
CSC 580 Principles of Machine Learning

06 Linear Classification; Perceptron

Jason Pacheco

Department of Computer Science

1

*slides credit: built upon CSC 580 lecture slides by Chicheng Zhang & Kwang-Sung Jun

Linear classifiers

• Example application: spam filtering using bag-of-words

• If 0.124 ⋅ 𝑥free + 2.5 ⋅ 𝑥offer + ⋯ − 2.31 ⋅ 𝑥lecture > 2.12 then

• return “spam”

• else

• return “nonspam”

• end

2

free offer lecture cs Spam?

Email 1 1 1 0 0 +1

Email 2 0 0 1 1 -1

Linear models: biological motivation

• Firing of a neuron depends on:

• Whether the incoming neurons are firing

• The strength of the connections

• The McCulloch-Pitts neural model:

 a neuron Implements a linear threshold function

 ℎ𝑤 𝑥 = sign(⟨𝑤, 𝑥⟩)

3

Math review: inner product between vectors

• Given vector 𝑢, 𝑣 ∈ R𝑑,

𝑢, 𝑣 = σ𝑖=1
𝑑 𝑢𝑖 ⋅ 𝑣𝑖

• Geometric interpretation:

𝑢, 𝑣 = ||𝑢||2 ⋅ ||𝑣||2 ⋅ cos(𝜃(𝑢, 𝑣))

 where 𝜃 𝑢, 𝑣 ∈ 0, 𝜋 is the angle between them

 ||𝑣||2 ⋅ cos(𝜃(𝑢, 𝑣)) = (signed) length of 𝑣’s projection onto 𝑢

• Observe that cos 𝜃 𝑢, 𝑣 ∈ [−1, +1]

 ⇒ Cauchy-Schwarz inequality: 𝑢, 𝑣 ∈ [−||𝑢||2||𝑣||2, ||𝑢||2||𝑣||2]

4

Linear classifiers: geometric view

• Homogeneous linear classifier ℎ𝑤 𝑥 = sign(⟨𝑤, 𝑥⟩)

• Scale-insensitive

• Decision boundary: line in 2d, plane in 3d, hyperplane in general

• Non-homogeneous linear classifier ℎ𝑤,𝑏 𝑥 = sign 𝑤, 𝑥 + 𝑏

which decision boundary corresponds to offset 𝑏 > 0? Blue or yellow?

• Sometimes convenient to view non-homogeneous. as homogeneous via feature augmentation
ℎ𝑤,𝑏 𝑥 = sign (𝑤, 𝑏), (𝑥, 1)

5

𝑂

𝑂

෥𝑤 ෤𝑥

Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)

• For training homogeneous linear classifiers

• Properties: (1) Online (2) Error-driven

Initialize 𝑤1 ← (0, … , 0)

For 𝑡 = 1,2, … , 𝑛:

 Process example 𝑥𝑡 ∈ R𝑑

 Calculate prediction ො𝑦𝑡 = sign(𝑤𝑡 ⋅ 𝑥𝑡)

 Update: if ො𝑦𝑡 = 𝑦𝑡, 𝑤𝑡+1 ← 𝑤𝑡;
 otherwise, 𝑤𝑡+1 ← 𝑤𝑡 + 𝑦𝑡𝑥𝑡.

free offer lecture cs Spam?

Email 1 1 1 0 0 +1

Email 2 0 0 1 1 -1

Perceptron for nonhomogeneous linear classifiers

• Idea: reduce to training homogeneous linear classifiers

• ℎ𝑤,𝑏 𝑥 = sign (𝑤, 𝑏), (𝑥, 1) = sign ෥𝑤, ෤𝑥

• Multiple passes over the data

7

activation = decision
value

passes

Perceptron: practical issues

• Hyperparameter: MaxIter = #passes = #epochs

• Data shuffling:

• A non-random training data sequence +++ …. ++ --- …. ---

• Drawback: only update using the first few examples in each segment

• Better: permute the data sequence for every pass

8

Perceptron: convergence properties

Question:
Does the Perceptron’s iterate 𝑤 converge?

• Important notion: linear separability

• A dataset 𝑆 is linearly separable if there exists

 𝑤 such that for all 𝑥, 𝑦 ∈ 𝑆, sign(⟨𝑤, 𝑥⟩) = 𝑦

9

For iter = 1,2,….
 For 𝑥, 𝑦 ∈ 𝑆:
 Calculate prediction ො𝑦 = sign 𝑤 ⋅ 𝑥
 if ො𝑦 ≠ 𝑦, 𝑤 ← 𝑤 + 𝑦 𝑥.

𝑂 𝑂

Observations:
• Inseparable 𝑐 does not converge
• Separable ⇒ converge?

Q: how long does it take to
converge?

Linear classification margins

• Measures easiness of a dataset for linear classification

• Easier dataset ⇒ faster convergence

• Margin of a linear classifier 𝑤 on 𝑆:

margin 𝑆, 𝑤 = ൝
min
𝑥,𝑦 ∈𝑆

𝑦 𝑤, 𝑥 , 𝑤 separates 𝑆

−∞, otherwise

• “Wiggle room” of 𝑤 on 𝑆

• Margin of dataset 𝑆: margin 𝑆 = max
𝑤:||𝑤||2=1

margin 𝑆, 𝑤

• See book for definition of margins for nonhomogeneous linear classifiers

10

The Perceptron convergence theorem

Theorem (Perceptron Convergence Theorem, Novikoff 1962): Suppose the Perceptron
algorithm is run on a dataset 𝑆; Assume:

• margin 𝑆 ≥ 𝛾, i.e. there exists 𝑤∗, 𝑤∗
2 = 1, 𝑦 𝑤∗, 𝑥 ≥ 𝛾 for all 𝑥, 𝑦 ∈ 𝑆

• For all 𝑥, 𝑦 ∈ 𝑆, 𝑥 2 ≤ 1

then the Perceptron algorithm makes at most 1/𝛾2 updates throughout the process.

Can also be phrased as an online learning mistake bound guarantee

Proof of Perceptron Convergence Theorem

• Denote 𝑤(𝑘) the value of 𝑤 after the 𝑘-th update; 𝑤(0) = (0, … , 0)

• Idea: track the progression of ⟨𝑤(𝑘), 𝑤∗⟩ and 𝑤(𝑘)
2

• At the 𝑘-th update:

 𝑤(𝑘), 𝑤∗ = 𝑤(𝑘−1) + 𝑦𝑥, 𝑤∗ ≥ 𝑤(𝑘−1), 𝑤∗ + 𝛾

 𝑤(𝑘)
2

2
= 𝑤(𝑘−1) + 𝑦𝑥

2

2

 = 𝑤(𝑘−1)
2

2
+ 2 𝑤(𝑘−1), 𝑦𝑥 + 𝑥 2

2

 ≤ 𝑤(𝑘−1)
2

2
+ 1

Proof of Perceptron Convergence Theorem

#updates

⟨𝑤𝑡+1, 𝑤∗⟩

𝑤𝑡+1

• Therefore, if a total of 𝑘 mistakes are made, then:

𝑤(𝑘), 𝑤∗ ≥ 𝑘 𝛾, and 𝑤(𝑘) ≤ 𝑘

Proof of Perceptron Convergence Theorem

• Let 𝑀 = #mistakes made up to time step 𝑛

 𝑤𝑛+1, 𝑤∗ ≥ 𝑀 𝛾, and 𝑤𝑛+1 ≤ 𝑀

• Meanwhile, by Cauchy-Schwarz,

 ⟨𝑤𝑛+1, 𝑤∗⟩ ≤ 𝑤𝑛+1 ⋅ 𝑤∗ = 𝑤𝑛+1

• This implies that 𝑀 𝛾 ≤ 𝑀 ⇒ 𝑀 ≤ 1/𝛾2

• This holds for all 𝑛, which concludes the proof

Practical versions: voting Perceptron

• Naïve Perceptron: return the last iterate 𝑤(𝐾)

• Drawback:

• say making one pass, last example is an outlier

• Last update may ruin a previously trained good model

• A more robust output classifier:

ℎ 𝑥 = sign ෍

𝑡=1

𝑇

ℎ𝑡 𝑥 = sign ෍

𝑘=0

𝐾

𝑐 𝑘 ℎ𝑤 𝑘 (𝑥)

• Has good predictive performance, but computationally expensive to maintain

15

𝑂

Linear classifier at iteration 𝑡 Number of times 𝑡 when ℎ𝑡 = ℎ𝑤 𝑘

∈ {−1, +1}

Practical versions: averaged Perceptron

• ℎ 𝑥 = sign ഥ𝑤, 𝑥 , where ഥ𝑤 =
1

σ𝑘=0
𝐾 𝑐 𝑘

σ𝑘=0
𝐾 𝑐 𝑘 𝑤 𝑘 is the averaged predictor

• This is equivalent to sign σ𝑘=0
𝐾 𝑐 𝑘 𝑤 𝑘 , 𝑥

• Efficient implementation

 (avoid extensive bookkeeping when no update)

• Exercise: show that the final output is ഥ𝑤

16

෍

𝑘=0

𝐾

𝑧(𝑘)

𝑧(𝑘)

෍

𝑘=0

𝐾

𝑐(𝑘)
෍

𝑘=0

𝐾

𝑧(𝑘) ෍

𝑙<𝑘

𝑐(𝑙)

Perceptron: limitations

• The ‘XOR’ problem: data linearly nonseparable

• E.g. sentiment analysis

• Possible fix: introduce nonlinear feature maps

 𝑥 = 𝑥1, 𝑥2 ↦ 𝜙 𝑥 = (𝑥1, 𝑥2, 𝑥1𝑥2, 𝑥1
2, 𝑥2

2), e.g. containing “mega-feature” 𝑥no ⋅ 𝑥excellent

• Later in the course: kernel methods (high/infinite dim 𝜙); neural networks (automatically learn 𝜙)

17

“excellent”

“no”

	Slide 1: CSC 580 Principles of Machine Learning 06 Linear Classification; Perceptron
	Slide 2: Linear classifiers
	Slide 3: Linear models: biological motivation
	Slide 4: Math review: inner product between vectors
	Slide 5: Linear classifiers: geometric view
	Slide 6: Training linear classifiers: The Perceptron algorithm (Rosenblatt, 1958)
	Slide 7: Perceptron for nonhomogeneous linear classifiers
	Slide 8: Perceptron: practical issues
	Slide 9: Perceptron: convergence properties
	Slide 10: Linear classification margins
	Slide 11: The Perceptron convergence theorem
	Slide 12: Proof of Perceptron Convergence Theorem
	Slide 13: Proof of Perceptron Convergence Theorem
	Slide 14: Proof of Perceptron Convergence Theorem
	Slide 15: Practical versions: voting Perceptron
	Slide 16: Practical versions: averaged Perceptron
	Slide 17: Perceptron: limitations

