
Markov chain Monte Carlo methods

• The approximations of expectation that we have looked at 
so far have assumed that the samples are independent draws. 

• This sounds good, but in high dimensions, we do not know 
how to get good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
– If you have finally found a region of high probability, stick around 

for a bit, enjoy yourself, grab some more samples.



Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the 
Markov chain). 

• MCMC is often a good hammer for complex, high 
dimensional, problems. 

• Main downside is that it is not “plug-and-play”
– Doing well requires taking advantage to the structure of your problem
– MCMC tends to be expensive (but take heart---there may not be any 

other solution, and at least your problem is being solved). 
– If there are faster solutions, you can incorporate that (and MCMC 

becomes a way to improve/select these good guesses). 



Metropolis Example



Metropolis Example

If things get better, always accept. If 
they get worse, sometimes accept.

Always emit one or the other 
(not needed if you are only 
searching for n good value).



Metropolis Example



Metropolis Example

Green follows accepted proposals
Red are rejected moves.



Markov chain view



Markov Chain Monte Carlo (MCMC)

• Stochastic 1st order Markov process with transition kernel:

• Each       full N-dimensional state vector
• MCMC samples                                       not independent

… …



Stationary Markov chains

• Recall that our goal is to have our Markov chain emit 
samples from our target distribution p(z).

• This implies that the distribution being sampled at time t+1
would be the same as that of time t (stationary).

• If our stationary (target) distribution is p(), then if we 
imagine an ensemble of chains, they are in each state with 
(long-run) probability p().
– On average, a switch from s1 to s2 happens as often as going from 

s2 to s1, otherwise, the percentage of states would not be stable.
– Can we make this intuition more formal? 



Detailed balance

• Detailed balance is defined by:

• Detailed balance is a sufficient condition for p() to be a 
stationary distribution with respect to the positive T.



Detailed balance implies stationary

(because?)
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Detailed balance (continued)

• Detailed balance (for p()) means that if our chain was 
generating samples from p(),  it would continue to due so.
– We will address how it gets there soon.
– For MCMC algorithms like Metropolis, it is important that the 

stationary state is the distribution we want (most Markov chains 
converge to something),

• Does the Metropolis algorithm have detailed balance?



Metropolis has detailed balance

For detailed balance, we need to show (in general)

Probability of transition from z’ to z is the 
probability that z’ is proposed, and it is accepted.



Metropolis has detailed balance

For detailed balance, we need to show (in general)

Probability of transition from z to z’ is the 
probability that z’ is proposed, and it is accepted.

In Metropolis this is
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Metropolis has detailed balance

q() is symmetric
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Metropolis has detailed balance

(switch order
in min())

q() is symmetric



Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same 
stationary state, regardless of starting distribution.

• Such chains are called ergodic, and the common stationary 
state is called the equilibrium state.

• Ergodic chains have a unique equilibrium.



When do our chains converge?

• Important theorem tells us that for finite state spaces* our 
chains converge to equilibrium under two relatively weak 
conditions.
– (1) Irreducible

• We can get from any state to any other state
– (2) Aperiodic

• The chain does not get trapped in cycles

• These are true for detailed balance (there exists a stationary 
state) with T>0 (you can get there).
– This is sufficient, but not necessary for convergence. 

*Infinite or uncountable state spaces introduces additional complexities, 
but the main thrust is similar.



Evolution of ergodic chains



Evolution of ergodic chains



Evolution of ergodic chains

Dies outCannot die!



Evolution of ergodic chains



Matrix-vector representation



Matrix representation

What does this equation look like?



Matrix representation

For any p(0)! 



Aside on stochastic matrices

• A right (row) stochastic matrix has non-negative entries, 
and its rows sum to one.

• A left (column) stochastic matrix has non-negative entries, 
and its columns sum to one.

• A doubly stochastic matrix has both properties. 



Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
– If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that 
sum to one (stochastic vector).



Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
– If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that 
sum to one (stochastic vector).

• Fun facts
– The product of a stochastic matrix and vector is a stochastic vector. 
– The product of two stochastic matrices is a stochastic matrix.



Aside on (stochastic) matrix powers

?
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Aside on (stochastic) matrix powers

Why not?



Aside on (stochastic) matrix powers

because it is a stochastic matrix.



Aside on (stochastic) matrix powers

Logic:
• Product of stochastic matrix is a stochastic matrix
• Colums of (left) stochastic matrix sum to 1
• Power is a bunch of products

because it is a stochastic matrix.
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Aside on (stochastic) matrix powers
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Aside on (stochastic) matrix powers



Justification relies on Perron Frobenius theorem  

From Wikipedia

Optional



Main points about P-F for positive square matrices

• The maximal eigenvalue is strictly maximal and real 
valued (item 1). 

• Its eigenvector (as computed by software*) has all positive 
(or negative) real components (item 3). 

• The maximal eigenvalue of a stochastic matrix has 
absolute value 1 (item 8 applied to stochastic matrix). 

*P-F says that the positive version exists, but software might hand you 
the negative of that, but you can negate it to be consistent with P-F. 



Summary on matrix version of stationarity 



Algebraic proof

Neal ’93 provides an algebraic proof which does not rely on 
spectral theory. 



MCMC so far

• Under reasonable (easily checked and/or arranged) conditions, ensembles of 
chains over discretized states converge to an equilibrium state.

• Easiest way to prove (or check) that this is the case is to show detailed balance 
and use T>0.

• Nice analogy with powers of stochastic matrices, which converge to an operator 
based on the largest magnitude eigenvector (not covered in F18)

• In theory, to use MCMC for sampling a distribution, we simply need to ensure 
that our target distribution is the equilibrium state.

• In practice we do not know even know if we have visited the best place yet. (The 
ensemble metaphor runs into trouble if you have a small number of chains 
compared to the number of states). 



MCMC in theory

• The time it takes to get reasonably close to equilibrium 
(where samples come from the target distribution) is called 
“burn in” time. 
– I.E., how long does it take to forget the starting state.
– There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”. 

• What if we really want independent samples?
– In theory we can take every Nth sample (some theories about how 

long to wait exist, but it depends on the algorithm and 
distribution). 



MCMC for ML in practice

• We use MCMC for machine learning problems with very complex 
distributions over high dimensional spaces.

• Variables can be either discrete or continuous (often both)

• Despite the gloomy worst case scenario, MCMC is often a good 
way to find good solutions (either by MAP or integration).
– Key reason is that there is generally structure in our distributions.
– We need to exploit this knowledge in our proposal distributions. 
– Instead of getting hung up about whether you actually have convergence

• Enjoy that fact that what you are doing is principled and can improve any 
answer (with respect to your model) that you can get by other means

– Your model should be able to tell you which proposed solution are 
good.



Metropolis-Hastings MCMC method 

• Like Metropolis, but now q() is not necessarily symmetric.

• Metropolis is a special case of MH.



Metropolis-Hastings MCMC method 



• Like Metropolis, but now q() is not necessarily symmetric.

• If Metropolis-Hastings has detailed balance, then it 
converges to the target distribution under weak conditions.
– The converse is not true, but generally samplers of interest will 

have detailed balance 

Does Metropolis-Hastings converge to the target distribution? 



Does Metropolis-Hastings have detailed balance? 
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Does Metropolis-Hastings have detailed balance? 



Metropolis-Hastings comments 

• Again it does not matter if we use unnormalized 
probabilities.

• It should be clear that the previous version, where q() is 
symmetric, is a special case. 

• q() can be anything, but you need to specify the reverse 
move (often tricky)
– If you are using MH for optimization (not integration), then getting 

this only approximately right might be OK. 



Metropolis-Hastings

Transition kernel with target distribution:

1. Sample proposal:
2. Accept with probability:

Example Gaussian proposal:
• Acceptance ratio simplifies to:
• True for any symmetric proposal:
• Known as Metropolis algorithm in this case

[ Source: D. MacKay ]

where



Independent Samples

Q How many M-H samples are required for an
independent sample?

A Consider Gaussian proposal:

• Typically           for adequate acceptance rate
• Leads to random walk dynamics, which can be slow to converge
• Rule of Thumb: If average acceptance is              need to run for 

roughly                     iterations for an independent sample 

[ Source: D. MacKay ]

This is only a lower bound (and potentially very loose)



Example: Independent Samples

Target:

Proposal:

Metropolis Independent

From               need ~400 steps to 
reach both end states (0 and 20).  
So, ~400 steps to generate 1 
independent sample!

[ Source: D. MacKay ]

Very important to avoid random walk dynamics

State evolution for t=1…600, horizontal bars denote intervals of 50



Administrivia

• Homework 5 out, due Monday, Dec. 7 (2 weeks)
– Particle filtering
– Gibbs sampling

• We do have class this Wednesday



Gibbs Sampling

Suppose target distribution is:

where Pa(s) are parents of node s.

Metropolis-Hastings Proposal:
For system with K variables,

[ Source: Winn & Bishop ]

By conditional independence, 
Gibbs samples drawn from 

Markov blanket

Recall for undirected MRFs the Markov Blanket are immediate neighbors



Gibbs sampling 

• Gibbs sampling is special case of MH.

• The proposal distribution will be cycle over

• We will always accept the proposal.  

• You might notice that the transition function, T(), varies 
(cycles) over time. 
– This is a relaxation of our assumption used to provide intuition about 

convergence
– However, it still OK because the concatenation of the T() for a cycle 

converge 





(Source: D. MacKay)
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(Source: D. MacKay)



Examples of Gibbs 

• If one can specify the conditional distributions in a way 
that they can be sampled, Gibbs can be a very good 
method. 

• Typical examples include symmetric systems like the 
Markov random field grids we had for images.
– With a Markov property, the conditional probability can be quite 

simple.



Examples of Gibbs 

(From Dellaert and Zhu tutorial)



Examples of Gibbs 

(From Dellaert and Zhu tutorial)



Gibbs as Metropolis Hastings (M-H)

To see Gibbs as MH, and to understand why we always 
accept, consider that if it were MH, then our proposal 
distribution, qi(), for a given variable, i, would be 

The “*” here means next state, NOT stationary state.



Gibbs as M-H 

(def’n of “bar”)

(def’n of A())

(Gibbs, coloring)
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Gibbs as M-H 

(def’n of “bar”)

(def’n of A())

(Gibbs, coloring)



Exploring the space

• Algorithms like Metropolis-Hastings exhibit “random walk 
behavior” if the step size (proposal variance) is small
– Random walk dynamics is practical limitation of MCMC
– Leads to long mixing times (e.g. long burn-in time)

• If the step size is too big, then you get rejected too often

• Adaptive methods exist (see slice sampling in Bishop)



Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H 
(but no adjustable parameters, so that’s a plus…)

Block Gibbs Jointly sample subset           from
• Reduces random walk caused by highly correlated variables
• Requires that conditional                    can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

• Reduces dimensionality of space to be sampled
• Requires that marginals are computable in closed-form



Combined samplers

Different samplers fail in different ways, so combine them…

…can also combine with Gibbs proposals



Mixing MCMC Kernels

Consider a set of MCMC kernels                      all having target 
distribution p(x) then the mixture:

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:
1. Sample
2. Sample  

Mixing weights



MCMC Summary

• Markov chain induced by MCMC transition kernel T(z,z’)

• Converges to stationary distribution iff chain is ergodic
• Chain is ergodic if it is irreducible (can get from any z to any z’) 

and aperiodic (doesn’t get trapped in cycles)

• Easier to prove detailed balance, which implies ergodicity

• Metropolis algorithm samples from symmetric proposal q(z’|z) 
and accepts sample z’ with probability,



MCMC Summary

• Metropolis-Hastings allows non-symmetric proposal q(z’|z) 
and accepts sample z’ with probability,

• Gibbs sampler on random vector                            
successively samples from complete conditionals,

• Gibbs is instance of M-H which always accepts



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:



Simulated Annealing 

• Analogy with physical systems

• Relevant for optimization (not integration)

• Powers of probability distributions emphasize the peaks

• If we are looking for a maximum within a lot of distracting 
peaks, this can help. 



Simulated Annealing 

• Define a temperature T, and a cooling schedule (black 
magic part)

• Lower temperatures correspond to emphasized maximal 
peaks.
– Hence we exponentiate by (1/T).

• The terminology makes sense because the number of states 
accessible to a physical system decreases with temperature. 



Simulated Annealing 

(From Andrieu et al)
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Annealing 

(From Andrieu et al)



Simulated Annealing

Let annealing distribution at temp   be given by:

As            we have: 

SA for Global Optimization:
Annealing schedule

1. Sample       from MCMC kernel     with target 
2. Set        according to annealing schedule

SA for Convergence:                     Final temperature = 1

where
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