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Administrivia

• Vote Tomorrow 10/27 is the Arizona deadline to mail ballots

• Midterm
• 8 Questions, 10pts per question, 80pts total
• In D2L Assignments
• Due Fri 10/30 @ 11:59pm
• Send any questions as private messages to me on Piazza
• Do not discuss exam questions with others
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• Message Passing Inference
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Probability and Random Events

 A random process is modeled by a probability space               where:
 Sample space is the set of all possible outcomes
 Event space is the set of events, each being a subset of
 Probability function assigns a probability in         to each event

 Axioms of probability
1. For any event
2.
3. For any finite or countably infinite sequence of

pairwise mutually disjoint events

 An event space must 
contain 
 Must be closed under:
 Complements
 Countable unions
 Countable intersections



Probability and Random Events

 A random variable is a function of samples to real values:
 Is an event with probability:

 Some fundamental rules of probability:
 Conditional:
 Law of total probability:
 Probability chain rule:

 Independence of RVs:
 Two RVs X & Y are independent iff:
 Equivalently:
 X & Y are conditionally independent given Z iff:
 Equivalently:



Useful Discrete Distributions

Bernoulli A.k.a. the coinflip distribution on binary RVs

Suppose we flip N independent coins                         , what is the 
distribution over their sum

Binomial Dist.
Num. “successes” out of N trials Num. ways to obtain k successes out of N

Geometric Dist. on number of independent draws of
until success:

e.g. must be n-1 failures (tails) before a success (heads).



Useful Discrete Distributions

Categorical Distribution on integer-valued RV

with parameter                         and Kronecker delta I()
or

Multinomial Distribution on K-vector                      of counts of N 
repeated trials                        with PMF:

Extension to N independent trials…



Useful Continuous Distributions

Gamma distribution for 

For “shape”           and “scale” 

p(x) P(x)



Useful Continuous Distributions

Gaussian (a.k.a. Normal) distribution with 
mean mean (location)    and variance 
(scale)     parameters, PD

F
C

D
F

Useful Properties
• Closed under additivity:

• Closed under linear functions (a and b constant):

We say                       . 



Useful Continuous Distributions

Multivariate Gaussian On RV              
with mean             and positive semidefinite 
covariance matrix                 , 

Moments given by parameters directly.

Useful Properties
• Closed under additivity (same as univariate case)
• Closed under linear functions,

Where                   and             (output dimensions may change)
• Closed under conditioning and marginalization (See Bishop Sec. 2.3)

Will discuss Gaussians a lot more when we cover exponential families



Posterior distribution is complete representation of uncertainty

Posterior computed by Bayes’ rule:

• Must specify a prior belief about coin bias
• Coin bias    is a random quantity
• Interval                                                can be reported in lieu of full 

posterior, and takes intuitive interpretation for a single trial
Interval Interpretation: For this trial there is a 95% chance that     

lies in the interval

Bayesian Inference

Prior Belief
Likelihood

Marginal Likelihood
(more on this later)



Posterior calculation requires the marginal likelihood,

• Also called the partition function or evidence
• Key quantity for model learning and selection
• NP-hard to compute in general (actually #P)

Example: Consider the vector                            with binary                  ,

Marginal Likelihood



Bayesian Inference Example

A recent home test states that you have high 
BP.  Should you start medication?

Getty Images
About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.



• Latent quantity of interest is hypertension:
• Measurement of hypertension:
• Prior:
• Likelihood:   

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

Getty Images



Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



When we observe   we can predict future observations   ,

This is the posterior predictive distribution

Prediction

Can make predictions of unobserved    before seeing any data,

This is the prior predictive distribution

Similar calculation to 
marginal likelihood



What is the likelihood of another positive measurement?

Prediction Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



Bayesian Estimation

Task: produce an estimate    of    after observing data  .   

Bayes estimators minimize expected loss function:

Example: Minimum mean squared error (MMSE):

Posterior mean always minimizes squared error.
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Directed Graphical Models

• Distribution factorized as product of conditionals via chain rule

• Choose ordering where terms simplify due to conditional independence
Eg. Suppose                     and                     then:

• Directed graph encodes factorized distribution via conditional 
independence properties

Tail-to-tail

Head-to-tail

Head-to-head

• Test independence using canonical subgraphs:

• Straightforward simulation via 
ancestral sampling



Bayes nets are easily simulated via ancestral sampling…

Sample all nodes with no parents, then children, etc., to 
terminals.  Can sample nodes at same level in parallel.

Example: Gaussian Mixture Model

Probability Model Bayes Net Joint Sample



To test if                          roll ball from every node in       …

Bayes Ball Algorithm

If any ball reaches any 
node in       then      

Otherwise:

Tests for property of directed separation (d-separation): if       
separates / blocks      from       then     .



Bayes Ball Algorithm

Tail-to-Tail

Head-to-Head

Head-to-TailBlocks

Doesn’t
Block Blocks

Blocks

Doesn’t
Block

Doesn’t
Block



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x) 
that is Markov w.r.t. graph                  
has a Markov blanket given by:

For any                     :

Markov blanket used to simplify inference and distribute computation 
(e.g. Gibbs sampler, variational inference, etc.)



Undirected Graphical Models

• Easier to specify models compared to Bayes nets since:
• Factors do not need to be normalized conditional probabilities
• May specify up to unknown normalization constant

• Joint factorization as nonnegative factors (potentials) over subsets:

• Easier to verify Markov independence via separating sets

• Factorization ambiguous in MRFs, but explicit in
factor graphs (factor graphs generally preferred)

• Simulation is not easy in general.  Can’t do 
ancestral sampling. 



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Complete Graph



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Clique



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Pairwise Cliques

A factorization is valid if it satisfies the Global 
Markov property, defined by conditional 

independencies



Factor Graphs

A hypergraph where a hyperedge is a subset 
of vertices          .

Factor node for each product term in the joint 
factorization:

where                            the set of variables in 
factor f.  For example:           

Graphical model makes
factorization explicit



We say      and      are independent
or               if:

Conditional Independence (Undirected)

We say they are conditionally
independent or                       if:

[ Source: Michael I. Jordan]

Conditional independence
in undirected graphical models
is defined by separating sets

Def. We say        is globally Markov
w.r.t.     if                       in any 
separating set of    .
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Bayes Net  MRF

Difficulty Effort

SATGrade

Letter

JobHappy

Drop local normalization

Difficulty Effort

SATGrade

Letter

JobHappy

Added edges marry
parents (moralization)



Variable Elimination

Difficulty Effort

SATGrade

Letter

JobHappy

Effort

SATGrade

Letter

JobHappy

SATGrade

Letter

JobHappy

SATGrade

Letter

Job

Grade

Letter

Job

Letter

Job

Job

Recall variable elimination sequentially marginalizes out variables…

P(Job)

FILL IN EDGE



Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S G,S,L,J H,G,J
E,G G,S G,J

Elimination order    induces graph with 
maximal cliques         and width:

 Complexity of variable elimination is
 Lowest complexity given by the treewidth:

It is NP-hard to compute treewidth, 
and therefore an optimal 

elimination order (of course…)



Variable Elimination Summary

 Variable elimination allows computation of marginals / conditionals

 Algorithm is valid for any graphical model

 Suffices to show variable elimination for MRFs, since Bayes nets 
MRFs by moralization

Worst-case complexity is dependent on elimination order, and is 
exponential in number of variables

 Optimal ordering = treewidth, is NP-hard to compute



Forward-Backward Algorithm

…

Forward message gives the filtered posterior:

Smoothed posterior incorporates all observations:



Sum-Product Belief Propagation

A

B C

D E F G

Forward-Backward extends to any 
tree-structured pairwise MRF

Pass messages from leaves-
to-root, then root-to-leaves

A

C

F G

Marginal given by incoming
messages (e.g. node C):



Pairwise MRF Sum-Product Belief Propagation

Message

Marginal

Message updates depend only on Markov blanket…

Messages involve a sum over 
products, hence the name “sum-

product algorithm”



Factor Graph Sum-Product Belief Propagation

1

Marginal is product of incoming factor-to-variable messages:



Message Passing Inference Summary

…Forward-backward algorithm yields efficient 
marginal inference on HMM graph

A

B C

D E F G

Sum-product belief propagation generalizes 
marginal inference to tree-structured MRFs

A

B C

D E F G

And factor graphs

Max-product / max-sum yields maximum a 
posteriori (MAP) inference in any tree-

structured model

Viterbi decoder is special case for HMM



Variable Elimination

Two major limitations of variable elimination:

1. Computation exponential in size of the largest intermediate factor 
(equivalently, largest clique in clique tree)

2. Computation is not reused for computing a series of marginals

E.g. Suppose we use variable elimination to compute a 
marginal on an HMM with T nodes, each being K-valued 

• It takes               time to compute a single marginal
• It takes                time to compute all marginals
• We know forward-backward computes all marginals in   



Marginal Inference Algorithms
One Marginal All Marginals

Tr
ee

G
ra

ph

Elimination applied
to leaves of tree

Variable
Elimination

Belief Propagation (BP)
or sum-product

algorithm

Junction Tree Algorithm

BP on a junction tree
(special clique tree)



Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Theorem A clique tree resulting from variable elimination satisfies the 
running intersection property and is thus a junction tree

X1

X2

X3

X4

X5

X6

Clique tree edges are separator sets in original MRF…so clique tree 
encodes conditional independencies



Junction Tree
Definition (Running intersection) For any pair of clique nodes V,W all 
cliques on the unique path between V and W contain shared variables

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Junction Tree Not A Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3

X2

Not all clique trees are 
junction trees

Theorem A clique tree resulting from variable elimination satisfies the 
running intersection property and is thus a junction tree



Junction Trees and Triangulation

• A chord is an edge connecting two non-adjacent nodes in some cycle
• A cycle is chordless if it contains no chords
• A graph is triangulated (chordal) if it contains no chordless cycles of length 4 or more 

Theorem:  The maximal cliques of a graph have a corresponding 
junction tree if and only if that undirected graph is triangulated

 Key induction argument in constructing junction tree from triangulation
 Implies existence of elimination ordering which introduces no new edges

Lemma:  For a non-complete triangulated graph with at least 3 nodes, there is a decomposition of 
the nodes into disjoint sets A, B, S such that S separates A from B, and S is complete.



Induced Graph

X1

X2

X3

X4

X5

X6

Recall the induced graph is the union over intermediate graphs from 
running variable elimination

Intermediate
Factor Edges

The induced graph is chordal thus:
• Maximal cliques of the induced graph 

form a junction tree

• It admits an elimination ordering that 
introduces no new edges

Logic of junction tree algorithm:
1. Triangulate the graph

a. Implies a junction tree
b. Induces an elimination order

2. Run sum-product BP on junction tree 
to compute all clique marginals



Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Parallel (Synchronous) Updates
At iteration i update all messages in parallel using 
current messages mi-1 from previous iteration:

• Store, both, the previous messages (from iteration 
i-1) and current messages (from iteration i)

• Many convergence results assume parallel 
updates



Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the 
latest available messages:

• Simplifies updates since only need to keep track 
of one copy of messages

• Makes parallel processing trickier



Pseudocode from Murphy’s Textbook



Loopy BP works well empirically, but there are no guarantees:
• Not guaranteed to converge in general graphs
• BP marginal beliefs are approximations
• Empirically, when LBP converges it does so quickly and with good 

approximations

Loopy BP Convergence

Typical convergence measures are:

Max change:
Total change:

Convergence based on change in messages / marginal approximations:

or



Loopy BP on Factor Graphs
Set of neighbors of node s:

Marginal Distribution of Each Variable:

Loopy BP:
Message updates can 
be iteratively computed 
on graphs with cycles.

But marginals not 
guaranteed correct!

Marginal Distribution of Each Factor:
Clique of variables linked by factor.



Message Passing Inference Summary

• Brute-force enumeration exponential regardless of graph
• Sum-Product BP

• Exact inference in tree-structure graphs in O(TK2) time for T nodes, 
each taking K states

• Reduces to Forward-Backward in HMMs
• Same for Max-Product BP (reduces to Viterbi in HMMs)

• Variable elimination
• Exact marginals in general graphs
• Worst-case complexity exponential in size of largest clique
• Need to rerun from scratch for each marginal
• Complexity dependent on elimination order (NP-hard to optimize)



Message Passing Inference Summary
• Junction Tree Algorithm

• Exact marginals in general graphs
• Caches messages to compute all marginals
• Worst-case complexity exponential in size of largest clique
• Optimizing Jtree is NP-hard (corresponds to finding treewidth)

• Loopy BP
• BP updates only depend on tree-structured Markov blanket
• Approximate inference in loopy graphs
• No guarantees, but works well empirically in many instances
• Some techniques to improve convergence

• Message damping
• Asynchronous message update schedules
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Maximum Likelihood Estimation

Log-Likelihood Function 
doesn’t change argmax
since log is monotonic

Logarithm serves a couple of practical purposes:

If concave then just solve for zero-gradient solution,

1) Simplifies derivatives for conditionally independent data 

2) Avoids numerical under/overflow



MLE of Gaussian Mean
Assume data are i.i.d. univariate Gaussian,

Variance is known

Log-likelihood function:

Constant doesn’t 
depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:
1) Drop constant terms (in   )
2) Minimize negative log-likelihood



Regularized Maximum Likelihood

Penalty term R minimizes effect of outliers on estimator,

RegularizerRegularization weight

Example L2-regularized Least-Squares,

In regression setting these have 
various names: ridge regression, 

LASSOExample L1-regularized Least-Squares,
L1 is not differentiable, 
and so care must be 

taken in optimizer



Regularized Maximum Likelihood

Penalty term R minimizes effect of outliers on estimator,

RegularizerRegularization weight

Example L2-regularized Least-Squares,
In regression setting 

known as ridge regression

acts as pseudocount



MLE More Generally

Log-likelihood is typically non-convex, so we use numerical methods 
such as Gradient descent:

MLE has a closed-form in Gaussian models because they are convex:

Quadratic in Gaussian MLE

In this setting we cannot generally guarantee optimal MLE estimators



Maximum A Posteriori (MAP) Estimation

Recall the MAP estimator maximizes posterior probability,

Prior serves as regularizer in regularized MLE:

( Bayes’ rule )

( Probability Chain Rule )

( Monotonicity of Logarithm )

So conceptually, defining a regularizer in MLE imposes prior beliefs



MLE Summary

• Recall the trick of maximizing the p.d.f. by minimizing the negative log

• The Gaussian form for the likelihood led to a least-squares problem

• Least-squares solutions are tightly connected to assuming Gaussian distribution for the random 
effects (noise)

• If the random part is not Gaussian, then squared error may not make sense

• Squared error and Gaussian assumptions are mathematically very convenient but they are very 
sensitive to outliers (this motivates robust estimators)

• The least-squares solution leads to the average as being the “best” way to characterize a group 
of independent numbers, but there are other answers:
• Minimum absolute value for error
• Median
• Minimum risk / maximal gain



Marginal Likelihood Calculation

Recall the Gaussian Mixture Model…

Marginal Likelihood (likelihood function):

Sum over all possible KN assignments,
which we cannot compute

Clustering

Motivation Approximate MLE / MAP when we 
cannot compute the marginal likelihood in 

closed-form



Expectation Maximization

Initialize Parameters:
At iteration t do:

E-Step:

M-Step:
Until convergence

Complete Data Log-Likelihood



Example: Gaussian Mixture Model

Commonly refer to q(zn) as responsibility

E-Step:



Example: Gaussian Mixture Model

M-Step:

Start with mean parameter     , 

where



EM Lower Bound

Bound gap is the Kullback-Leibler divergence KL(q||p),

( Multiply by 1 )

( Definition of KL )

 Similar to a “distance” between q and p

 This is why solution to E-step is 



Properties of Expectation Maximization Algorithm

Sequence of bounds is monotonic,

Guaranteed to converge 
(Pf. Monotonic sequence bounded above.)

Converges to a local maximum of the 
marginal likelihood 

After each E-step bound is tight at
so likelihood calculation is exact (for those 
parameters)



MAP EM

Easily extends to (approximate) MAP estimation,

E-step unchanged / Slightly modifies M-step,
E-Step M-Step

Properties of both MLE / MAP EM
• Monotonic in             or                             (for MAP)
• Provably converge to local optima (hence approximate estimation)



Learning Summary

Maximum a posteriori (MAP) maximizes posterior probability,

Parameters are random quantities with prior        .

Corresponds to regularized MLE for specific prior/regularizer pair,

Gaussian prior=L2, Laplacian prior=L1

Straightforward sequential updating, e.g. Bayesian linear regression



Learning Summary

 Most models will not yield closed-form MLE/MAP estimates

 Gradient-based methods optimize log-likelihood function

 Expectation Maximization (EM) alternative to gradient methods

 Both approaches approximate for non-convex models
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