Homework 4: Inference & Learning for
Temporal State Space Models

University of Arizona CSC 535: Probabilistic Graphical Models

Homework due at 11:59pm on November 16, 2020

In this problem set, we explore inference and learning algorithms for the linear dynamical
system (LDS), which is summarized by the graphical model of Fig. 1. Our observations are a
sequence of real-valued vectors, 3, € R?, which depend on corresponding latent state vectors
x; € R The joint distribution is a liear-Gaussian model given by,

play | zeo1) = N(ze | A1, Q)
p(yt | xt) = N(yt | Cay, R)

Model parameters are denoted by the set {A, C,Q, R}. We assume that the initial state is
distributed via p(z1) = Norm(z; | m,S) for some initial state mean m and covariance S.
(Often, but not always, m =0 and S = I,;.)

In general, many different state space models may assign equal likelihood to a given
dataset, due to generalized versions of the rotational ambiguities underlying PCA and factor
analysis models. For all models we consider, we thus constrain C' = [I, O], where O is a
p X (d — p) matrix of zeros, and I, is a p x p identity matrix. When d = p, we have C' = I,

For some experiments, we define our state space model parameters to take one of a few
canonical forms. The constant position model takes d = p, and

A=1, Q=od.l,, R=o.l,

so that the observations are noisy estimates of an underlying random walk. The constant
velocity model generates more smooth motions by taking d = 2p, and

I I PR _ 0920110 Op _ 2
A_{Op [p}7 Q_lOp ‘712;110 7 R_Uy]]m

where O, is a p X p matrix of zeros. More generally, we will use the expectation maximization
(EM) algorithm to learn model parameters {A, @, R} from observation sequences.
Question 1: Tracking and Kalman Filters

In the handout code, see kalman_smoother.m for a partial implementation of a Kalman
smoother. The Kalman smoother is equivalent to Gaussian BP, and computes full posterior
marginals at each time in a Gaussian LDS.

Figure 1: A directed graphical model representing a linear dynamical system (LDS). At each
time step continuous state x; evolves conditional on x;—1 according to dynamics and generates
observations .

"

b)

d)

Given a sequence of T observations kalman_smoother.m should produce a d x T matriz
of posterior mean estimates, and a d X d xXT array of posterior covariance estimates. The
provided code fully implements the backwards smoothing pass, but the forward filter needs
to be implemented. Using the lecture slides and textbooks (Murphy Ch. 18, Bishop 13.3)
as references, implement the forward pass of the Kalman filter. Specifically, implement
the prediction and measurement updates on lines marked by (**).

Consider the p = 1-dimensional observation sequence we provide in track. It was sampled
from a constant velocity model with d = 2,07 = 0.01,02 = 0.01/3,0, = 20. Apply the
Kalman filter code using this correct model. On one set of axes, plot the observation
sequence, the posterior mean of the first (position) component of the state, and posterior
confidence intervals. The confidence intervals should be determined as the posterior mean
plus or minus two times the posterior standard deviation of the first state component.

Suppose you incorrectly assumed the track data was generated by a constant-position
model with d = 1 and 05 = 20. Consider two possible state-transition noise levels,
02 =0.01/3 and 02 = 10. For each of these alternative models, apply the Kalman filter
code and plot your results as in part (a). Discuss differences from the results in part (a).

We finish by exploring robustness to outliers. Again consider the track data and inde-
pendently at each time step t, with probability 0.1 replace the true observation by a sample
y: ~ Norm(0,40%). Apply the Kalman filter to this corrupted data, with the (now inaccu-
rate) original observation likelihood. Plot the corrupted observation data, as well as the
mean estimates and discuss.

Question 2: Learning, Kalman Smoothers, & Expectation Maximization (EM)

In the handout code, see em_slds.m for an implementation of the EM algorithm for learning
state space models.

a)

kalman_smoother returns marginal moments for, both, the filter (forward pass only) and
smoother (forward and backward passes). Apply the Kalman smoother to the constant
velocity model and track data from part 1(a). On one set of axes, plot the observation

b)

d)

sequence, the posterior mean of the first (position) component of the state, and posterior
confidence intervals. Compare to the estimates produced by the Kalman filter and explain
differences.

The marginal log-likelihood of an observation sequence vy, integrating over states x for
some fized state space model parameters, can be written as follows:

T-1
log p(y) = logp(y1) + > _logp(yes1 | y1,- -, vt)
t=1
T-1
= log/ p(y1 | z1)p(21) doy + Zlog/ PWerr [z)p(ee | yr, - y) day
X Py Xy

Provide a formula for evaluating the marginal log-likelihood. Your answer should be an
explicit function of the Kalman filter mean vectors and covariance matrices. Hint: Useful
wdentities for multivariate Gaussian distributions are in Murphy Sec. 4.4 and in Bishop
Sec. 2.3.3.

Implement the body of compute_lds_bound.m so that it computes the log-likelihood bound
derived in part (b). Hint: If your implementation is correct, the log-likelihoods computed
during any execution of the EM algorithm should be monotonically increasing.

Consider the p = 2-dimensional observation sequence we provide in spiral, and use the
EM algorithm to learn a d = 2-dimensional state space model. Initialize with a constant
position model with o2 = 1,05 = 1. Run the EM algorithm for 100 iterations, plot the
marginal log-likelthood versus iteration, and report the learned parameters after the final
iteration. Plot the observation sequence, and the output of the Kalman smoother after the
final iteration, as overlaid 2-dimensional curves.

Should we expect the learned parameters to be the exact maximum likelihood estimates for
this model? Why or why not?

