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Administrivia

• HW1 will be graded by end of week
• HW2 will be out this Wednesday



Outline

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent 
a probability distribution*

Probability Model:
Graphical Model:

The graphical model structure obeys the factorization of the 
probability function in a sense we will formalize later

* We will use the term “distribution” loosely to refer to a CDF / PDF / PMF



Graphical Models

[Source: Erik Sudderth, PhD Thesis]

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models



Graphical Models

Bayes Network Factor Graph Markov Random Field

A variety of graphical models can represent the same 
probability distribution

Undirected ModelsDirected Models
[Source: Erik Sudderth, PhD Thesis]



Chain Rule of Probability

Recall the probability chain rule says that we can decompose 
any joint distribution as a product of conditionals….

Valid for any ordering of the random variables…

For a collection of N RVs and any permutation   : 



Conditional Independence

Recall two RVs     and    are conditionally 
independent given     (or                   ) iff:

Idea Apply chain rule with ordering that 
exploits conditional independencies to 

simplify the terms

Ex. Suppose                     and                     then:
Can visualize conditional 

dependencies using directed 
acyclic graph (DAG)



Directed Graphs

Def. A directed graph is a graph with edges               (arcs) 
connecting parent vertex           to a child vertex           

Def. Parents of vertex          are given by the 
set of nodes with arcs pointing to   ,

Children of          are given by the set,

Ancestors are parents-of-parents.  
Descendants are children-of-children.



Bayes Network

Model factors are normalized conditional distributions:

Directed acyclic graph (DAG) specifies 
factorized form of joint probability:

Parents of node s

Locally normalized factors yield globally 
normalized joint probability



Shading & Plate Notation
Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

Y

Xj
D

Plates denote 
replication of 
random variables

Naïve
Bayes
Model

Features X are 
conditionally 
independent, 

given Y



Inference
Interpret inference as inverting arrows in the graphical model

Y

Xj
D

Naïve
Bayes

Generative 
Model

Y

X

Posterior 
Model

Posterior Marginal
Likelihood



Bayes nets are easily simulated via ancestral sampling…

Sample all nodes with no parents, then children, etc., to 
terminals.  Can sample nodes at same level in parallel.

Example: Gaussian Mixture Model

Probability Model Bayes Net Joint Sample



a

What is the joint factorization?



p(a,b,c) = p(a)p(b)p(c)

a



a

Are a and b independent (          )?

p(a,b,c) = p(a)p(b)p(c)



p(a,b,c) = p(a)p(b|a)p(c|a,b)

Note there are no conditional independencies (fully connected graph)



Three interesting cases

Tail-to-tail

Head-to-tail

Head-to-head



Three interesting cases

For each case, consider two questions:  



Case one (tail-to-tail)

If you know a, that informs you about c (by 
Bayes) which informs you about b.



Case one (tail-to-tail)

We can prove this intuitive claim with a counter example.
(HW question)



Case one where c is observed



Case one (tail-to-tail) summary

Tail-to-tail case
With no conditioning, no independence
With conditioning, we have independence 



Case two (head-to-tail)

If you know a, that informs you about c, which 
informs you about b.



Case two (head-to-tail)



Case two (head-to-tail)



Homework Question



Case two where c is observed



Case two where c is observed



Case two where c is observed



Case two where c is observed



Case two where c is observed

✓



Case two (head-to-tail) summary

Head-to-tail case
With no conditioning, no independence
With conditioning, we have independence 

(Same as case one!)



a
b

c

Are b and c independent (         )?

c

b b

c



p(a,b,c) = p(a)p(b)p(c|a,b)

a b

c

Are a and b independent (         )?



a b

c

Are a and b independent (         )?



p(a,b,c) = p(a)p(b)p(c|a,b)

a b

c

Are a and b conditionally independent (                )?



a b

c

Are a and b conditionally independent (                )?

Attempt at 
algebraic 

proof.

Unless the algebra 
reduces to something 

obviously false, we 
typically look for a 
counter example 



a b

c

a b

c

Phenomenon in Bayes networks known 
as explaining away

Both latent variables must explain same 
observed data so become dependent

Object Pose

Image



Administrivia

• HW2
• Will be posted right after class
• Due Wed, Sep 30, 11:59pm

• HW1: Being graded



Markov Properties

How can we be sure a PGM is correct for a distribution p(x)?

Probability Model:
Graphical Model:

It must satisfy all of the conditional independencies of p(x), then 
we say p(x) is Markov with respect to the graph.



To test if                  imagine rolling a “ball” from X towards Z  

Bayes Ball Algorithm
[Source: Michael I Jordan]

The ball follows rules defined by the 
canonical 3-node subgraphs we’ve discussed

The ball passes freely 
from X-to-Z, we say it 
does not block so:



To test if                  imagine rolling a “ball” from X towards Z  

Bayes Ball Algorithm
[Source: Michael I Jordan]

The ball follows rules defined by the 
canonical 3-node subgraphs we’ve discussed

The ball is blocked so:



To test if                          roll ball from every node in       …

Bayes Ball Algorithm

If any ball reaches any 
node in       then      

Otherwise:

Tests for property of directed separation (d-separation): if       
separates / blocks      from       then     .



Bayes Ball Algorithm

Tail-to-Tail

Head-to-Head

Head-to-TailBlocks

Doesn’t
Block Blocks

Blocks

Doesn’t
Block

Doesn’t
Block



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Pa(X)

Ch(X)



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

CoPa(X)

Q: Why co-parents?
A: Explaining away



Markov Blanket

conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x) 
that is Markov w.r.t. graph                  
has a Markov blanket given by:

For any                     :

Markov blanket used to simplify inference and distribute computation 
(e.g. Gibbs sampler, variational inference, etc.)



Directed Models Summary

• Distribution factorized as product of conditionals via chain rule

• Choose ordering where terms simplify due to conditional independence
Eg. Suppose                     and                     then:

• Directed graph encodes factorized distribution via conditional 
independence properties

Tail-to-tail

Head-to-tail

Head-to-head

• Test independence using canonical subgraphs:

• Straightforward simulation via 
ancestral sampling



Outline

Directed graphical models
• Bayes Nets
• Conditional dependence

Undirected graphical models
• Markov random fields (MRFs)
• Factor graphs



Factorized Probability Distributions

A probability distribution over RVs                           can be 
written as a product of factors,

Where:
• a collection of subsets of indices
• are nonnegative factors (or potential functions)
• the normalizing constant (or partition function)

A minimal factorization is one where all 
factors are maximal cliques (not a strict 
subset of any other clique) in the MRF



Undirected Graphical Models

A graph is a set of vertices    and edges    .  An edge                 
connects two vertices             .

In undirected models edges are specified 
irrespective of node ordering so that,

Distributions are typically specified with 
unknown normalization (easier to specify),



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Complete Graph



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Clique



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example all the following are “valid”:Pairwise Cliques

A factorization is valid if it satisfies the Global 
Markov property, defined by conditional 

independencies



We say      and      are independent
or               if:

Conditional Independence (Undirected)

We say they are conditionally
independent or                       if:

[ Source: Michael I. Jordan]

Conditional independence
in undirected graphical models
is defined by separating sets

Def. We say        is globally Markov
w.r.t.     if                       in any 
separating set of    .



Global & Local Markov Properties

• Set B separates A from C if all paths from A to C pass through B
• By definition, distribution is Markov if and only if for any B separating A and C:

Global Markov Property

Local Markov Property
• Given its neighbors, each node is independent of all other variables

• This local Markov property is a special case of the global Markov property
[Source: Erik Sudderth]

Markov blanket only includes
immediate neighbors (we needed

co-parents in Bayes nets)



Hammersley-Clifford Theorem

Global Markov Property
(Graph Separation Implies Independence)

Joint Factorization
(Potential Function for Each Clique)



Pairwise Markov Random Field

Likelihood Prior

Restricted class of MRFs
• 2-node factor exists for every edge
• Explicit factorization of joint distribution
• High-order factors not always easily 

decomposed into pairwise terms

Unknown
Variables

Observations

Often easier to specify and do inference on pairwise model



Example: Image Segmentation
[Source: Kundu, A. et al., CVPR16]

L2 Likelihood:

Pairwise MRF energy:

Low energy configurations = High probability

MAP (minimum energy) configuration = Piecewise constant regions

Don’t need
to know log-
partition to

specify model

Potts model:

Don’t need to specify
normalized conditionals

as in Bayes Nets



Transformations of Undirected Models

[Source: Erik Sudderth]



Factor Graphs

A hypergraph where a hyperedge is a subset 
of vertices          .

Factor node for each product term in the joint 
factorization:

where                            the set of variables in 
factor f.  For example:           

Graphical model makes
factorization explicit



Example: Low Density Parity Check Codes

Sparse Parity Check MatrixFactor Graph Representation

Noisy 
Channel

Transmitted Code Received Code

Decoder

[Source: David MacKay]



Example: Low Density Parity Check Codes

• Valid codes have zero parity:
• Chanel noise model arbitrary, e.g. flip bits w/    probability:

Sparse Parity Check MatrixFactor Graph Representation

n-th bit [Source: David MacKay]



Simulation

Top-Level
Nodes

Children

Descendants

Bayes Nets Ancestral sampling successively samples from conditionals:

so

Undirected Graphs Lack locally normalized conditionals to sample from



Undirected Models Summary

• Easier to specify models compared to Bayes nets since:
• Factors do not need to be normalized conditional probabilities
• May specify up to unknown normalization constant

• Joint factorization as nonnegative factors (potentials) over subsets:

• Easier to verify Markov independence via separating sets

• Factorization ambiguous in MRFs, but explicit in
factor graphs (factor graphs generally preferred)

• Simulation is not easy in general.  Can’t do 
ancestral sampling. 
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