
Homework 3: Message Passing Inference

University of Arizona CSC 535: Probabilistic Graphical Models

Homework due at 11:59pm on October 19, 2016

We will examine marginal inference in graphical models. We will use factor graph represen-
tations to implement the sum-product variant of belief propagation (BP). In addition to the
material presented during lecture, the following resources will be helpful in understanding
details of the sum-product and max-product BP algorithms:

1. Secs. 20.1-20.2 of Kevin Murphy’s “Machine Learning: A Probabilistic Perspective”

2. Sec. 8.4 of Chris Bishop’s “Pattern Recognition and Machine Learning”

3. Kschischang, Frey, & Loeliger, IEEE Trans. Information Theory 47, pp. 498-519,
2001.

You must write your own implementation of each algorithm. You may not
copy code from other students or existing software packages.

Question 1:

For a graph with cycles the sum-product algorithm may not always compute the correct
marginal distributions. Here we explore the variable elimination algorithm, which is guar-
anteed to find exact marginals, albeit with additional computational expense. Consider the
undirected graphical model in Figure 1, which is a small example of the spatial lattices used
in computer vision applications.

a) Consider the elimination algorithm discussed in lecture, and in Sec. 20.3 of Murphy’s
textbook and Sec. 8.4.1 of Bishop’s textbook. Suppose we compute the marginal of node 1
via the following elimination ordering: {5, 2, 6, 8, 4, 9, 7, 3, 1}. What is the largest clique
that is produced?

b) Suppose we instead compute the marginal of node 1 via the following elimination ordering:
{9, 7, 3, 6, 8, 5, 2, 4, 1}. What is the largest clique that is produced? What is the order of
complexity for each elimination order? Which is order more efficient?

c) Using intuition from these examples, give an upper bound on the treewidth of an n × n
grid. Explain your answer, which should be much smaller than the number of nodes n2.

1



1 2 

4 5 

7 8 

3 

6 

9 

Figure 1: An undirected graphical model of two-dimensional spatial dependencies among nine
variables arranged in a 3× 3 grid. All variables are discrete, and have the same number of states.

Question 2:

We have provided Matlab code implementing a data structure to store the graph adjacency
structure, and numeric potential tables, defining any discrete factor graph. We also provide
code that explicitly builds a table containing the probabilities of all joint configurations
of the variables in a factor graph, and sums these probabilities to compute the marginal
distribution of each variable. Such “brute force” inference code is of course inefficient, and
will only be computationally tractable for very small models.

We recommend (but do not require) that you use these same data structures for your own
implementation of the sum-product algorithm, by implementing run_loopy_bp_parallel.m

and get_beliefs.m. To gain intuition for the graph structure, examine the output of
make_debug_graph.m. Think of the code we provide as a starting point: you are welcome to
create additional functions or data structures as needed. You may use other programming
languages if you wish, but will be responsible for translating the Matlab-compatible data we
provide into other formats.

a) Implement the sum-product algorithm. Your code should support an arbitrary factor graph
linking a collection of discrete random variables. Use a parallel message update schedule,
in which all factor-to-variable messages are updated given the current variable-to-factor
messages, and then all variable-to-factor messages given the current factor-to-variable
messages. Initialize by setting the variable-to-factor messages to equal 1 for all states.
Be careful to normalize messages to avoid numerical underflow.

Hints: While it is acceptable to make significant use of loops in your sum-product code,
other implementation strategies will lead to faster experiments. In Matlab, a standard
vector is a multi-dimensional array in which the first dimension has size equal to the
vector’s length, and all other dimensions have length one. The reshape command can
convert vectors to arrays where some other dimension (chosen to match a factor array)

2



x1 x2

x3

x4

Figure 2: A tree-structured factor graph in which four factors link four random variables. Variable
x2 takes one of three discrete states, and the other three variables are binary.

has length greater than one. To easily compute the product of a message array and
a factor array, apply bsxfun to the @times function. The sum command provides an
optional dimension argument, to allow marginalization of any dimension in an array.

b) Consider the four-node, tree-structured factor graph illustrated in Figure 2. Variable x2
takes one of three discrete states, and the other three variables are binary. Numeric values
for the potential functions are defined in make_debug_graph.m. Run your implementa-
tion of the sum-product algorithm on this graph, and report the marginal distributions it
computes. Verify that these are consistent with the results of marg_brute_force.m.

Question 3:

We investigate the design of algorithms for reliable communication over noisy channels. We
focus on error correcting codes based on highly sparse, low density parity check (LDPC)
matrices, and use the sum-product variant of the loopy belief propagation (BP) algorithm
to estimate partially corrupted message bits. For background information on LDPC codes,
see Chap. 47 of MacKay’s Information Theory, Inference, and Learning Algorithms, which
is freely available online: http://www.inference.phy.cam.ac.uk/mackay/itila/.

We consider rate 1/2 error correcting codes, which encode N message bits using a 2N -
bit codeword. LDPC codes are specified by a N × 2N binary parity check matrix H,
whose columns correspond to codeword bits, and rows to parity check constraints. We
define Hij = 1 if parity check i depends on codeword bit j, and Hij = 0 otherwise. Valid
codewords are those for which the sum of the bits connected to each parity check, as indicated
by H, equals zero in modulo-2 addition (i.e., the number of “active” bits must be even).
Equivalently, the modulo-2 product of the parity check matrix with the 2N -bit codeword
vector must equal a N -bit vector of zeros. As illustrated in Fig. 3, we can visualize these
parity check constraints via a corresponding factor graph. The parity check matrix H can
then be thought of as an adjacency matrix, where rows correspond to factor (parity) nodes,
columns to variable (codeword bit) nodes, and ones to edges linking factors to variables.

a) Implement code that, given an arbitrary parity check matrix H, constructs a corresponding
factor graph. The parity check factors should evaluate to 1 if an even number of adjacent

3



Figure 3: A factor graph representation of a LDPC code linking four factor (parity constraint)
nodes to eight variable (message bit) nodes. The unary factors encode noisy observations of the
message bits from the output of some communications channel.

bits are active (equal 1), and 0 otherwise. Your factor graph representation should inter-
face with the sum-product BP code developed in Question 2. Define a small test case, and
verify that your graphical model assigns zero probability to invalid codewords.

b) Load the N = 128-bit LDPC code provided in ldpc36-128.mat. To evaluate decoding
performance, we assume that the all-zeros codeword is sent, which always satisfies any
set of parity checks. Using the rand method, simulate the output of a binary symmetric
channel: each transmitted bit is flipped to its complement with error probability ε = 0.05,
and equal to the transmitted bit otherwise. Define unary factors for each variable node
which equal 1 − ε if that bit equals the “received” bit at the channel output, and ε oth-
erwise. Run the sum-product algorithm for 50 iterations of a parallel message update
schedule, initializing by setting all variable-to-factor messages to be constant. After the
final iteration, plot the estimated posterior probability that each codeword bit equals one.
If we decode by setting each bit to the maximum of its corresponding marginal, would we
find the right codeword?

c) Repeat the experiment from part (b) for 10 random channel noise realizations with error
probability ε = 0.06. For each trial, run sum-product for 50 iterations. After each iter-
ation, estimate the codeword by taking the maximum of each bit’s marginal distribution,
and evaluate the Hamming distance (number of differing bits) between the estimated and
true (all-zeros) codeword. On a single plot, display 10 curves showing Hamming distance
versus iteration for each Monte Carlo trial. Is BP a reliable decoding algorithm?

d) Repeat part (c) with two higher error probabilities, ε = 0.08 and ε = 0.10. Discuss any
qualitative differences in the behavior of the loopy BP decoder.

For the LDPC codes we consider, we also define a corresponding 2N ×N generator matrix
G. To encode an N -bit message vector we would like to transmit, we take the modulo-2
matrix product of the generator matrix with the message. The generator matrix has been
constructed (via linear algebra over the finite field GF(2)) such that this product always
produces a valid 2N -bit codeword. Geometrically, its columns are chosen to span the null
space of H. We use a systematic encoding, in which the first N codeword bits are simply

4



copies of the message bits. The problems below use precomputed (G,H) pairs produced by
Neal’s LDPC software: http://www.cs.utoronto.ca/~radford/ldpc.software.html.

e) Load the N = 1600-bit LDPC code provided in ldpc36-1600.mat. Using this, we will
replicate the visual decoding demonstration from MacKay’s Fig. 47.5. Start by converting
a 40 × 40 binary image to a 1600-bit message vector; you may use the logo image we
provide, or create your own. Encode the message using the provided generator matrix G,
and add noise with error probability ε = 0.06. For this input, plot images showing the
output of the sum-product decoder after 0, 1, 2, 3, 5, 10, 20, and 30 iterations. The rem

method may be useful for computing modulo-2 sums. You can use the reshape method to
easily convert between images and rasterized message vectors.

f) Repeat part (e) with a higher error probability of ε = 0.10, and discuss differences.

5


