
CSC 480/580 Principles of Machine Learning

Large Language Model (LLM)

Jason Pacheco

1

*some slides are from Daniel Hsu, Francesco Orabona, Xiaojin (Jerry) Zhu, and Kwang Sung-Jun with their permission

Also, largely from Stanford CS324



What is a language model?

• Definition: A language model is a probability distribution over sequences of tokens.

• token := a subword (word or part of word)

• 𝒱 := the set of tokens (aka vocabulary)

• A language model p assigns an arbitrary sequence of tokens 𝑥1, … , 𝑥𝐿 ∈ 𝒱 a probability:
𝑝(𝑥1, … , 𝑥𝐿)

• If you grab a random smart person and have them say something, what’s the probability of them saying 
𝑥1, … , 𝑥𝐿? 

2

// e.g., 𝒱 = {ate, ball, cheese, mouse, the}

E.g., the language model might assign: 

// e.g., unused can be ‘un’ + ‘used’



• It’s a very simplistic/holistic formulation, but designing a good one is hard.

• Since it is a probability distribution, we can sample from it.

• Easy for some models, and hard for some models. 

• E.g., autoregressive language models are easy to sample from.

What is a language model?

3

← must assign small probability:

← must be higher than the second line

“semantic knowledge”

“syntactic knowledge”

↑ designed to predict next word



Autoregressive language models

• Autoregressive MLs model 𝑝 𝑥1:𝐿  using the chain rule of probability:

• With the decomposition above, it suffices to model 𝑝 𝑥𝑖 𝑥1:𝑖−1).

• E.g., multi-class logistic regression with the number of classes as 𝒱  and a fixed dimensional feature 
representation of 𝑥1:𝑖−1.

4

No, logistic regression is important because it directly model p(y|x)

note: there are other types of language models like “masked” language models, but we will skip on this.

E.g.,

Q: Can we use SVM here?



Generation with autoregressive language models

• Generation algorithm.

• Input: language model 𝑝, length L
          for 𝑖 = 1, … , 𝐿:
                  𝑥𝑖 ∼ 𝑝 𝑥𝑖 𝑥1:𝑖−1)

5

It’s a bit confusing notation.. 
Technically, it should be 
   for 𝑖 = 1, … , 𝐿:
         𝑥𝑖 ~ 𝑝 𝑋𝑖 𝑋1:𝑖−1 = 𝑥1:𝑖−1) 
but this is not concise (and many people
don’t do this)

, temperature T

𝑥𝑖 ∝ 𝑝 𝑥𝑖 ∣ 𝑥1:𝑖−1

1
𝑇

Often, you want to control the diversity of generation.

𝑇 → ∞: uniform sampling
𝑇 → 0: deterministic sampling (most likely sequence)

// ‘annealed’ probability



How to use a language model, if you have a good one?

• Use it as a prior probability to boost the system’s performance

• E.g., traditional speech recognition or machine translation

6

Speech recognition systemspeech text

Goal: Given speech, infer the text

(sequence of tokens)(wavelet form)

// modern versions use NNs and work differently



E.g., speech recognition system

7

Why? Typically, easier to model p(speech | text) than p(text | speech)

When ambiguous from acoustic model, language model helps!

This parallels the generative model for classification: 𝑝 𝑦 𝑥 ∝ 𝑝 𝑦 𝑝 𝑥 𝑦

Solve output = arg max
text

𝑝 text speech

// Bayes’ rule

(recall: semantic / syntactic knowledge 

is encoded in language model)

E.g., 

The stuffy nose can lead to problems

The stuff he knows can lead to problems

vs

← would be preferred if the system is for

the medical domain



Traditional language model: n-gram
• n-gram model: approximate: 

• Unigram := 1-gram

• Bigram := 2-gram

• Trigram, 4-gram, 5-gram, …

8

𝑝 𝑥𝑖 𝑥1:𝑖−1 ≈ 𝑝(𝑥𝑖 ∣ 𝑥𝑖− 𝑛−1 :𝑖−1) (history length = n-1)

𝑝 𝑐ℎ𝑒𝑒𝑠𝑒 𝑡ℎ𝑒, 𝑚𝑜𝑢𝑠𝑒, 𝑎𝑡𝑒, 𝑡ℎ𝑒 ≈ 𝑝(𝑐ℎ𝑒𝑒𝑠𝑒) 

𝑝 𝑐ℎ𝑒𝑒𝑠𝑒 𝑡ℎ𝑒, 𝑚𝑜𝑢𝑠𝑒, 𝑎𝑡𝑒, 𝑡ℎ𝑒 ≈ 𝑝(𝑐ℎ𝑒𝑒𝑠𝑒 ∣ 𝑡ℎ𝑒) 

Q: how can we estimate bi-gram model?

Suppose we are given a corpus (e.g., the entire Wikipedia articles)

Q: how can we estimate unigram model? normalized word count! (use add-𝜖 smoothing)

use p(b|a) = count(a,b)/count(a)    (use add-𝜖 smoothing)

count(a,b): how many times (a,b) occurs in the corpus

Q: if V is the number of tokens, how much memory do we need for bi-gram models? 𝑉2

called ‘context’



n-gram model

• Pre-LLM era, n-gram was the standard.

• In 2006, Google released `Web 1T 5-gram` model based on web.

9

(source: https://catalog.ldc.upenn.edu/LDC2006T13)• Limitations: cannot capture long-range dependencies 

UA has a new course on large language models. It will be taught by ___

count(UA, has, a, new, course, on, large, language, models) = 0

• With 5-gram model, we will not be able to put ‘Mihai’

• If we increase n to be large, it is statistically infeasible to learn n-gram model well.

(unlikely that the corpus will include this phrase..)

• For speech recognition & machine translation, the main model was P(input|output) (e.g., acoustic model), 

and the role of LM were for ‘breaking ambiguities’ – n-gram models were enough for this. 

• However, it was never useful for generic language generation.



Neural language models
• Bengio’03 pioneered using neural networks for n-gram models:

10

parameter sharing happens through NNs ⇒ statistically feasible to have a large n

* Bengio et al., “A Neural Probabilistic Language Model,” 2003.

interesting bits:

they ran training for 3 weeks:



Two key NN-based architectures

• Recurrent Neural Networks (RNNs), including Long Short Term Memory (LSTMs)

• Allowed the conditional distribution of a token to depend on the entire context 𝑥1:𝑖−1  (effectively 𝑛 =
∞).

• However, it was hard to train (i.e., hard to get it converged).

• Transformers (circa 2017)

• Returned to having fixed context length, but were much easier to train (and exploited the parallelism of 
GPUs). Also, could be made “large enough” for many applications (GPT-3 used 𝑛 = 2048).

11



“Large” language model

12

GPT-4 estimated to have 1.7T parameters, and GPT-4o being 8B parameters

But why large?

Surprise: “Just scaling up” these models 

produces new emergent behavior, 

leading to qualitatively different 

capabilities and qualitatively different 

societal impact.



LLM Capabilities

• Conditional generation: given a prompt, generate a completion

• If we set the prompt as a question, then it results in an answer.

• We can also ask them to write a news article, provided various levels of details.

• In-context learning: LLM learn something from the prompt. (below, boldfaced is the prompt)

13

vs



In-context learning: more examples

14

1. Lion:
Description: The lion is a large carnivorous mammal known for its majestic mane and strong 

physique. It is often referred to as the king of the jungle.

2. Dolphin:
Description: The dolphin is a highly intelligent marine mammal known for its playful nature 

and acrobatic skills. It is often found in oceans and seas.

3. Elephant:
Description: The elephant is a massive herbivorous mammal with a long trunk and large, 

curved tusks. It is known for its incredible strength and gentle nature.

Now, generate descriptions for the following animals:

4. Penguin:

5. Giraffe:

6. Cheetah:

prompt: response:

Here are the descriptions for the additional animals:

Penguin: Description: The penguin is a flightless bird known for its 

distinctive black and white plumage and upright posture. It is a highly 

adaptable species, often found in cold climates like the Antarctic, where it 

thrives by swimming and diving in search of food.

Giraffe: Description: The giraffe is a tall herbivorous mammal with an 

extremely long neck and legs. It is known for its spotted coat and graceful 

movement. Giraffes are typically found in African savannas and are the 

tallest land animals, feeding on leaves from the tops of trees.

Cheetah: Description: The cheetah is a sleek and fast carnivorous 

mammal, famous for being the fastest land animal. Its slender body and 

distinctive black tear markings around the eyes help it blend into its 

environment. Cheetahs are found in open grasslands and are known for 

their incredible speed when chasing prey.

Learns the expected format and style of writing!



In-context learning vs supervised learning

• Supervised learning: 

• takes in data as fixed-dimensional vectors and output pairs and output a model that can predict output 
from input.

• In-context learning: 

• no explicit training procedure

• no separate model training

• format is free (as long as in a language)

• learning ability is embedded into language generation

• in some sense, researchers managed to learn a model that can learn 

15



How to use a language model?

• ChatGPT for generic conversational agent.

• Conditional generation: 

16

<bos><start_of_turn>user
Write me a poem about Machine 
Learning.<end_of_turn>
<start_of_turn>model

Input: Output:

<bos><start_of_turn>user
Write me a poem about Machine Learning.<end_of_turn>
<start_of_turn>model
In silicon valleys, a mind takes flight,
No flesh and bone, but logic's light.
Machine learning, a whispered name,
A digital brain, a future's flame.

From data's depths, a pattern's gleam,
Algorithms dance, a vibrant dream.
Neural networks, a web so vast,
Learning, growing, forever to last.

… (omitted) …

<end_of_turn>

Note: Special tokens like <start_of_turn> work as a ‘protocol’

E.g., in Google Gemma2 2B model (gemma2-2-it).

2B: 2 billion parameters

it: instruction tuned



Try it yourself

Google colab kindly provides a free GPU resource. 

Create a google colab notebook and change runtime type

17

be sure to choose “T4 GPU”

Usually, you can only use up to like 3 hours.

It may be interrupted suddenly (though it 

does not happen frequently).



Google Gemma 2, 2B parameter version

18

import transformers

from transformers import AutoTokenizer, AutoModelForCausalLM

import torch

1. import modules

2. load models (takes ~5 minutes)

d

login(”..")

model_id = "google/gemma-2-2b-it"

dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(

    model_id,

    device_map="cuda",

    torch_dtype=dtype,)

// signup huggingface, generate token, 

    copy-paste it here

(one of the best non-stupid and small model)

// causal means the autoregressive model



19

chat = [

    { "role": "user", "content": "Write poem about Machine Learning." },

]

prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)

inputs = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt")

outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=1000)

print(tokenizer.decode(outputs[0]))

3. prompt it

maximum # of tokens to 

generate

<bos><start_of_turn>user
Write me a poem about Machine 
Learning.<end_of_turn>
<start_of_turn>model

(Note: Special tokens work as a ‘protocol’)

prompt: 

// obtains a sequence of token indices



Output

20

<bos><start_of_turn>user

Write poem about Machine Learning.<end_of_turn>

<start_of_turn>model

In silicon valleys, a mind takes flight,

No flesh and bone, but logic's light.

Machine learning, a whispered name,

A digital brain, a future's flame.

Data flows, a river wide,

Through algorithms, it does glide.

Patterns emerge, a hidden dance,

Machine learning, a knowing glance.

From images seen, to words untold,

It learns and grows, a story unfolds.

Predicting trends, with unseen might,

A future shaped, by day and night.

In healthcare, it heals and saves,

Diagnosing diseases, a helping wave.

In finance, it guides with keenest eye,

Spotting fraud, where secrets lie.

In self-driving cars, it takes the wheel,

Navigating roads, a futuristic zeal.

In music, it composes, a soulful art,

A symphony of data, a beating heart.

But questions linger, a whispered plea,

Of ethics and bias, for all to see.

Can machines truly understand,

The human soul, the beating hand?

The future beckons, a path unknown,

Where machine learning, will surely be shown.

A tool for good, or a power to wield,

The choice is ours, the future revealed. 

<end_of_turn>

model.generate(input_ids=inputs.to(model.device), max_new_tokens=1000, do_sample=True)

use this option to allow generating different completions

every time you run



The raw language model before instruction fine-tuning.

21

import transformers

from transformers import AutoTokenizer, AutoModelForCausalLM

import torch

1. import modules

2. load models (takes 2-3 minutes)

from huggingface_hub import login

login(”..")

model_id = "google/gemma-2-2b"

dtype = torch.bfloat16

tokenizer = AutoTokenizer.from_pretrained(model_id)

model = AutoModelForCausalLM.from_pretrained(

    model_id,

    device_map="cuda",

    torch_dtype=dtype,)

// signup huggingface, generate token, 

    copy-paste it here

context = "I feel so tired today.. "

inputs = tokenizer.encode(context, return_tensors="pt")

outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=300)

print(tokenizer.decode(outputs[0]))

3. prompt it

// without suffix ‘-it’: this is the raw language model trained on gigantic corpus, nothing else.

↑ further training with prompt-response pairs



context = "I feel so tired today.. "

22

<bos>I feel so tired today.. 

I'm not sure if it's because I'm sick or if it's because I'm just so tired of everything. 

I'm tired of the way I feel. 

I'm tired of the way I look. 

I'm tired of the way I act. 

I'm tired of the way I think. 

I'm tired of the way I feel about myself. 

I'm tired of the way I feel about others. 

I'm tired of the way I feel about the world. 

I'm tired of the way I feel about myself. 

I'm tired of the way I feel about others. 

I'm tired of the way I feel about the world. 

I'm tired of the way I feel about myself. 

I'm tired of the way I feel about others. 

I'm tired of the way I feel about the world. 

I'm tired of the way I feel about myself. 

I'm tired of the way I feel about others. 

I'm tired of the way I feel about the world. 

I'm tired of the way I feel about myself. 

I'm tired of the way I feel about others. 

I'm tired of the way I feel about the world. 

I'm tired of

(reached the maximum length)



The same context, but with do_sample=True

<bos>I feel so tired today.. 

This weekend was one of the roughest of my entire life. I have felt lost and I don't know what is happening. 
Everyone is talking to me like I am a child and I don't understand my life at 18. I can't handle anything this week. 
My ex came to visit me in my house today and he didn't even see me and talk to me. No one else in my family 
has talked to him and I am so hurt. I haven't even seen my ex for almost TWO MONTHS now. I don't even 
understand who is going to support me.

My best friend is talking to me and saying that I am so ungrateful on everything. (Which I am not!) Everyone is 
just so lost and not caring. I don't understand why people are like this!

I am so upset and frustrated about this all weekend. It sucks!

I never thought things would be so bad before my ex came to my house today.

He is taking the credit at this point. I don't know how else to describe this. 

I am going insane. I don't think I want to live anymore. I am so sick and tired of being depressed, sad and all 
negative things. I feel like this is a good way out from all this, this is just the worst, I can't stand this anymore.

I am so sick and tired of everything. I don't know

23

(reached the maximum length)



context = "It was the beginning of Summer 2003."

24

<bos>It was the beginning of Summer 2003. I was a 20-year-old college student, and I was in the middle of a summer internship at a 

small, local newspaper. I was working in the newsroom, and I was assigned to cover a story about a local high school football  team.

The team was having a tough season, and the coach was under a lot of pressure. I was assigned to write a story about the team ’s 

struggles, and I was given a deadline of 10:00 a.m. the next day.

I started my research, and I found out that the team had a lot of talented players, but they were struggling because of a lack of 

leadership. I also found out that the coach was under a lot of pressure because he was trying to turn the team around.

I started writing my story, and I was feeling pretty good about it. I was confident that I would be able to get the story out on time.

But then, I got a call from the editor. He told me that the story was going to be published in the next day’s paper, and that  I had to get it 

out by 10:00 a.m. the next day.

I was shocked. I had never been given such a short deadline before, and I was worried that I wouldn’t be able to get the story out on 

time.

But I was determined to get the story out on time. I started working on (reached the maximum length)



Modeling
- tokenization

- encoder/decoder

- RNN

- transformers

25



Tokenization

26

How to develop a good tokenizer?

⇒ [1, 232, 32, 50, 39 ] indices

Any language model first applies tokenization.



Naïve tokenizer

• Given: A large corpus (e.g., Wikipedia)

• Algorithm:

• Do text.split(‘ ‘)

• Save all the unique words and create two dictionaries:

• How to use: Given an input text, apply text.split(‘ ‘) and then use the dictionary to get indices, then pass it 
down to the LM.

• Problems

• Languages without space.

• Long compound words in (e.g., Abwasserbehandlungsanlange)

• Hyphenation in English: e.g., father-in-law

27

word → index,   index → word

// don’t want to treat it as a single 

meaning



Tokenization: Tradeoffs

• LM treats each token as something that carries semantics and assign vector representations (parameter to be 
learned)

• If we use short tokens (e.g., token=character)

• GOOD: less parameters to learn

• BAD: Each token could have very different meaning

• If we use long tokens (e.g., tokens=sentence)

• GOOD: Each token’s meaning has less ambiguity

• BAD: The # of tokens will be large ⇒ large number of parameters to learn

28

e.g., ‘a’ in ‘apple’ vs ‘a’ in ‘angry’

parameters are shared too much

parameters are not much shared

e.g., “I ate a tomato” vs “She ate a tomato”

• Desiderata: just right amount of sharing parameters

large vocabulary ⇒ more parameters!



Smart Tokenizer: Byte pair encoding (BPE)

29

Intuition: Start from character-level tokenizer and then combine tokens that co-occur frequently.

// we need to somehow decide when to stop. (e.g., until the vocab size is ≤ a preset value)

Example:

← note: we are not going to throw away x, x’ !



How to apply tokenizer

30

We need to apply the merging in the order that was collected in the algorithm!



Example: Gemma 2’s tokenizer

31

beginning of sentence token

(actually, beginning of text)

underscore to denote that it came after a space!

I vs _I : they are treated differently!



Example: Gemma 2’s tokenizer

32

dictionary mapping from token to index



Modeling
- tokenization

- encoder/decoder

- RNN

- transformers

33



Embedding: Where all the powers come from

• Recall: Autoencoder/GAN induces vector representation of images

• Vector operations maintain semantics: e.g., man with glasses – man + women = women with glasses

34

paper in NeurIPS’13; received test-of-time award from NeurIPS’23



35

- Not a language model, but trained vector representations so it can predict words given surrounding words.

- Used Google News corpus for training 

-  The training objective is to learn word vector representations that are good at predicting the nearby words.

- Testing: leave the last column blank and have it answer.



Contextual Embedding

• Limitation of the word embedding: Each word can mean different things given context..

• Let’s make it contextual! 

36

⇒ this is the core of modern LLMs!

𝐿: length of the input

𝑑: dimension of the embedding



Types of language models

37

Encoder only (BERT, RoBERTa, …)

Decoder only (GPT-2, GPT-3, …): Extra generation capability

• This alone does nothing interesting. 

• Given an ML task (e.g., sentiment classification) and a dataset for it, we can build a linear classifier, 

treating 𝜙 ⋅  as a feature function, and 

↑ ‘start of the sentence’;   often, take this token’s embedding as the ‘sentence embedding’

• Downside: embedding performance may not be as good.

p(.|.): typically, nothing more than multi-class 

logistic regression classifier (linear), where the 

input is the last column of 𝜙 𝑥1:𝑖 .

LLMs ≈ Contextual embedding function 



Example: Decoder-only model (e.g., GPT series)
• It’s complex! I’ll describe it in 3 steps. 

• Recall: Input is a sequence of token indices

38

// tokenizer is trained separately)

Step 1: Compute token embeddings (context-independent)

Parameter: 𝐸 ∈ ℝ 𝒱 ×𝑑

(nothing to compute, just a lookup)

// we will learn it from data



Step 2: Transformer layer

• Vaswani et al., “Attention Is All You Need”, 2017.

• Attention mechanism: Originally developed for machine translation, but it works in a broader context.

39

𝑊key, 𝑊value ∈ ℝ𝑑×𝑑



Attention mechanism

40

d by 1scalar

Summary of attention:

(d x d) (d x L) L x d d x 1

// a way to get a transformed embedding of y

influenced by the rest



Self-attention and then feed forward

41

caveat: 

- each attention is independent operation

- i.e., output for query being 𝑥1 does not 

affect that of 𝑥2

Step 2a:



Feed forward

44

Step 2b:

e.g., GPT-2 uses 2-layer neural network 

with the # hidden units = 4d

Q: What is should be the 

dimension of 𝑊1 and 𝑊2 ?



Transformer block

45

• First, there are devices to accelerate training process

(recall batch normalization)

do this instead of just 𝑓 𝑥1:𝐿 : 

this was called ‘residual connection’
Q: what was it for?

gradient flow!



Positional encoding

46

The position is important! We need to encode the positional information

Heuristic that seems to work…



Positional encoding

47

Positional encoding values (left) and the value of the dot product of position 1000 with neighboring positions (right).

https://www.blopig.com/blog/2023/10/understanding-positional-encoding-in-transformers/#:~:text=As%20we%20have%20seen%2C%20sinusoidal,while%20effective%2C%20has%20some%20drawbacks.

↑ L=2000

d=500; here, they arranged sines first and then cosines

taking the inner product as ‘similarity’, we are increasing the similarity for nearby vectors!



Summary up to Step 2

48

shaded ones are not

part of the parameter 

learning

transformer block

𝑥1:𝐿

Embedding(𝑥1:𝐿)positional embedding

+

Transformer

Transformer

Transformer

…

𝜙(𝑥1:𝐿)

E

transformer diagram from Guan et al., A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation

“masked”: we will learn later



Step 3: Predict next token

• Why do we reuse E, which is used in the input? 

49

𝐸: embedding matrix, |𝒱| by 𝑑

𝜙(𝑥1:𝑖): output from language model, 𝑑 by 𝑖

𝜙 𝑥1:𝑖 𝑖: taking the last column: 𝑑 by 1

It’s parameter sharing that people found to work well!



Altogether

50

𝑥1:𝐿

Embedding(𝑥1:𝐿)positional embedding

+

Transformer

Transformer

Transformer

…

𝜙(𝑥1:𝐿)

E

softmax(𝐸 𝜙 𝑥1:𝐿 𝐿)

⇒ sample a token!

⇒  |𝒱|-dimensional probability vector



Training

54



Recall: Autoregressive language model = assign values to 𝑃 𝑥𝑖  𝑥1:𝑖−1

• The loss we use for multiclass logistic regression: − log 𝑝 𝑦 𝑥  , which is the logistic loss.

55

min
𝑤



𝑖=1

𝑛

log 𝑝 𝑦𝑖 𝑥𝑖; 𝑤

• Treat 𝑥𝑖+1 as the label for classification, and 𝑥1:𝑖 as the input feature.

min
𝑤



𝑗=1

𝑚



𝑖=1

𝑛𝑗

log 𝑝 𝑥𝑖
(𝑗)

𝑥1:𝑖−1
(𝑗)

; 𝑤

# of documents in corpus # of tokens in document j

i-th token in j-th document

𝑤: weights (and biases) for 

• embedding E 

• key, query, value matrix

• fully connected layers

• layer normalization

Do stochastic gradient descent!



Loose ends

56



Instruction fine-tuning

• Gather question and answer pairs for your specific task.

• The training objective is the same: you want the model to assign large probability to the answers

• Perform the training with the starting point being the already trained unsupervised language model.

• Common trick: LoRA (Low rank adaptation)

• Instead of directly updating weight matrix 𝑊 ∈ ℝ𝑑 × 𝑑 for attention (key, value, query), you create extra 
parameters 𝐴 ∈ ℝ𝑑×𝑘 and 𝐵 ∈ ℝ𝑘×𝑑 with 𝑘 ≪ 𝑑. Then, 
                                                                     replace 𝑊 with 𝑊 + 𝐴𝐵

• This prevents overfitting

• Typically, the train set for fine tuning is much smaller than the unsupervised learning counterpart!

• Can do similar things for the weight 𝑊 for the fully-connected layers.

57



Alignment

• Even after instruction fine-tuning, LLMs could generate undesirable answers.

58
“Decoding Biases: Automated Methods and LLM Judges for Gender Bias Detection in Language Models”



Alignment
• Provide two answers from an LLM, and ask humans which one is more desirable and harmless.

• Eventually, we use the data {(prompt, answer1, answer2, preference ∈ {1,2})} to train.

• Two popular approaches

• RLHF: Reinforcement learning with human feedback

• Take LLMs as an agent making token generation decision.

• Key: Use reinforcement learning where ‘reward’ is given as the comparison feedback

• DPO: Direct policy optimization

• Come up with a reasonable loss function to update the model directly.

• For training, we only update the last layer (the weights determining the probability).

• Uses a regularizer to ensure 𝑃 𝑥𝑖 𝑥1:𝑖−1; initial model  is not too different from 
𝑃 𝑥𝑖 𝑥1:𝑖−1; model after training . 

59

// otherwise, it may hurt the quality of the answer



The infamous strawberry problem

60

← the only way the model can answer 

this correct is that this Q&A was in the 

train set.



Tokenization needs improvements

61



Recommended code: nanoGPT

62

Have instructions on how to run it 

on CPUs to quickly get a glimpse on 

how it works.

The best thing is you get an extreme 

clarity on the inner workings 

without having to wait for long 

execution! 

I recommend that you use debugger 

and step through each part, printing 

out key quantities.



Andrez Karpathy takes it to next step

63

https://github.com/karpathy/llm.c

45 minutes of training on 8 GPUs of H100 note: one H100 GPU is approximately $30,000



Speedrun competition!

64

Who can achieve the same performance as GPT-2 within the shortest amount of time?



Recent updates

65

try it:

https://aistudio.google.com/app/prompts/new_chat?model=gemini-exp-1206

personal opinion: 

• The LLM performance is starting to peter out.

• You cannot compete with industry in this 

weight-lifting game.

• Recent interests from academia

• How can we best use LLMs? (e.g., prompt 

engineering, chain-of-thought)

• Making LLMs small and fast

• Improve test time complexity of 

transformer (length^2)

• Mitigate potential harms from using LLMs

• What other problems can benefit from 

transformer architecture?


	Slide 1: CSC 480/580 Principles of Machine Learning  Large Language Model (LLM)
	Slide 2: What is a language model?
	Slide 3: What is a language model?
	Slide 4: Autoregressive language models
	Slide 5: Generation with autoregressive language models
	Slide 6: How to use a language model, if you have a good one?
	Slide 7: E.g., speech recognition system
	Slide 8: Traditional language model: n-gram
	Slide 9: n-gram model
	Slide 10: Neural language models
	Slide 11: Two key NN-based architectures
	Slide 12: “Large” language model
	Slide 13: LLM Capabilities
	Slide 14: In-context learning: more examples
	Slide 15: In-context learning vs supervised learning
	Slide 16: How to use a language model?
	Slide 17: Try it yourself
	Slide 18: Google Gemma 2, 2B parameter version
	Slide 19
	Slide 20: Output
	Slide 21: The raw language model before instruction fine-tuning.
	Slide 22: context = "I feel so tired today.. "
	Slide 23: The same context, but with do_sample=True
	Slide 24: context = "It was the beginning of Summer 2003."
	Slide 25: Modeling
	Slide 26: Tokenization
	Slide 27: Naïve tokenizer
	Slide 28: Tokenization: Tradeoffs
	Slide 29: Smart Tokenizer: Byte pair encoding (BPE)
	Slide 30: How to apply tokenizer
	Slide 31: Example: Gemma 2’s tokenizer
	Slide 32: Example: Gemma 2’s tokenizer
	Slide 33: Modeling
	Slide 34: Embedding: Where all the powers come from
	Slide 35
	Slide 36: Contextual Embedding
	Slide 37: Types of language models
	Slide 38: Example: Decoder-only model (e.g., GPT series)
	Slide 39: Step 2: Transformer layer
	Slide 40: Attention mechanism
	Slide 41: Self-attention and then feed forward
	Slide 44: Feed forward
	Slide 45: Transformer block
	Slide 46: Positional encoding
	Slide 47: Positional encoding
	Slide 48: Summary up to Step 2
	Slide 49: Step 3: Predict next token
	Slide 50: Altogether
	Slide 54: Training
	Slide 55: Recall: Autoregressive language model = assign values to P x i. x 1: i. 1 
	Slide 56: Loose ends
	Slide 57: Instruction fine-tuning
	Slide 58: Alignment
	Slide 59: Alignment
	Slide 60: The infamous strawberry problem
	Slide 61: Tokenization needs improvements
	Slide 62: Recommended code: nanoGPT
	Slide 63: Andrez Karpathy takes it to next step
	Slide 64: Speedrun competition!
	Slide 65: Recent updates

