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Administrivia

• HW3 Correction: question1.m  question2.m

• See Piazza for notes on fuction-to-variable messages

• Numerically stable normalization of vector 
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Example: Gaussian Mixture Model

Model is often specified in terms of unknown parameters

How likely are parameters for observed data?

GMM

Marginal Likelihood (likelihood function):

Low Likelihood High Likelihood

Intuition Learn / estimate parameters that
assign highest probability (under the model)

to data we’ve observed.

Source: Bishop, PRML



Maximum Likelihood Estimation

Consistency: Converges (in probability) to value being estimated

Asymptotically Normal:
True consistency never happens in
practice since all models are wrong

(but some are still useful)

Fisher Information Matrix

Efficiency: Achieves lowest possible variance of unbiased estimator (i.e. 
achieves Cramer-Rao lower bound)

Functional invariance, second-order efficiency, minimizes KL divergence, …



Maximum Likelihood Estimation

Log-Likelihood Function 
doesn’t change argmax
since log is monotonic

Logarithm serves a couple of practical purposes:

If concave then just solve for zero-gradient solution,

1) Simplifies derivatives for conditionally independent data 

2) Avoids numerical under/overflow



MLE of Gaussian Mean
Assume data are i.i.d. univariate Gaussian,

Variance is known

Log-likelihood function:

Constant doesn’t 
depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:
1) Drop constant terms (in   )
2) Minimize negative log-likelihood



MLE of Gaussian Mean
Sum of squares objective is convex,

Minimize squared distance from mean

Set derivative to zero and solve,

MLE is empirical mean of data,



Outliers
How does an outlier affect the estimator?

Squared Error



Outliers
How does an outlier affect the estimator?

Squared Error



Regularized Maximum Likelihood

Penalty term R minimizes effect of outliers on estimator,

RegularizerRegularization weight

Example L2-regularized Least-Squares,

In regression setting these have 
various names: ridge regression, 

LASSOExample L1-regularized Least-Squares,
L1 is not differentiable, 
and so care must be 

taken in optimizer



Regularized Maximum Likelihood

Penalty term R minimizes effect of outliers on estimator,

RegularizerRegularization weight

Example L2-regularized Least-Squares,
In regression setting 

known as ridge regression

acts as pseudocount



Linear Regression - Ordinary Least Squares (OLS)

Linear function of inputs X,
Source: Kevin Murphy’s Textbook

X

YWith                      and MLE,          Shorthand:

Solving for zero-gradient:

where



Linear Regression – Basis Functions

Predicted functions may be nonlinear in X

Define a set of basis functions or features:
Source: Elements of Stat. Learning

Output is linear Gaussian (in basis func’s):

Least squares solution takes same form:

F is a matrix of feature evaluations
at each input in training set



L2 Regularized Linear Regression – Ridge Regression

After some algebra…

Compare to unregularized solution:

Source: Kevin Murphy’s Textbook

Regularized least-squares includes 
pseudocount in weighting similar to 

Gaussian mean estimator



Other Regularization Terms

A more general regularization penalty,

L2 RegularizationL1 is non-
differentiable

q<1 is not a norm, 
and thus not convex



MLE More Generally

Log-likelihood is typically non-convex, so we use numerical methods 
such as Gradient descent:

MLE has a closed-form in Gaussian models because they are convex:

Quadratic in Gaussian MLE

In this setting we cannot generally guarantee optimal MLE estimators



Administrivia

• HW2 grades by end of week

• Midterm: Monday 10/26 (take-home)

• Clarification of parallel sum-product for factor graphs



MLE Summary

• Recall the trick of maximizing the p.d.f. by minimizing the negative log

• The Gaussian form for the likelihood led to a least-squares problem

• Least-squares solutions are tightly connected to assuming Gaussian distribution for the random 
effects (noise)

• If the random part is not Gaussian, then squared error may not make sense

• Squared error and Gaussian assumptions are mathematically very convenient but they are very 
sensitive to outliers (this motivates robust estimators)

• The least-squares solution leads to the average as being the “best” way to characterize a group 
of independent numbers, but there are other answers:
• Minimum absolute value for error
• Median
• Minimum risk / maximal gain
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Maximum A Posteriori (MAP) Estimation

Recall the MAP estimator maximizes posterior probability,

Prior serves as regularizer in regularized MLE:

( Bayes’ rule )

( Probability Chain Rule )

( Monotonicity of Logarithm )

So conceptually, defining a regularizer in MLE imposes prior beliefs



MAP of Gaussian Mean
Gaussian prior on    with i.i.d. Gaussian observations:

Variance is known

Log-joint probability:

Minimize negative log-joint (+ rearrange terms): MAP estimate equivalent to 
regularized least squares estimator

Note Likelihood variance 
can be incorporated into 

prior variance



Bayesian Linear Regression

Gaussian prior on regression weights,

Posterior over N observations is Gaussian (yay for Gaussians!),

MAP is posterior mean,

Again equivalent to regularized least 
squares (ridge regression)



Source: Chris Bishop, PRML



Posterior concentrates on true weights as more data observed

Likelihood outweighs prior in the limit (converges to MLE)

Source: Chris Bishop, PRML

Likelihood Posterior Data Space



Sparse Prior on Regression Weights

Laplace distribution

Mean    and scale          . Compared to Gaussian: Higher 
probability at zero, larger tails

Regression Joint Probability

MAP Estimate

Equivalent to L1-regularized least squares MLE (LASSO)

Does not have closed-form.
Convex, but non-differentiable.  

Solve via iterative methods.



Summary

• MAP = MLE for particular regularizer/prior

• MLE Regularizer implicitly imposes prior belief

• MAP estimate can be sequentially updated with additional data

• Inference = optimization (can avoid calculus in Gaussian case)

Bayesian approach allows for different perspective of MLE



Administrivia

• HW3 due later today

• HW2 graded and solutions posted

• Review readings this week (no assignments)

• “Take-home” midterm Monday
• Everything up-to-and-including parameter learning material

• We will have a midterm review lecture Monday
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Marginal Likelihood Calculation

Recall the Gaussian Mixture Model…

Marginal Likelihood (likelihood function):

Sum over all possible KN assignments,
which we cannot compute

Clustering

Motivation Approximate MLE / MAP when we 
cannot compute the marginal likelihood in 

closed-form



Conditionally-independent model with partial observations…

Lower Bounding Marginal Likelihood

Observations

Parameters
Unknowns

Shorthand
z = z1, …, zN

( Multiply by q(z)/q(z)=1 )

( Definition of Expected Value )

( Jensen’s Inequality )

q(z) is any distribution with 
support over Z



Jensen’s Inequality

Definition A function f(x) is convex iff for any points a,b and

f(x)

Jensen’s Inequality holds for any convex f(x),

Proof (sketch) is by induction on m points,

where so



Jensen’s Inequality

Valid for both discrete (expectations are sums)
and continuous (expectations are integrals) 
random variables, for any convex function f.

The logarithm is concave.



Expectation Maximization
Find tightest lower bound of marginal likelihood,

Solve by coordinate ascent…

Initialize Parameters:
At iteration t do:

Update q:

Update   :
Until convergence

Fix   

Fix q  



Expectation Maximization
Find tightest lower bound of marginal likelihood,

Solve by coordinate ascent…

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

Fix   

Fix q  



E-Step

Concave (in q(z)) and optimum occurs at,

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

Set q(z) to posterior with 
current parameters



M-Step

Adding / subtracting constants we have,

Intuition We don’t know Z, so average log-likelihood over current 
posterior q(z), then maximize.  E.g. weighted MLE.

May lack a closed-form, but suffices to take one or more gradient steps.  
Don’t need to maximize, just improve.



Expectation Maximization

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

E-Step Compute expected log-likelihood under the posterior distribution,

M-Step Maximize expected log-likelihood,

Expectation in E-step is kind
of confusing.  Think of this as

alternating maximizations



Example: Gaussian Mixture Model

Commonly refer to q(zn) as responsibility

E-Step:



Example: Gaussian Mixture Model

M-Step:

Start with mean parameter     , 

where



Example: Gaussian Mixture Model

M-Step:

Repeat for remaining parameters,

• Solving for mixture weights requires a bit more work
• Need constraint 
• Use Lagrange multiplier approach



Example: Gaussian Mixture Model

M-Step:

Repeat for remaining parameters,

• Solving for mixture weights requires a bit more work
• Need constraint 
• Use Lagrange multiplier approach
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Source: Chris Bishop, PRML



EM: A Sequence of Lower Bounds

C. Bishop, Pattern Recognition & Machine Learning



EM Lower Bound

Bound gap is the Kullback-Leibler divergence KL(q||p),

( Multiply by 1 )

( Definition of KL )

 Similar to a “distance” between q and p

 This is why solution to E-step is 



Lower Bounds on Marginal Likelihood

C. Bishop, Pattern Recognition & Machine Learning

E-Step:



Expectation Maximization Algorithm

Inference

Optimize
Parameters

Re-Infer

E Step:  Optimize distribution on 
hidden variables given parameters

M Step:  Optimize parameters 
given distribution on hidden variables



Properties of Expectation Maximization Algorithm

Sequence of bounds is monotonic,

Guaranteed to converge 
(Pf. Monotonic sequence bounded above.)

Converges to a local maximum of the 
marginal likelihood 

After each E-step bound is tight at
so likelihood calculation is exact (for those 
parameters)



MLE vs. MAP Estimation

Conditional model,

MLE estimate of unknown non-random parameters,

Generative model,

MAP estimate of random parameters,

Corresponds to regularized MLE



EM Lower Bound

Recall EM lower bound of marginal likelihood

( Multiply by q(z)/q(z)=1 )

( Definition of Expected Value )

( Jensen’s Inequality )



MAP EM

Bound holds with addition of log-prior

( Multiply by q(z)/q(z)=1 )

( Definition of Expected Value )

( Jensen’s Inequality )



MAP EM

E-Step: Fix parameters and maximize w.r.t. q(z),

Same solution as standard maximum likelihood EM,

M-Step: Fix q(z) and optimize parameters,

Constant in
q(z)



MAP EM

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

E-Step Compute expected log-likelihood under the posterior distribution,

M-Step Maximize expected log-likelihood,



EM Summary

Approximate MLE for intractable marginal likelihood via lower bound, 

Coordinate ascent alternately maximizes        and   ,
E-Step M-Step

Solution to E-step sets q to posterior over hidden variables,

M-step is problem-dependent, requires gradient calculation



EM Summary

Easily extends to (approximate) MAP estimation,

E-step unchanged / Slightly modifies M-step,
E-Step M-Step

Properties of both MLE / MAP EM
• Monotonic in             or                             (for MAP)
• Provably converge to local optima (hence approximate estimation)



Learning Summary

Maximum likelihood estimation (MLE) maximizes (log-)likelihood func,

Where parameters are unknown non-random quantities

Tendency to overfit training data mitigated by inclusion of regularizer,

For linear-Gaussian models          and    have closed-form leading to:
• Least-squares estimation
• Ridge regression (L2 regularized least-squares)
• LASSO regression (L1 regularized least-squares)



Learning Summary

Maximum a posteriori (MAP) maximizes posterior probability,

Parameters are random quantities with prior        .

Corresponds to regularized MLE for specific prior/regularizer pair,

Gaussian prior=L2, Laplacian prior=L1

Straightforward sequential updating, e.g. Bayesian linear regression



Learning Summary

 Most models will not yield closed-form MLE/MAP estimates

 Gradient-based methods optimize log-likelihood function

 Expectation Maximization (EM) alternative to gradient methods

 Both approaches approximate for non-convex models
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