One reason to sample a distribution is to approximate expected values under that distribution...

Expected value of function f(x) w.r.t. distribution p(x) given by,

$$\mathbb{E}_p[f(x)] = \int p(x)f(x) \, dx \equiv \mu$$

- Doesn't always have a closed-form for arbitrary functions
 Suppose we have iid samples: {x_i}^N_{i=1} ~ p(x)
- > Monte Carlo estimate of expected value,

$$\hat{\mu}_N = \frac{1}{N} \sum_{i=1}^N f(x_i) \approx \mathbb{E}_p[f(x)]$$

Samples must be independent!

Markov chain Monte Carlo methods

- The approximations of expectation that we have looked at so far have assumed that the samples are independent draws.
- This sounds good, but in high dimensions, we do not know how to get good independent samples from the distribution.
- MCMC methods drop this requirement.
- Basic intuition
 - If you have finally found a region of high probability, stick around for a bit, enjoy yourself, grab some more samples.

Markov chain Monte Carlo methods

- Samples are conditioned on the previous one (this is the Markov chain).
- MCMC is often a good hammer for complex, high dimensional, problems.
- Main downside is that it is not "plug-and-play"
 - Doing well requires taking advantage to the structure of your problem
 - MCMC tends to be expensive (but take heart---there may not be any other solution, and at least your problem is being solved).
 - If there are faster solutions, you can incorporate that (and MCMC becomes a way to improve/select these good guesses).

Metropolis Algorithm

We want samples $z^{(1)}, z^{(2)}, \dots$

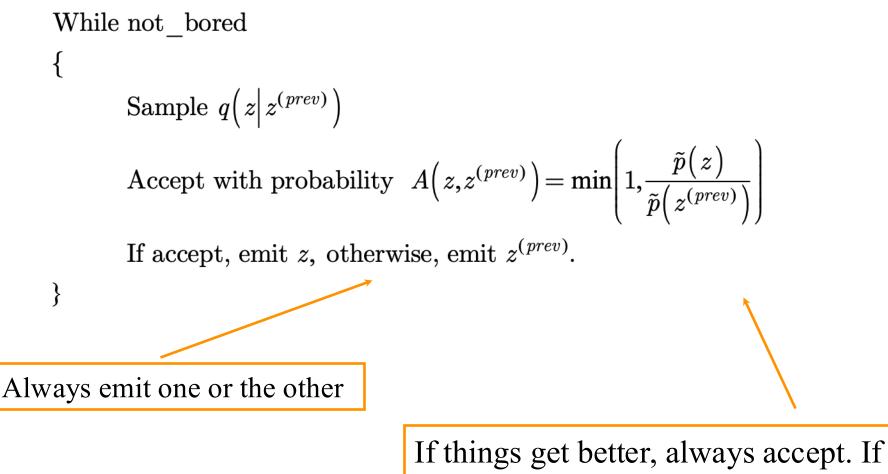
Again, write $p(z) = \tilde{p}(z)/Z$

Assume that $q(z|z^{(prev)})$ can be sampled easily

Also assume that $q(\)$ is symmetric, i.e., $q(z_A|z_B) = q(z_B|z_A)$

For example,
$$q(z|z^{(prev)}) \sim \mathbb{N}(z; z^{(prev)}, \sigma^2)$$

Metropolis Algorithm



they get worse, sometimes accept.

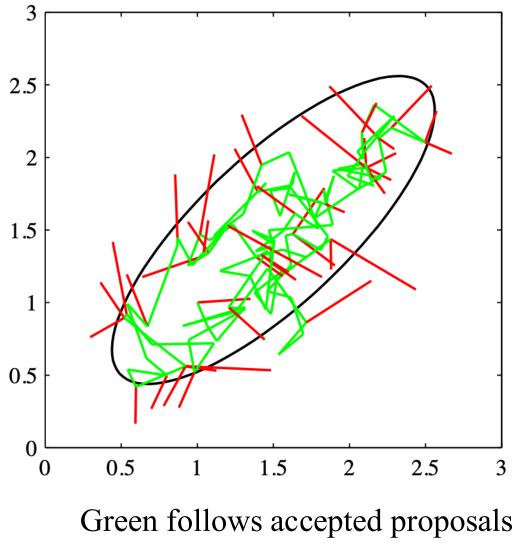
Metropolis Algorithm

Note that

$$A\left(z, z^{(prev)}\right) = \min\left(1, \frac{\tilde{p}(z)}{\tilde{p}(z^{(prev)})}\right) = \min\left(1, \frac{p(z)}{p(z^{(prev)})}\right)$$

So we do not need to normalize p(z)

Metropolis Example



Red are rejected moves.

Markov chain view

Denote an initial probability distribution by $p(z^{(1)})$

Define transition probabilities by: $T(z^{(prev)}, z) = p(z|z^{(prev)})$ (a probability distribution)

T can change over time, but for now, assume that it it is always the same (homogeneous chain)

A given chain evolves from a sample of $p(z^{(1)})$, and is an instance from an essemble of chains.

Markov Chain Monte Carlo (MCMC)

Stochastic 1st order Markov process with transition kernel: $T(z^{(t)} \mid z^{(t-1)})$ $z^{(t-1)} \rightarrow z^{(t)} \rightarrow z^{(t+1)} \rightarrow \cdots$

> Each $z^{(t)}$ full N-dimensional state vector

- \blacktriangleright MCMC samples..., $z^{(t-1)}, z^{(t)}, z^{(t+1)}, \dots$ not independent
- > New superscript notation indicates dependence:

$$\{z^{(\ell)}\}_{\ell=1}^L$$

$$\{z^{(t)}\}_{t=1}^T$$

Independent

Dependent

Key Question: How many MCMC samples T are needed to draw L independent samples from p(x)?

Stationary Markov chains

- Recall that our goal is to have our Markov chain emit samples from our **target distribution** p(z).
- This implies that the distribution being sampled at time *t*+1 would be the same as that of time *t* (**stationary**).
- If our stationary (target) distribution is *p()*, then if we imagine an ensemble of chains, they are in each state with (long-run) probability *p()*.
 - On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the percentage of states would not be stable.

Markov Chain Monte Carlo (MCMC)

Stochastic 1st order Markov process with transition kernel: $T(z^{(t)} \mid z^{(t-1)})$ $z^{(t-1)} \rightarrow z^{(t)} \rightarrow z^{(t+1)} \rightarrow \cdots$ E.g. Let, $T = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0.1 & 0.9 \\ 0.6 & 0.4 & 0 \end{bmatrix}$

> Initial state distribution: $\mu(z^{(1)}) = (0.5, 0.2, 0.3)$

► Repeated transitions converge to target $\mu(z^{(1)}) \cdot T \cdot T \cdot \dots T = (0.2, 0.4, 0.4) = p(z)$

True for <u>any</u> initial state distribution How can we formalize this? [Source: Andrieu et al.]

 Z_3

0.4

0.6

Z1

Ergodic chains

- Different starting probabilities will give different chains
- We want our chains to converge (in the limit) to the same stationary state, regardless of starting distribution.
- Such chains are called ergodic, and the common stationary state is called the equilibrium state.
- Ergodic chains have a unique equilibrium.

When do our chains converge?

- Important theorem tells us that for finite state spaces* our chains converge to equilibrium under two relatively weak conditions.
 - (1) Irreducible
 - We can get from any state to any other state
 - (2) Aperiodic
 - The chain does not get trapped in cycles
- These are true for detailed balance (there exists a stationary state) with T>0 (you can get there).
 - Detailed balance is sufficient, but not necessary for convergence—it is a stronger property than (1) & (2)

*Infinite or uncountable state spaces introduces additional complexities, but the main thrust is similar.

MCMC so far

- Under reasonable conditions (ergodicity) ensembles of chains over discretized states converge to an equilibrium state (stationary distribution)
- Easiest way to prove (or check) that this is the case is to show **detailed balance** and use T>0 (sufficient but not necessary)
- There is a nice analogy with powers of stochastic matrices, which converge to an operator based on the largest magnitude eigenvector (with |eigenvalue|=1)
- In theory, to use MCMC for sampling a distribution, we simply need to ensure that our target distribution is the equilibrium state.
- In practice we do not know even know if we have visited the best place yet. (The ensemble metaphor runs into trouble if you have a small number of chains compared to the number of states).

MCMC Theory vs. Practice

- The time it takes to get reasonably close to equilibrium (where samples come from the target distribution) is called "burn in" time.
 - I.E., how long does it take to forget the starting state.
 - There is no general way to know when this has occurred.
- The average time it takes to visit a state is called "hit time".
- What if we really want independent samples?
 - In theory we can take every Nth sample (some theories about how long to wait exist, but it depends on the algorithm and distribution).

MCMC for ML in practice

- We use MCMC for machine learning problems with very complex distributions over high dimensional spaces.
- Variables can be either discrete or continuous (often both)
- Despite the gloomy worst case scenario, MCMC is often a good way to find good solutions (either by MAP or integration).
 - Key reason is that there is generally structure in our distributions.
 - We need to exploit this knowledge in our proposal distributions.
 - Instead of getting hung up about whether you actually have convergence
 - Enjoy that fact that what you are doing is principled and can improve any answer (with respect to your model) that you can get by other means
 - Your model should be able to tell you which proposed solution are good.

Beyond the Metropolis Method

Metropolis requires the proposal to be symmetric,

$$q(z' \mid z) = q(z \mid z')$$

This often results in a chain that takes a long time to converge to a stationary distribution (long burn in time)

Example The most common proposal (Gaussian),

$$q(z' \mid z) = \mathcal{N}(z' \mid z, \sigma^2 I)$$

exhibits random walk dynamics that are inefficient

Metropolis-Hastings relaxes this symmetry requirement...

Metropolis-Hastings MCMC method

```
While not_bored

{

Sample q(z|z^{(prev)})

Accept with probability A(z, z^{(prev)}) = \min\left(1, \frac{\tilde{p}(z)q(z^{(prev)}|z)}{\tilde{p}(z^{(prev)})q(z|z^{(prev)})}\right)

If accept, emit z, otherwise, emit z^{(prev)}.
```

Metropolis-Hastings comments

- Again it does not matter if we use unnormalized probabilities in the M-H acceptance ratio A(z,z')
- It should be clear that the Metropolis method (where q() is symmetric) is a special case of M-H
- q(z'|z) can be anything, but you need to specify the reverse move q(z|z'), which can be tricky

MCMC So Far...

Metropolis Algorithm

- Sample RV from proposal $z \sim q(z \mid z^{(\text{prev})})$
- Proposal must be symmetric $q(z \mid z^{(\text{prev})}) = q(z^{(\text{prev})} \mid z)$
- Accept with probability $\min \{1, \widetilde{p}(z) \div \widetilde{p}(z^{(\text{prev})})\}$

Metropolis-Hastings Algorithm

- Proposal does not have to be symmetric
- Accept with probability

$$\min\left\{1, \frac{\widetilde{p}(z)q(z^{(\text{prev})} \mid z)}{\widetilde{p}(z^{(\text{prev})})q(z \mid z^{(\text{prev})})}\right\}$$

Both methods require choosing proposal, which can be hard

Combined samplers

Different samplers fail in different ways, so combine them...

- 1. Initialise $x^{(0)}$.
- 2. For i = 0 to N 1
 - Sample $u \sim \mathcal{U}_{[0,1]}$.
 - $-\quad \text{If } u<\nu$

Apply the MH algorithm with a global proposal.

– else

Apply the MH algorithm with a random walk proposal.

... can also combine with Gibbs proposals

Mixing MCMC Kernels

Can do this more generally....

Consider a set of MCMC kernels T_1, T_2, \ldots, T_K all having target distribution p(x) then the mixture:

$$T = \sum_{k=1}^{K} \pi_k T_k$$
 Mixing weights

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:

- 1. Sample $k \sim \pi$
- 2. Sample $x^{(t+1)} \sim T_k(x \mid x^{(t)})$

Inference (and related) Tasks

• Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- Optimization: $x^* = \arg \max_{x} f(x)$

• Compute normalizer: $Z = \int f(x) \, dx$

Inference (and related) Tasks

• Simulation:
$$x \sim p(x) = \frac{1}{Z}f(x)$$

- Compute expectations: $\mathbb{E}[\phi(x)] = \int p(x)\phi(x) dx$
- Optimization: $x^* = \arg \max_x f(x)$

• Compute normalizer: $Z = \int f(x) \, dx$

- Analogy with physical systems
- Relevant for optimization (not integration)
- Powers of probability distributions emphasize the peaks
- If we are looking for a maximum within a lot of distracting peaks, this can help.

- Define a temperature T, and a cooling schedule (black magic part)
- Lower temperatures correspond to emphasized maximal peaks.
 - Hence we exponentiate by (1/T).
- The terminology makes sense because the number of states accessible to a physical system decreases with temperature.

- 1. Initialise $x^{(0)}$ and set $T_0 = 1$.
- 2. For i = 0 to N 1
 - Sample $u \sim \mathcal{U}_{[0,1]}$.

Basically M-H but we are *annealing* target distribution with temperature T

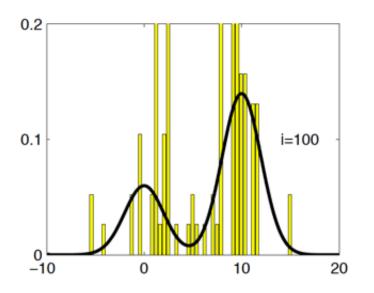
- Sample
$$x^* \sim q(x^*|x^{(i)})$$
.

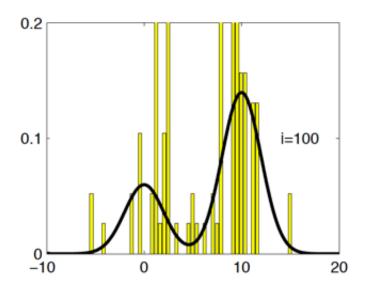
$$- \quad \text{If } u < \mathcal{A}(x^{(i)}, x^{\star}) = \min\left\{1, \frac{p^{\frac{1}{T_i}}(x^{\star})q(x^{(i)}|x^{\star})}{p^{\frac{1}{T_i}}(x^{(i)})q(x^{\star}|x^{(i)})}\right\}$$
$$x^{(i+1)} = x^{\star}$$

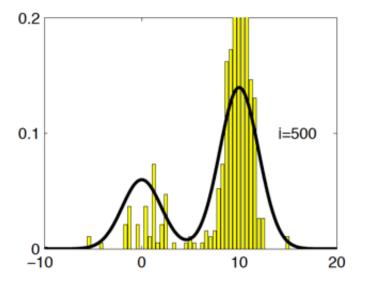
else

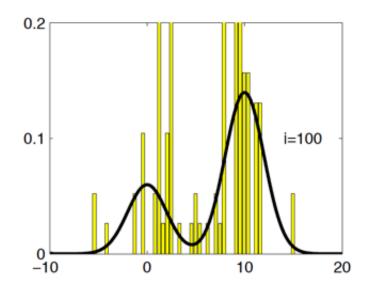
$$x^{(i+1)} = x^{(i)}$$

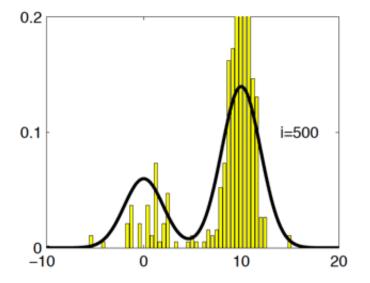
- Set T_{i+1} according to a chosen cooling schedule.

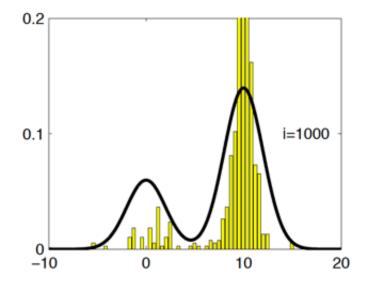


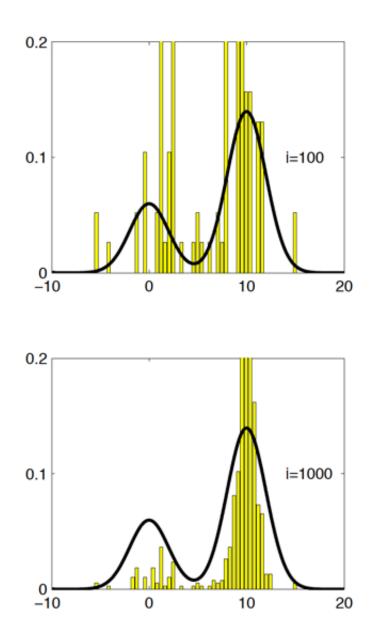


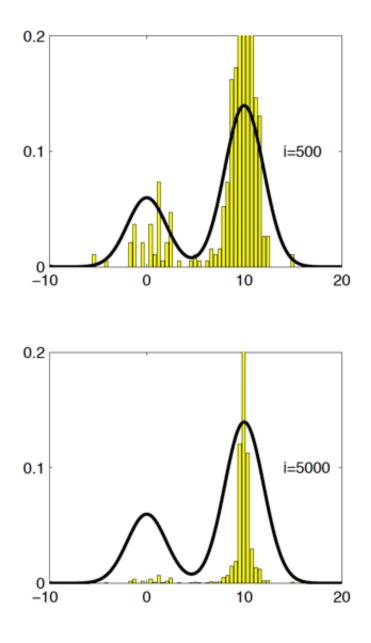












⁽From Andrieu et al)

Let annealing distribution at temp τ be given by:

$$p_{\tau}(x) \propto (f(x))^{1/\tau}$$

As $\tau \rightarrow 0$ we have:

 $\lim_{\tau \to 0} p_{\tau}(x) = \delta(x^*) \quad \text{where} \quad x^* = \arg \max_{x} f(x)$

Simulated Annealing (SA) for Global Optimization: Annealing schedule $\tau_0 \ge \ldots \ge \tau_t \ge \ldots \ge 0$ 1. Sample $x^{(t)}$ from MCMC kernel T_t with target $p_{\tau_t}(x)$

- 2. Set τ_{t+1} according to annealing schedule

SA for Convergence: $\tau_0 \geq \ldots \geq 1$ Final temperature = 1

MCMC Summary

- Markov chain induced by MCMC transition kernel T(z,z')
- Converges to stationary distribution iff chain is ergodic
 - Chain is ergodic if it is irreducible (can get from any z to any z') and aperiodic (doesn't get trapped in cycles)
- Easier to prove **detailed balance**, which implies ergodicity

$$p(z)T(z,z') = p(z')T(z',z)$$

 Metropolis algorithm samples from symmetric proposal q(z'|z) and accepts sample z' with probability,

$$A = \min\left(1, \frac{\widetilde{p}(z')}{\widetilde{p}(z)}\right)$$

MCMC Summary

 Metropolis-Hastings allows non-symmetric proposal q(z'|z) and accepts sample z' with probability,

$$A = \min\left(1, \frac{\widetilde{p}(z')}{\widetilde{p}(z)} \frac{q(z \mid z')}{q(z' \mid z)}\right)$$

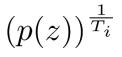
• Gibbs sampler on random vector $z = (z_1, \ldots, z_d)^T$ successively samples from *complete conditionals*,

$$z_1^{\text{new}} \sim p(z_1 \mid z_2^{\text{old}}, \dots, z_d^{\text{old}})$$
$$z_2^{\text{new}} \sim p(z_2 \mid z_1^{\text{new}}, z_3^{\text{old}}, \dots, z_d^{\text{old}})$$
$$\dots$$
$$z_d^{\text{new}} \sim p(z_d \mid z_1^{\text{new}}, \dots, z_{d-1}^{\text{new}})$$

• Gibbs is instance of M-H that *always accepts*

MCMC Summary

 Simulated annealing adjusts target distribution at each stage with temperature T



- For decreasing temperatures $\lim T_i \to 0$ support of target approaches set of global maximizers
 - Convenient to use for global maximization
 - Can prove that this will find the global maximum in the limit (need to wait for the heat death of the universe, however...)
- For increasing temp ending at $\lim T_i \to 1$ approaches p(x)
 - Helps avoid getting stuck in local optima