
» U+ {0,0,...0) , <o // initialize cached weights and bias
3 C 4 1 // initialize example counter to one

& foriter = 1 ... MaxIter do

5:

6:

for all (x,y) € D do
if y(w - x4+ b) < o then

7 Zv —w ~ () // update welghts
& —b+y // update bias
o U—U+YCcx /f update cached weights
10 B+~ p+yc // update cached bias
1 end if

12: cC—cCc+1 // increment counter regardless of update
3 end for

. end for

15 return w -Luwb- // return averaged weights and bias

Kl \\
>
Z
k
2w Faeye 16

=0 <k

Perceptron: limitations

o 1

no
The XOR’ problem: data linearly nonseparable 4 |

i ‘~ “excellent”

E.g. sentiment analysis

Possible fix: introduce nonlinear feature maps

x = (x1,x5) & d(x) = (x1, x5, X1Xp, X7, x2), e.g. containing “mega-feature” X, * Xexcellent

Later in the course: kernel methods (high/infinite dim ¢); neural networks (automatically learn ¢)

17

	Slide 1: CSC 580 Principles of Machine Learning 06 Linear Classification; Perceptron
	Slide 2: Linear classifiers
	Slide 3: Linear models: biological motivation
	Slide 4: Math review: inner product between vectors
	Slide 5: Linear classifiers: geometric view
	Slide 6: Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)
	Slide 7: Perceptron for nonhomogeneous linear classifiers
	Slide 8: Perceptron: practical issues
	Slide 9: Perceptron: convergence properties
	Slide 10: Linear classification margins
	Slide 11: The Perceptron convergence theorem
	Slide 12: Proof of Perceptron Convergence Theorem
	Slide 13: Proof of Perceptron Convergence Theorem
	Slide 14: Proof of Perceptron Convergence Theorem
	Slide 15: Practical versions: voting Perceptron
	Slide 16: Practical versions: averaged Perceptron
	Slide 17: Perceptron: limitations

