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Supervised Learning



Supervised learning setup: putting it together

• Goal: design learning algorithm 𝒜 such that its output 𝑓 on 

iid training data 𝑆 has low generalization error
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Model: Decision Tree: Example

Use questions to arrive at a conclusion.
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Terminology:

• (Question, Answer) → (Feature, Feature Value)

• “Like” / “Nah” → Label

• {(A set of (Question & Answer)’s, Label)} → Train 

Data

Input: the course & student info



• Test: predict using a decision tree:

• Training: how to design a learning algorithm 𝒜 that can build trees 𝑓 from training data?
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guess = prediction

left = no

right = yes

Prediction using a decision tree
test point: the data point to be classified

(vs train point: data point to be used for training)



𝑘-nearest neighbors (𝑘-NN): main concept

Training set: 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 }

Inductive bias: given test example 𝑥, its label should resemble the 
labels of nearby points

Function
• input: 𝑥

• find the 𝑘 nearest points to 𝑥 from 𝑆; call their indices 𝑁(𝑥)

• output: the majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}
• For regression, the average.
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k-NN classification example
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decision boundary



𝑘-NN classification: pseudocode

• Training is trivial: store the training set

• Test: 

•

• Time complexity (assuming distance calculation takes 𝑂(𝑑) time) 

• 𝑂 𝑚 𝑑 + 𝑚 log 𝑚 + 𝑘 = 𝑂 𝑚 𝑑 + log 𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive 
hashing
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list

append to list

sort in first coordinate

Majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)} 



• Suppose the ML algorithm has trained a function 𝑓 using the dataset 𝐷 =
𝑥𝑖 , 𝑦𝑖 𝑖=1

𝑛

• Train set accuracy:

ෞacc 𝑓 ≔
1

𝑛


𝑖=1

𝑛

𝐈{𝑓 𝑥𝑖 = 𝑦𝑖}

• Train set error: ෞerr 𝑓 =
1

𝑛
σ𝑖=1

𝑛 𝐈{𝑓 𝑥𝑖 ≠ 𝑦𝑖} = 1 − ෞacc 𝑓

• Q: We have 100 train set (images) consisting of 5 cats, 80 dogs, and 15 lions. 
What is the train set accuracy of the majority vote classifier?  What is the error?
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Background: Train set accuracy/error



Bayes optimal classifier

Theorem 𝑓𝐵𝑂 achieves the smallest 0-1 error among all classifiers.
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𝑓𝐵𝑂 𝑥 = arg max
𝑦∈𝒴

𝑃𝐷(𝑋 = 𝑥, 𝑌 = 𝑦) = arg max
𝑦∈𝒴

𝑃𝐷 𝑌 = 𝑦 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

Iris Setosa

Example Iris dataset classification:

Iris Versicolor Iris Virginica



Bayes error rate: alternative form

𝐿𝐷 𝑓𝐵𝑂 = 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑋

               = σ𝑥 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑥 ∣ 𝑋 = 𝑥 𝑃𝐷 𝑋 = 𝑥

               = σ𝑥(1 − 𝑃𝐷 𝑌 = 𝑓𝐵𝑂 𝑥 ∣ 𝑋 = 𝑥 ) 𝑃𝐷(𝑋 = 𝑥)

               = σ𝑥 1 − max
𝑦

 𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋 = 𝑥 𝑃𝐷 𝑋 = 𝑥

               = E 1 − max
𝑦

 𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋

• Special case: binary classification 
• 𝐿𝐷 𝑓𝐵𝑂 = σ𝑥 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑥 , 𝑋 = 𝑥

                    = σ𝑥 min( 𝑃𝐷 𝑌 = +1, 𝑋 = 𝑥 , 𝑃𝐷 𝑌 = −1, 𝑋 = 𝑥 )
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When is the Bayes error rate nonzero?

• Limited feature representation  

• Noise in the training data
• Feature noise

• Label noise

• Sensor failure

• Typo in reviews for sentiment classification

• May not be a single “correct” answer

• Inductive bias of the model / learning algorithm
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𝐿𝐷 𝑓𝐵𝑂 = 

𝑥

min( 𝑃𝐷 𝑌 = +1, 𝑋 = 𝑥 , 𝑃𝐷 𝑌 = −1, 𝑋 = 𝑥 )



Model Validation and Selection



New measures of classification performance

• True positive rate (TPR) 

    = 
TP

P
=

𝑃( ො𝑦=+1,𝑦=+1)

𝑃(𝑦=+1)

    (aka recall, sensitivity)

• True negative rate (TNR) = 
TN

N

    (specificity)

• False positive rate (FPR) = 
FP

N

• False negative rate (FNR) = 
FN

P

• Precision = 
TP

P−𝑐alled
=

𝑃( ො𝑦=+1,𝑦=+1)

𝑃( ො𝑦=+1)
, P − 𝑐alled = TP + FP
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P = TP + FN N = FP + TN

Type I error

Type II error
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P = TP + FN N = FP + TN

Type I error

Type II error

Applications:
• Search engine: precision & recall
• Cancer classification: FNR vs. FPR
 



P = TP + FN N = FP + TN

Adjust TP, FP, TN, FN

• Decision values

• E.g., the predicted 𝑃(𝑌 = 1|𝑋 = 𝑥)

• Some classifiers just have a real-value
where positive value indicates
positive prediction.
(e.g, supper vector machine – will be
covered later)
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• Default: 𝑃 𝑌 = 1 𝑋 = 𝑥 ≥  .5 then call it positive

• Threshold to 1.1 ⇒ always predict neg.   

• Threshold to 0    ⇒ always predict pos.  

TPR FPR

0 0

1 1

bad

bad



ROC curve

17

(FP/N)

(TP/P)

get this curve by varying the threshold from large to small
(starts from (0,0) then goes to left and downwards to (1,1))

(the green curve is misleading)



ROC curve
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• Conceptually, consider every 
possible threshold, put a dot for 
each, and connect them.

• In practice, just need to care about 
when the ‘correct class’ changes 
from + to – or from – to +.

• results in staircase shape, but 
diagonal line can still happen.

• A popular alternative: just plot 
when going from + to -.
(what’s shown here)

decision value; sorted in decreasing order

TPR=0, FPR=0



ROC curve algorithm
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Overfitting vs Underfitting
Underfitting performs poorly on both training and validation…

…overfitting performs well on training but not on validation

Source: ibm.com



Cross-Validation

Source: Bishop, C. PRML

N-fold Cross Validation Partition training 
data into N “chunks” and for each run 
select one chunk to be validation data

For each run, fit to training data (N-1 
chunks) and measure accuracy on 

validation set.  Average model error 
across all runs.

Drawback Need a lot of training data to partition.



Hyperparameter tuning: cross-validation

• Main idea: split the training / validation data in multiple ways

• For hyperparameter ℎ ∈ {1, … , 𝐻}

• For 𝑘 ∈ {1, … , 𝐾}

• train መ𝑓𝑘
ℎ with 𝑆 ∖ fold𝑘

• measure error rate 𝑒ℎ,𝑘 of መ𝑓𝑘
ℎ on fold𝑘

• Compute the average error of the above: ෞerrℎ =
1

𝐾
σ𝑘=1

𝐾 𝑒ℎ,𝑘

• Choose ℎ = arg min
ℎ

ෞerrℎ

• Train መ𝑓 using 𝑆 (all the training points) with hyperparameter ℎ

• 𝑘 = |𝑆|: leave one out cross validation (LOOCV)
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Training set 𝑆

fold1,  … ,  fold5



Interval Estimation / Hypothesis Testing



Motivation: evaluating & comparing ML models

Example

• Your ML model 𝑓 has test set error = 6.9%

• Your nemesis, Gabe’s, ML model 𝑔 has test set error = 6.8%

• How confident are we to conclude that 𝑔 has smaller generalization error than that of 𝑓?

• Intuition: We should be more confident if the test set is larger, less if it’s smaller

• Our uncertainty can be quantified with a confidence interval

• Determining the best model can be done rigorously with hypothesis testing
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Disclaimer: we only focus on the key ideas (standard stats courses spend >= 5 lectures on this)



In English the interval           contains  the true 
parameter value    with probability at least

Confidence Intervals
Intuition Find an interval such that we are pretty sure it encompasses the 
true parameter value (e.g. algorithm accuracy).

Given data                        and confidence
find interval           such that,

• Intervals must be computed from data                              and

• Interval (a,b) is random, parameter    is not random (it is fixed) 

• Requires that we know the distribution of the estimator



Knowledge Check

What is the confidence level of this estimator?
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CI construction

A standard recipe:

• Construct an estimator for 𝜃 based on 𝑆 -- call it 𝜃𝑆

• Let 𝐼 𝑆 ≔ [ 𝜃𝑆 − 𝑤, 𝜃𝑆 + 𝑤], where 𝑤 is chosen such that for any 𝜃,

𝑃𝑆∼𝐷𝜃
𝑛 𝜃 ∈ [ 𝜃𝑆 − 𝑤, 𝜃𝑆 + 𝑤] ≥ 1 − 𝛼

Important example: confidence interval for normal mean

• 𝐷𝜇 = 𝑁 𝜇, 1 , 𝑆 = 𝑋1, … , 𝑋𝑛 ∼ 𝐷𝜇
𝑛

• Define ො𝜇𝑆 =
1

𝑛
σ𝑖=1

𝑛 𝑋𝑖

• ො𝜇𝑆 − 𝜇 ∼ 𝑁 0,
1

𝑛

• How to choose 𝑤 such that 𝑃 ො𝜇𝑆 − 𝜇 ≤ 𝑤 ≥ 1 − 𝛼?

27

Known variance

Central limit theorem



Confidence Intervals of the Normal Distribution
Given enough data many estimators follow a Normal distribution

(central limit theorem)
A Normal RV falls within      of 

the mean with ~95% probability

The interval                    covers 
~99%, super high confidence

For various reasons, 95% has become standard confidence level



CI for normal mean (cont’d)

• ො𝜇𝑆 − 𝜇 ∼ 𝑁 0,
1

𝑛

• How to choose 𝑤 such that 𝑃 ො𝜇𝑆 − 𝜇 ≤ 𝑤 ≥ 1 − 𝛼?

• Note: 𝑍 = 𝑛 ො𝜇𝑆 − 𝜇 ∼ 𝑁 0,1

• Suffices to find 𝑧𝛼  such that 𝑃 𝑍 ≤ 𝑧𝛼 ≥ 1 − 𝛼, and let 𝑤 =
𝑧𝛼

𝑛

• Final (1 − 𝛼)-confidence interval construction for 𝜇: 𝐼 𝑆 = ො𝜇𝑆 −
𝑧𝛼

𝑛
, ො𝜇𝑆 +

𝑧𝛼

𝑛

• E.g. 95%-confidence interval for 𝜇: 𝐼 𝑆 = ො𝜇𝑆 −
1.96

𝑛
, ො𝜇𝑆 +

1.96

𝑛
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Central limit theorem



CI for means of general distributions, unknown variance

• Given 𝐷𝜃  with mean parameter 𝜃 with unknown variance

• ො𝜎𝑛
2  ≔

σ𝑖=1
𝑛 𝑋𝑖−ෝ𝜇𝑛

2

𝑛−1
 ⟹ unbiased estimator of var(𝐷𝜃) 

• Theorem: Let 𝑋1, … , 𝑋𝑛~𝑁(𝜇, 𝜎2), and ො𝜇𝑛 ≔
1

𝑛
σ𝑖=1

𝑛 𝑋𝑖

𝑛
ෝ𝜇𝑛−𝜇

ෝ𝜎𝑛
 ~ student-t (mean 0, scale 1, degrees of freedom = 𝑛 − 1)

• CI: ො𝜇𝑛 ±
ෝ𝜎𝑛⋅ 𝑡𝛼

𝑛
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import scipy.stats as st
alpha = 0.05
st.t.ppf(1-alpha/2,df=2)
=> 4.302652729911275

st.t.ppf(1-alpha/2,df=5)
=> 2.5705818366147395

st.t.ppf(1-alpha/2,df=10)
=> 2.2281388519649385

st.t.ppf(1-alpha/2,df=30)
=> 2.0422724563012373

st.t.ppf(1-alpha/2,df=100)
=> 1.9839715184496334

How do we estimate variance
of algorithm performance?



Two-sample hypothesis testing: definition

• Given 𝐷𝜃  with parameter 𝜃

• Samples 𝑆𝑋  = 𝑋1, … , 𝑋𝑛  and 𝑆𝑌  = 𝑌1, … , 𝑌𝑛  drawn iid from distribution 𝐷𝜃𝑋
 and 𝐷𝜃𝑌

, 

respectively

• Equality test version:

• Null hypothesis 𝐻0: 𝜃𝑋 = 𝜃𝑌

• Alternative hypothesis 𝐻1:𝜃𝑋 ≠ 𝜃𝑌

• E.g. 𝐷𝜇 = Ber(𝜇), 𝐻0: 𝜇𝑋 = 𝜇𝑌

• Design hypothesis tester 𝑇 such that the two types of errors are controlled

31



Paired t-test

• 𝑆𝑋  = 𝑋1, … , 𝑋𝑛  and 𝑆𝑌  = 𝑌1, … , 𝑌𝑛  drawn iid from distribution 𝐷𝜃𝑋
= 𝑁(𝜇𝑋, 𝜎𝑋

2) and 𝐷𝜃𝑌
= 𝑁(𝜇𝑌, 𝜎𝑌

2), 

respectively

• 𝐻0: 𝜇𝑋 = 𝜇𝑌

• 𝐻1: 𝜇𝑋 ≠ 𝜇𝑌

• Let 𝛿𝑖 ≔ 𝑋𝑖 − 𝑌𝑖, for all 𝑖 = 1, … , 𝑛

• Let ҧ𝛿𝑛 ≔
1

𝑛
σ𝑖=1

𝑛 𝛿𝑖

• Design hypothesis test 𝑇 so that 𝑃𝐻0
𝑇 𝑆 = 0 ≥ 1 − 𝛼

• Intuition: reasonable to reject if ҧ𝛿𝑛  is large
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Paired t-test

• Under 𝐻0, 𝛿𝑖  ~ 𝑁 0, 𝜎2 , 𝑖 = 1, … , 𝑛, where 𝜎2 = 𝜎𝑋
2 + 𝜎𝑌

2

• Recall Thm: Let 𝛿1, … , 𝛿𝑛~𝑁(0, 𝜎2), and ҧ𝛿𝑛 ≔
1

𝑛
σ𝑖=1

𝑛 𝛿𝑖 , ො𝜎𝑛
2  ≔

σ𝑖=1
𝑛 𝛿𝑖−ഥ𝛿𝑛

2

𝑛−1

            𝑍 = 𝑛
ഥ𝛿𝑛

ෝ𝜎𝑛
 ~ student-t (mean 0, scale 1, degrees of freedom = 𝑛 − 1)

• Let’s ask “under 𝐻0, what is a plausible range of values of 𝑍 with failure rate 𝛼 = 0.05?”

• Find the 0.025, 0.975-quantiles of 𝑍 => 𝑡0.025, 𝑡0.975

• Hypothesis tester

   𝑇 𝑆 = 𝐼 𝑍 ∉ 𝑡0.025, 𝑡0.975 = 𝐼 𝑛
ത𝛿𝑛

ෝ𝜎𝑛
∉ 𝑡0.025, 𝑡0.975
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Linear Models



Linear Regression

Regression Learn a function that 
predicts outputs from inputs,

Linear Regression As the name 
suggests, uses a linear function:

Outputs y are real-valued

INPUT: X

O
U

T
P

U
T
: 

Y

We will add noise later…



Linear Regression

Input-output mapping is not exact, so we will add 
zero-mean Gaussian noise,

INPUT: X

O
U

T
P

U
T
: 

Y

where

Multivariate Normal

(uncorrelated)

This is equivalent to the likelihood function,

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression           and  



Great, we’re done right?

We need to fit it to 
data by learning the 
regression weights

Don’t know these; 

need to learn them

Data – We have this

Random; Can’t do 

anything about it

How to do this?  
What makes good 

weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:

•  Intuitive Find a plane/line that is close to data

•  Functional Find a line that minimizes the least squares loss

•  Estimation Find maximum likelihood estimate of parameters

They are all the same thing…
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MLE for Linear Regression

INPUT: X

O
U

T
P

U
T
: 

Y

Recall that the likelihood is Gaussian:

Given training data                     likelihood function 
is given by,

So MLE maximizes the log-likelihood over the whole data as,



MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,
Variance is known

Log-likelihood function:

Constant doesn’t 

depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:

1) Drop constant terms (in   )

2) Minimize negative log-likelihood



MLE of Linear Regression

Substitute linear regression 
prediction into MLE solution 

and we have,

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

So for Linear Regression, 
MLE = Least Squares 

Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


MLE of Linear Regression

Using previous results, MLE is equivalent to 
minimizing squared residuals,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…

• We know it has a closed-form and why

• We can evaluate it

• Generally know where it comes from



Nonlinear Models



Nonlinear Data

What if our data are not 
well-described by a linear 

function?

What if classes are not 
linearly-separable?

[Source: Murphy, K. (2012) ]



Basis Functions

• A basis function can be any function of the input features X

• Define a set of m basis functions

• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations

• Model is nonlinear in the data X



Kernel Functions

A kernel function is an inner-product of some basis function 
computed on two inputs

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

Kernel functions can be interpreted as a measure of 
distance between two inputs



Kernel Functions

Example Gaussian kernel models similarity according to an 
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,

this is not a Gaussian

probability density.

Example The linear basis                 produces the kernel,

It is often easier to directly specify the kernel rather than the 
basis function…



Kernel Functions

Given any set of data              a necessary and sufficient 
condition of a valid kernel function is that the nxn gram matrix, 

Is a symmetric positive semidefinite matrix.



Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual

MxM Matrix Inversion

O(M3)

NxN Matrix Inversion

O(N3)

Number of training data N greater than basis functions M
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