
CSC580: Principles of Machine Learning

Final Exam Review

Jason Pacheco



Final Exam

• Similar format to Midterm but take-home

• Some students need to take it early so I will release at the 
start of next week

• 6+1 Questions
• 1 of these is only for CSC580 students

• No coding



Learning



Learning / Training

Model random data with hyperparameters   :

y2y1

Sometimes we use:

Given training data:

Learn parameters, e.g. via maximum likelihood estimation:

Other estimators are possible:
• Maximum a posteriori (MAP)

• Minimum mean squared error (MMSE)

• Etc.

We will talk more

about MLE in 

coming weeks



Likelihood (Intuitively)

Suppose we observe N data points from a Gaussian 
model and wish to estimate model parameters…

High
Likelihood

Low
Likelihood (mean)

Low
Likelihood (variance)

Likelihood Principle Given a statistical model, the likelihood function 
describes all evidence of a parameter that is contained in the data.



Likelihood Function

• We call this the likelihood function, often denoted 

• It is a function of the parameter   , the data are fixed

• Measures how well parameter    describes data (goodness of fit)

Suppose                   , then what is the joint probability over N 
independent identically distributed (iid) observations                 ?

How could we use this to estimate a parameter    ?



Maximum Likelihood

Maximum Likelihood Estimator (MLE) as the name suggests, 
maximizes the likelihood function.

Question How do we find the MLE?

Answer Remember calculus…

Is            convex?

Unique, closed-
form solution

Gradient-based
optimization

Yes

No

Approach

• Compute derivative

• Set to zero and solve

Still have to compute 
derivative…



Maximum Likelihood

Maximizing log-likelihood makes the math easier (as we will see) and 
doesn’t change the answer (logarithm is an increasing function)

Derivative is a linear operator so,

MLE

One term per data point

Can be computed in parallel 

(big data)



Maximum Likelihood
[ Source: Wasserman, L. 2004 ]

Likelihood function for Bernoulli 
with n=20 and                  heads

Example Suppose we have N coin 
tosses with                                           but 
we don’t know the coin bias  .  The 
likelihood function is,

where                  .  The log-likelihood is,

Set the derivative of                  to zero and solve,

Maximum likelihood is 

equivalent to sample 

mean in Bernoulli



K-Means Clustering





Clustering

• Input: 𝑘: the number of clusters (hyperparameter)

                𝑆 = {𝑥1, … , 𝑥𝑛}

• Output

• partition 𝐺𝑖 𝑖=1
𝑘    s.t. 𝑆 = ∪𝑖 𝐺𝑖  (disjoint union).

• often, we also obtain ‘centroids’

• Q: what would be a reasonable definition of centroids?

12



𝑘-means clustering

• Idea: to partition the data, it would be great if someone gives us 𝑘 reasonable centroids 𝑐1, … , 𝑐𝑘, 
since then we can partition the data with them.

• But we don’t have those centroids => Let’s find them with an optimization formulation.

    minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2

13

𝐴 𝑥 = arg min
𝑗∈[𝑘]

𝑥 − 𝑐𝑗 2



Special case: 𝑘=1

• min
𝑐1,…,𝑐𝑘

σ𝑖=1
𝑛 min

𝑗∈[𝑘]
𝑥𝑖 − 𝑐𝑗 2

2
 =>  min

𝑐
σ𝑖=1

𝑛 𝑥𝑖 − 𝑐 2
2

• Let 𝐹 𝑐 = σ𝑖=1
𝑛 𝑥𝑖 − 𝑐 2

2 convex; minimizer 𝑐∗ satisfies that ∇𝐹 𝑐∗ = 0

    => σ𝑖=1
𝑛 𝑥𝑖 − 𝑐∗ = 0 => 𝑐∗ =

1

𝑛
σ𝑖=1

𝑛 𝑥𝑖

14



For 𝑘 ≥ 2

• minimize
𝑐1,…,𝑐𝑘

𝑓(𝑐1, … , 𝑐𝑘), where 𝑓 𝑐1, … , 𝑐𝑘 = σ𝑖=1
𝑛 min

𝑗∈ 𝑘
𝑥 − 𝑐𝑗 2

2
  =>  NP-hard even when 𝑑 = 2

• K-means algorithm: solve it approximately (heuristic)

• Observation: The chicken-and-egg problem.

• Cluster center location depends on the cluster assignment

• Cluster assignment depends on cluster location

• Very common heuristic (that may or may not be the best thing to do)

15

(Also called Lloyd’s algorithm)

Andrea Vattani, “the hardness of k-means clustering in the plane”



Initialization

16

Arbitrary/random initialization of 𝑐1 and 𝑐2



Iteration 1

17

(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 2

18

(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 3

19

(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



Iteration 4

20

(A) update the cluster assignments. (B) Update the centroids {𝑐𝑗}



K-means clustering

21

Input: 𝑘: num. of clusters, 𝑆 = {𝑥1, … , 𝑥𝑛}

[Initialize] Pick 𝑐1, … , 𝑐𝑘  as randomly selected points from 𝑆 (see next slides for alternatives)

For t=1,2,…,max_iter

• [Assignments] ∀𝑥 ∈ 𝑆,  𝑎𝑡(𝑥) = arg min
𝑗∈[𝑘]

𝑥 − 𝑐𝑗 2

2

• If t ≠ 1 AND 𝑎𝑡 𝑥 = 𝑎𝑡−1 𝑥 , ∀𝑥 ∈ 𝑆

• break

• [Centroids]       ∀𝑗 ∈ 𝑘 , 𝑐𝑗 ← average 𝑥 ∈ 𝑆: 𝑎𝑡(𝑥)  = 𝑗  

Output: 𝑐1, … , 𝑐𝑘  and 𝑎𝑡 𝑥𝑖 𝑖∈[𝑛]



22

Dimensionality Reduction 
and Principal Component Analysis (PCA)



Motivation
Data often have a lot of redundant information…

Example A dataset consisting of a hand-drawn 3 at random locations 
and rotations in a 100x100 pixel image.

Data Dimension 100 x 100 = 10,000

Intrinsic Dimension 3 (X-position, Y-position, Rotation)
[ Source: Bishop, C. ]



Example : Iris Dataset
Recall that the Iris dataset has 4 features: 

sepal length / width, petal length / width…



Example : Iris Dataset

Data still cluster in a two-
dimensional subspace

We can fit model in 2D to 
reduce complexity, visualize 

results, etc.



Linear Dimensionality Reduction

Project data onto a line or plane…

…one of the simplest dimensionality 
reduction approaches

First, let’s review some linear 
algebra…

[ Source: Bishop, C. ]



Linear Dimensionality Reduction

Projecting data onto a vector is a simple 
inner product,

[ Source: Bishop, C. ]

We call u the linear subspace



Linear Dimensionality Reduction

Which choice of subspace is best?  And why?

Idea Choose the subspace that captures the most 
variation in the original data



Principal Component Analysis (PCA)
Identify directions of maximum variation as subspaces…

…we call each direction a principal component
[ Source: Bishop, C. ]



Principal Component Analysis (PCA)

First, center the data by subtracting the sample mean,

Variance of projected subspace,

Projection of
nth data point

Projection of
mean



Maximum Variance Formulation

A little algebra…

Pull out u

Quadratic form

Define:                                                    

Then:

This is what we will
optimize over u



Maximum Variance Formulation

Don’t want to cheat with large magnitude u, so we add penalty,

Find u so that projected variance is maximal…

Set the derivative (gradient) to zero and solve…

What equation is this?

u is an eigenvector with
eigenvalue    



Recap of Concepts

•  Learning a reduced intrinsic dimension is useful for a bunch of reasons

•  The easiest approach is to find a linear subspace

•  PCA defines the linear subspace as that which maximizes variance of the 
projected data

•  The set of subspaces are defined by the eigenvectors,



Eigenstuff

Eigenvectors / values of a matrix solve the equation

• Matrix S may have multiple eigenvectors / values that solve the above 
equation

• For D-dimensional u can find all vectors in O(D3) time

• PCA finds M<D vectors with largest eigenvalues

• Can find M<D sorted eigenvectors in O(MD2) time 

• Note that D can be large!



Principal Component Analysis (PCA)
How much variance is captured by just the first principal component (i.e. 

eigenvector with largest eigenvalue)?

[ Source: Bishop, C. ]

Let      be the first principal component, then 
variance of first PC is,

How much in the second PC?



Explained Variance
How much variance is captured in M < D principal components?

We call this the explained variance of 
the first M principal components

Divide by total variance to find 
percentage of the total variance 

explained by the subspace
[ Source: Bishop, C. ]



Neural Networks



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer
perceptrons

Hidden layer
perceptrons

This is the quintessential Neural Network…

…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology (MNIST) 
database contains 60k training and 

10k test images

Each character is centered in a 
28x28=784 pixel grayscale 

image



Multilayer Perceptron for MNIST Classification
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a
number in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure
Each node computes a weighted 

combination of nodes at the 
previous layer…

Then applies a nonlinear function 
to the result

Often, we also introduce
a constant bias parameter



Multilayer Perceptron
Final layer is typically a linear 

model…for classification this is a 
Logistic Regression

Recall that for multiclass logistic 
regression with K classes,

Vector of activations from
previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact on 
the output…need to tweak (learn) all 

parameters simultaneously to 
improve prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk


Convolutional neural networks (CNN)
• A.K.A. ConvNet architecture

• A set of neural network architecture that consists of

• convolutional layers

• pooling layers

• fully-connected (FC) layers

44(Stanford CS231n)



Convolution for single-channel images
Consider one filter with weights {𝑤𝑖,𝑗} with size F x F

• For every F x F region of the image, perform inner product (= element wise product, 
then sum them all) 

• Q: given a w x h image, after convolution with a F x F filter, what is the size of the 
resulting image?

• Terminologies: filter size, receptive field size, kernel.

45Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

https://arxiv.org/abs/1603.07285


Define the convolution of filter f on image I as: 

𝐼 ∗ 𝑓 𝑥 = 

𝑚



𝑛

𝑓 𝑥 − 𝑚, 𝑦 − 𝑛 𝐼(𝑚, 𝑛)

Convolution: Some Intuition

46

Many ML libraries actually implement cross-correlation:

𝑓 ∗ 𝐼 𝑥 = 

𝑚



𝑛

𝑓 𝑥, 𝑦 𝐼(𝑥 + 𝑚, 𝑦 + 𝑛)

Learning finds good values for the convolution filter…



Convolutional layer for multi-channel images

Input: w (width) x h (height) x c (#channels)
• E.g. 32 x 32 x 3

• 3 channels: R, G, and B

A convolutional filter on such image is of shape F 
x F x c

• Only spatial structure in the first two dimensions

• Denoted by {𝑤𝑖,𝑗,𝑘} 

47image from Stanford CS231n



Convolutional layer: visual explanation
• Consider one filter with weights {𝑤𝑖,𝑗,𝑘} with 5 x 5 x 3

• Imagine a sliding 3D window.

• Convolution:  For every 5 x 5 region of the image, perform inner product (= element wise product, 

then sum them all) 

• Then apply the activation function (e.g., ReLU)

• Results in 28 x 28 x 1 – called activation map.

• Now, we can do 𝐾 of these filters but with different weights {𝑤𝑖,𝑗,𝑘
(ℓ)

} for ℓ ∈ [𝐾] => output is 

28 x 28 x 𝐾

48(image from https://www.quora.com/Why-do-we-use-convolutional-layers)

filter weights

(depth=1 here)



Convolutional Layer: More Details
Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S. 

• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels
with value 0 around the input image on both sides

• To ensure the spatial dimension is maintained
(otherwise, patterns at the corners are not detected well)

• If we use P=1, then the activation map will be 30 x 30, 
not 28 x 28 in our example!

49
image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Example

image from https://medium.com/@ayeshmanthaperera/what-is-padding-in-cnns-71b21fb0dd7



Convolutional Layer: More Details
Stride length S

• Skip input regions; Move the sliding window of a filter not by 1 but by S. 

• E.g., S=2 means skipping every other 5 by 5 region.

Zero-padding P: add P number of artificial pixels with value 0 around the input 
image.

• To ensure the spatial dimension is maintained (otherwise, patterns at the corners are not detected 
well)

• If we use P=2, then the activation map will be 32 by 32 not 28 by 28 in our example!

Rules (same goes for height)

• W: input volume width,   F: filter width

• The output width K = floor((W – F + 2P)/S) + 1

• E.g., W=32, F=5, P=0, S=1     =>    K = 28

• E.g., W=32, F=5, P=2, S=1     =>    K = 32 51

(usually, the filter has the same width and height)



Strides and padding: animations

52Vincent Dumoulin, Francesco Visin - A guide to convolution arithmetic for deep learning

Strides only Padding only Strides + Padding

https://arxiv.org/abs/1603.07285




Supervised learning setup: putting it together

• Goal: design learning algorithm 𝒜 such that its output 𝑓 on 

   iid training data 𝑆 has low generalization error
54

supervised 

learning 

algorithm 

𝒜

predictor 

𝒇

𝑓(𝑥)

training

test

𝐷

, 

cat

ℓ 𝑦, 𝑓(𝑥)

𝑦𝑥

Generalization error: 𝐿𝐷(𝑓) =  E 𝑥,𝑦 ∼𝐷 ℓ 𝑦, 𝑓(𝑥)

training data 𝑆 



𝑘-nearest neighbors (𝑘-NN): main concept

Training set: 𝑆 = { 𝑥1, 𝑦1 , … , 𝑥𝑚, 𝑦𝑚 }

Inductive bias: given test example 𝑥, its label should resemble the 
labels of nearby points

Function
• input: 𝑥

• find the 𝑘 nearest points to 𝑥 from 𝑆; call their indices 𝑁(𝑥)

• output: the majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)}
• For regression, the average.

55



k-NN classification example

56

decision boundary



𝑘-NN classification: pseudocode

• Training is trivial: store the training set

• Test: 

• Time complexity (assuming distance calculation takes 𝑂(𝑑) time) 

• 𝑂 𝑚 𝑑 + 𝑚 log 𝑚 + 𝑘 = 𝑂 𝑚 𝑑 + log 𝑚

• Faster nearest neighbor search: k-d trees, locality sensitive hashing

57

list

append to list

sort in first coordinate

Majority vote of {𝑦𝑖: 𝑖 ∈ 𝑁(𝑥)} 



Variations

• Classification
• Recall the majority vote rule: ො𝑦 = arg max

𝑦∈{1,…,𝐶}
σ𝑖∈𝑁 𝑥 1{𝑦𝑖 = 𝑦}

• Soft weighting nearest neighbors: ො𝑦 = arg max
𝑦∈{1,…,𝐶}

σ𝑖=1
𝑚 𝑤𝑖 1{𝑦𝑖 = 𝑦},

    where 𝑤𝑖 ∝ exp(−𝛽 𝑑(𝑥, 𝑥𝑖)), or  ∝
1

1+𝑑 𝑥,𝑥𝑖
𝛽

• Class probability estimates 

• 𝑃 𝑌 = 𝑦 𝑥 =
1

𝑘
σ𝑖∈𝑁 𝑥 1{𝑦𝑖 = 𝑦}

• Useful for “classification with rejection”

58



Inductive Bias

Training

59

How would you label the test examples?

Test



Overfitting vs Underfitting

Source: ibm.com



Bayes optimal classifier

Theorem 𝑓𝐵𝑂 achieves the smallest 0-1 error among all classifiers.

61

𝑓𝐵𝑂 𝑥 = arg max
𝑦∈𝒴

𝑃𝐷(𝑋 = 𝑥, 𝑌 = 𝑦) = arg max
𝑦∈𝒴

𝑃𝐷 𝑌 = 𝑦 𝑋 = 𝑥) , ∀𝑥 ∈ 𝒳

Iris Setosa

Example Iris dataset classification:

Iris Versicolor Iris Virginica



Bayes error rate: alternative form

𝐿𝐷 𝑓𝐵𝑂 = 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑋

               = σ𝑥 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑥 ∣ 𝑋 = 𝑥 𝑃𝐷 𝑋 = 𝑥

               = σ𝑥(1 − 𝑃𝐷 𝑌 = 𝑓𝐵𝑂 𝑥 ∣ 𝑋 = 𝑥 ) 𝑃𝐷(𝑋 = 𝑥)

               = σ𝑥 1 − max
𝑦

 𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋 = 𝑥 𝑃𝐷 𝑋 = 𝑥

               = E 1 − max
𝑦

 𝑃𝐷 𝑌 = 𝑦 ∣ 𝑋

• Special case: binary classification 
• 𝐿𝐷 𝑓𝐵𝑂 = σ𝑥 𝑃𝐷 𝑌 ≠ 𝑓𝐵𝑂 𝑥 , 𝑋 = 𝑥

                    = σ𝑥 min( 𝑃𝐷 𝑌 = +1, 𝑋 = 𝑥 , 𝑃𝐷 𝑌 = −1, 𝑋 = 𝑥 )

62



When is the Bayes error rate nonzero?

• Limited feature representation  

• Noise in the training data
• Feature noise

• Label noise

• Sensor failure

• Typo in reviews for sentiment classification

• May not be a single “correct” answer

• Inductive bias of the model / learning algorithm

63

𝐿𝐷 𝑓𝐵𝑂 = 

𝑥

min( 𝑃𝐷 𝑌 = +1, 𝑋 = 𝑥 , 𝑃𝐷 𝑌 = −1, 𝑋 = 𝑥 )



New measures of classification performance

• True positive rate (TPR) 

    = 
TP

P
=

𝑃( ො𝑦=+1,𝑦=+1)

𝑃(𝑦=+1)

    (aka recall, sensitivity)

• True negative rate (TNR) = 
TN

N

    (specificity)

• False positive rate (FPR) = 
FP

N

• False negative rate (FNR) = 
FN

P

• Precision = 
TP

P−𝑐alled
=

𝑃( ො𝑦=+1,𝑦=+1)

𝑃( ො𝑦=+1)
, P − 𝑐alled = TP + FP

64

P = TP + FN N = FP + TN

Type I error

Type II error



Linear Regression

Regression Learn a function that 
predicts outputs from inputs,

Linear Regression As the name 
suggests, uses a linear function:

Outputs y are real-valued

INPUT: X

O
U

T
P

U
T
: 

Y

We will add noise later…



Linear Regression

Input-output mapping is not exact, so we will add 
zero-mean Gaussian noise,

INPUT: X

O
U

T
P

U
T
: 

Y

where

Multivariate Normal

(uncorrelated)

This is equivalent to the likelihood function,

Because Adding a constant to a Normal RV is still a Normal RV,

In the case of linear regression           and  



Great, we’re done right?

We need to fit it to 
data by learning the 
regression weights

Don’t know these; 

need to learn them

Data – We have this

Random; Can’t do 

anything about it

How to do this?  
What makes good 

weights?



Learning Linear Regression Models

There are several ways to think about fitting regression:

•  Intuitive Find a plane/line that is close to data

•  Functional Find a line that minimizes the least squares loss

•  Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



Learning Linear Regression Models

There are several ways to think about fitting regression:

•  Intuitive Find a plane/line that is close to data

•  Functional Find a line that minimizes the least squares loss

•  Estimation Find maximum likelihood estimate of parameters

They are all the same thing…



MLE for Linear Regression

INPUT: X

O
U

T
P

U
T
: 

Y

Recall that the likelihood is Gaussian:

Given training data                     likelihood function 
is given by,

So MLE maximizes the log-likelihood over the whole data as,



MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,
Variance is known

Log-likelihood function:

Constant doesn’t 

depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:

1) Drop constant terms (in   )

2) Minimize negative log-likelihood



MLE of Linear Regression

Substitute linear regression 
prediction into MLE solution 

and we have,

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/ 

So for Linear Regression, 
MLE = Least Squares 

Estimation

https://www.activestate.com/resources/quick-reads/how-to-run-linear-regressions-in-python-scikit-learn/


MLE of Linear Regression

Using previous results, MLE is equivalent to 
minimizing squared residuals,

[ Image: Murphy, K. (2012) ]

Some slightly more advanced linear algebra 
gives us a solution,

Ordinary Least Squares (OLS) solution

Derivation a bit involved for lecture but…

• We know it has a closed-form and why

• We can evaluate it

• Generally know where it comes from



Basis Functions

• A basis function can be any function of the input features X

• Define a set of m basis functions

• Fit a linear regression model in terms of basis functions,

• Regression model is linear in the basis transformations

• Model is nonlinear in the data X



Kernel Functions

A kernel function is an inner-product of some basis function 
computed on two inputs

A consequence is that kernel functions are non-negative real-
valued functions over a pair of inputs,

Kernel functions can be interpreted as a measure of 
distance between two inputs



Kernel Functions

Example Gaussian kernel models similarity according to an 
unnormalized Gaussian distribution,

Also called a radial basis function (RBF)

Note Despite the name,

this is not a Gaussian

probability density.

Example The linear basis                 produces the kernel,

It is often easier to directly specify the kernel rather than the 
basis function…



Kernel Functions

Given any set of data              a necessary and sufficient 
condition of a valid kernel function is that the nxn gram matrix, 

Is a symmetric positive semidefinite matrix.



Kernel Ridge Regression

Kernel representation requires inversion of NxN matrix

Primal Dual

MxM Matrix Inversion

O(M3)

NxN Matrix Inversion

O(N3)

Number of training data N greater than basis functions M


	Slide 1: CSC580: Principles of Machine Learning
	Slide 2: Final Exam
	Slide 3
	Slide 4: Learning / Training
	Slide 5: Likelihood (Intuitively)
	Slide 6: Likelihood Function
	Slide 7: Maximum Likelihood
	Slide 8: Maximum Likelihood
	Slide 9: Maximum Likelihood
	Slide 10
	Slide 11
	Slide 12: Clustering
	Slide 13: k-means clustering
	Slide 14: Special case: k=1
	Slide 15: For k 2
	Slide 16: Initialization
	Slide 17: Iteration 1
	Slide 18: Iteration 2
	Slide 19: Iteration 3
	Slide 20: Iteration 4
	Slide 21: K-means clustering
	Slide 22
	Slide 23: Motivation
	Slide 24: Example : Iris Dataset
	Slide 25: Example : Iris Dataset
	Slide 26: Linear Dimensionality Reduction
	Slide 27: Linear Dimensionality Reduction
	Slide 28: Linear Dimensionality Reduction
	Slide 29: Principal Component Analysis (PCA)
	Slide 30: Principal Component Analysis (PCA)
	Slide 31: Maximum Variance Formulation
	Slide 32: Maximum Variance Formulation
	Slide 33: Recap of Concepts
	Slide 34: Eigenstuff
	Slide 35: Principal Component Analysis (PCA)
	Slide 36: Explained Variance
	Slide 37
	Slide 38: Multilayer Perceptron
	Slide 39: Handwritten Digit Classification
	Slide 40: Multilayer Perceptron for MNIST Classification
	Slide 41: Feedforward Procedure
	Slide 42: Multilayer Perceptron
	Slide 43
	Slide 44: Convolutional neural networks (CNN)
	Slide 45: Convolution for single-channel images
	Slide 46: Convolution: Some Intuition
	Slide 47: Convolutional layer for multi-channel images
	Slide 48: Convolutional layer: visual explanation
	Slide 49: Convolutional Layer: More Details
	Slide 50: Example
	Slide 51: Convolutional Layer: More Details
	Slide 52: Strides and padding: animations
	Slide 53
	Slide 54: Supervised learning setup: putting it together
	Slide 55: k-nearest neighbors (k-NN): main concept
	Slide 56: k-NN classification example
	Slide 57: k-NN classification: pseudocode
	Slide 58: Variations
	Slide 59: Inductive Bias
	Slide 60: Overfitting vs Underfitting
	Slide 61: Bayes optimal classifier
	Slide 62: Bayes error rate: alternative form
	Slide 63: When is the Bayes error rate nonzero?
	Slide 64: New measures of classification performance
	Slide 65: Linear Regression
	Slide 66: Linear Regression
	Slide 67
	Slide 68: Learning Linear Regression Models
	Slide 69: Learning Linear Regression Models
	Slide 70: MLE for Linear Regression
	Slide 71: MLE of Gaussian Mean
	Slide 72: MLE of Linear Regression
	Slide 73: MLE of Linear Regression
	Slide 74: Basis Functions
	Slide 75: Kernel Functions
	Slide 76: Kernel Functions
	Slide 77: Kernel Functions
	Slide 78: Kernel Ridge Regression

