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Motivation for Monte Carlo Methods

▪  Real problems are typically complex and high dimensional.

▪  Suppose that we could generate samples from a distribution 
that is proportional to one we are interested in. 

▪  Typically we want posterior samples,

Don’t know marginal 

likelihood / normalizer

Unnormalized

posterior

▪ Typically,        is easier to evaluate (though not always)



Motivation for Monte Carlo Methods

• Generally, Z lives in a very high dimensional space.

• Generally, regions of high       is very little of that space. 

• IE, the probability mass is very localized.

• Watching samples from         should provide a good maximum 
(one of our inference problems)



Motivation for Monte Carlo Methods

• Now consider computing the expectation of a function           
      w.r.t       . 

• Recall that this looks like 

• How can we approximate or estimate E[f]?  

A bad plan…

Scales poorly with dimension of Z

A better plan…



Challenges for Monte Carlo Methods

• In real problems sampling        is very difficult

• Typically don’t know normalization, so need to use         instead

•  Even if we can sample       , it can be hard to know if/when they are 
“good” and if we have enough (e.g. to approximate E[f] well)

•  Sometimes evaluating        can also be hard



Inference (and related) Tasks

•  Simulation:

•  Compute expectations:

•  Optimization:

•  Compute normalizer / marginal likelihood:
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Basic Sampling (so far…)

• Uniform sampling (everything builds on this)

• Sampling from simple discrete distributions

• Multinomial / categorical

• Binomial / Bernoulli

• Etc.

• Sampling for selected continuous distributions (e.g., Gaussian)

• At least, Matlab and Numpy / Scipy know how to do it. 

• Ancestral sampling



Sampling Continuous RVs

Recall that the CDF is the integral of the PDF and (left) tail probability,

Question Given samples                          what is 
the probability distribution of the CDF values, 

Observation 1 Equally spaced intervals of CDF 
correspond to regions of equal event probability

Observation 2 The same events have unequal 
regions under PDF 



Sampling Continuous RVs

Answer The CDF of iid samples has a 
standard uniform distribution!

Question How can we use this fact to 
sample any RV?

Answer Apply this relationship in reverse:

1. Sample iid standard uniform RVs

2. Compute inverse CDF

3. Result are samples from the target

This property is called the 

probability integral transform



Inverse Transform Sampling

➢ We can use these to exactly sample from any continuous 

distribution using the cumulative distribution function: 

➢ Assuming continuous CDF is invertible:

➢ Input:  Independent standard uniform variables

This function transforms uniform variables to our target distribution!

Requires us to have

access to inverse CDF



Inverse Transform Sampling

➢ Very nice trick that applies to all continuous RVs (in theory)

➢ Yay, we know how to sample any RV right?  Wrong…

➢ Don’t always have the inverse CDF (or cannot calculated it)

➢ Doesn’t extend easily to multivariate RVs (that’s why I only 
showed 1-dimensional)



Rejection Sampling

Assume

• Access to easy-to-sample distribution

• Constant k such that  

Proposal Distribution

Where we can use one of

methods on previous slides

to sample efficiently

Algorithm

Example Uses Gaussian 

proposal q to draw samples 

from multimodal distribution p



Rejection Sampling

• Rejection sampling is hopeless in high dimensions, but 
is useful for sampling low dimensional “building block” 
functions.

• For example, the Box-Muller method for generating 
samples from a Gaussian uses rejection sampling.

A second example where a 

gamma distribution is 

approximated by a Cauchy 

proposal distribution.



Inference (and related) Tasks

•  Simulation:

•  Compute expectations:

•  Optimization:

•  Compute normalizer / marginal likelihood:



Monte Carlo Integration

One reason to sample a distribution is to approximate 
expected values under that distribution…

Expected value of function         w.r.t. distribution         given by,

➢ Doesn’t always have a closed-form for arbitrary functions

➢ Suppose we have iid samples:

➢ Monte Carlo estimate of expected value, 



Monte Carlo Integration

• Expectation estimated from empirical distribution of N samples:

• For any N this estimator, a random variable, is unbiased:

• The Dirac delta is loosely defined as a piecewise function:

Caveat This is technically incorrect.  Dirac is only well-

defined within integrals,                                    but it 

gets the intuition across.



Monte Carlo Asymptotics

• Estimator variance reduces at rate 1/N:

• If the true variance is finite have central limit theorem: 

Independent of dimensionality

of random variable X

• Even if true variance is infinite have laws of large numbers: 

Weak 

Law

Strong

Law



Importance Sampling

Can we estimate          without sampling p(z)?

Monte Carlo estimate over samples                     from proposal q(z):

Key: We can sample from an “easy” distribution q(z) instead!

q(z) is an easy-to-sample

proposal distribution



Importance Sampling

IS weights are the ratio of target / proposal distributions:

where

But we often do not know the normalizer of the target distribution,

where

Can only evaluate unnormalized target

Can we evaluate IS estimate in terms of unnormalized weights?

Yes!  Let’s see how…



Importance Sampling (Normalized)

Recall, the importance sampling estimate is given by,

With normalized target and proposal distributions, respectively:

Substitute and pull out ratio of normalizers,

Easy to computeNeed to compute this…



Importance Sampling (Normalized)

Idea Compute importance sampling estimate of target normalizer:

Typically we have normalized proposal q(z) so Zq=1 and,

Where      are our unnormalized importance weights,

We can compute this!



Given samples                   we can write the IS estimate as, 

Importance Sampling (normalized)

where

The ratio of normalizers is approximated by normalized weights,

Substituting the normalized weights yields,



1. Simulate from an “easy” distribution

Importance Sampling On-A-Slide

[ Source: Bishop ]

2. Compute importance weights & normalize

3. Compute importance-weighted expectation

Note There is no 1/N term since it is

part of the normalized IS weights



Selecting Proposal Distributions

Target Distribution Good Proposal Poor Proposal

Kernel or Parzen window estimators

interpolate to predict density:



Q: What is a good proposal distribution?

A: Minimize estimator variance

Importance Sampling

e.g. for N-dim. X and Gaussian q(x):

Minimum variance obtained when,

Estimator variance scales catastrophically with dimension:

E.g. can do better

than q=p [ Source: Bishop ]



Selecting Proposal Distributions

• For a toy one-dimensional, heavy-tailed target distribution:

Gaussian Proposal Cauchy (Student’s-t) Proposal

Empirical variance of weights may not predict estimator variance!

• Always (asymptotically) unbiased, but variance of estimator can 

be enormous unless weight function bounded above: 

Samples (L) Samples (L)



Monte Carlo Methods Summary

Importance Sampling

Rejection sampling
• Choose q such that:

• Sample q(z) and keep with probability:

Pro: Efficient, easy to implement

Con: Acceptance rate evaporates as dimension increases

Pro: Efficient, easy to implement

Con: Variance grows exponentially in dimension



Outline

•  Monte Carlo Estimation

•  Markov Chain Monte Carlo



See separate MCMC slides…



Monte Carlo Methods Summary

•  Simulation:

•  Compute expectations:

•  Optimization:

•  Compute normalizer / marginal likelihood:

Rejection sampling, MCMC

Importance sampling or 

any simulation method

Simulated annealing

Reverse importance sampling (Did not cover)



Monte Carlo Methods Summary

• In complex models we often have no other choice than to simulate 
realizations

• Rejection sampler choose proposal/constant s.t. 

• Monte carlo estimate via independent samples                      ,

• Unbiased

• Consistent

• Law of large numbers

• Central limit theorem (if f is finite variance)



Monte Carlo Methods Summary

• Importance sampling estimate over samples                      ,

• Avoids simulation of p(z) but variance scales exponentially with dim.

• Sequential importance sampling extends IS for sequence models, with 
proposal given by dynamics,

• Resampling step necessary to avoid weight degeneracy

Importance Weights

Proposal

Recursively update weights
“Bootstrap” Particle Filter



Monte Carlo Methods Summary

• Lots of other methods to explore…
• Hamiltonian Monte Carlo

• Slice Sampling

• Reversible Jump MCMC (and other transdimensional samplers)

• Parallel Tempering

• Some good resources if you are interested…
Neal, R. “Probabilistic Inference Using Markov Chain Monte Carlo Methods”, U. Toronto, 1993

MacKay, D. J. “Introduction to Monte Carlo Methods”, Cambridge U., 1998

Andrieu, C., et al., “Introduction to MCMC for Machine Learning”, 2001
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