

CSC535: Probabilistic Graphical Models

Probabilistic Graphical Models

Prof. Jason Pacheco

Administrivia

- HW1 will be graded by end of week
- HW2 will be out this Wednesday

Outline

Directed graphical models

- Bayes Nets
- Conditional dependence

Undirected graphical models

- Markov random fields (MRFs)
- Factor graphs

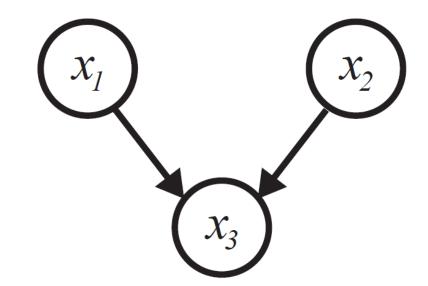
From Probabilities to Pictures

A probabilistic graphical model allows us to pictorially represent a probability distribution*

Probability Model:

$$p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2)$$

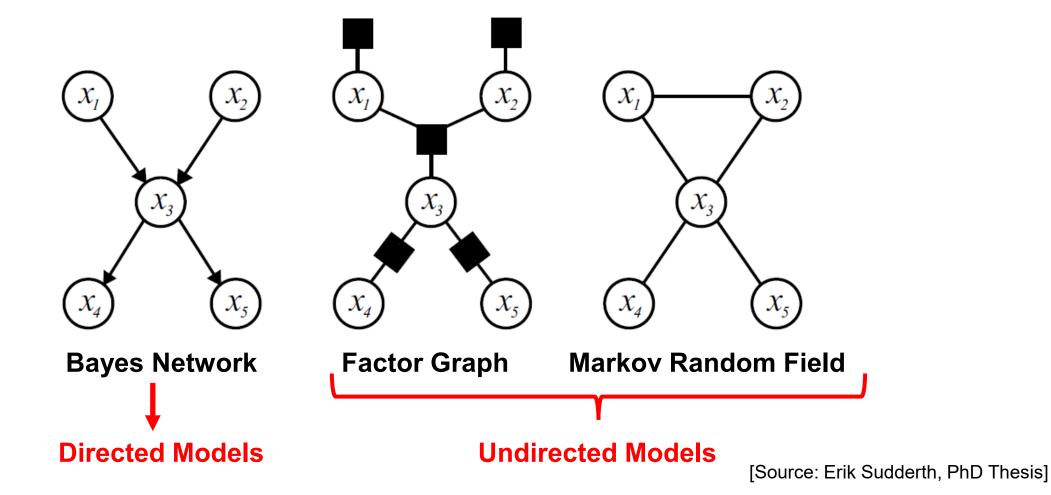
Graphical Model:



The graphical model structure *obeys* the factorization of the probability function in a sense we will formalize later

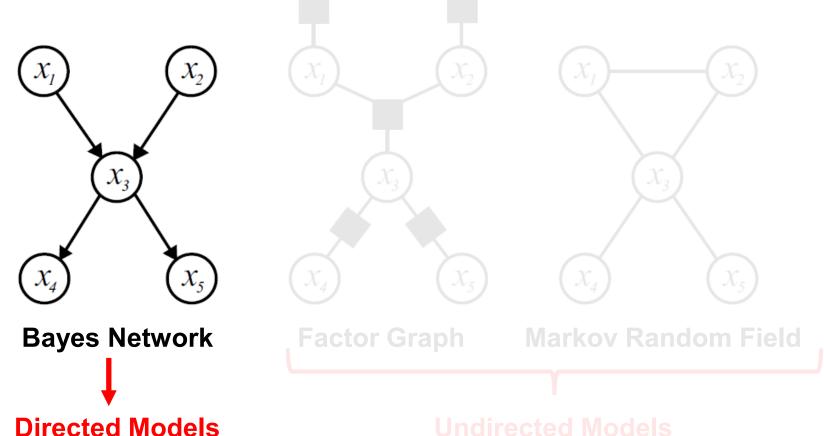
Graphical Models

A variety of graphical models can represent the same probability distribution



Graphical Models

A variety of graphical models can represent the same probability distribution



[Source: Erik Sudderth, PhD Thesis]

Chain Rule of Probability

Recall the **probability chain rule** says that we can decompose any joint distribution as a product of conditionals....

$$p(x_1, x_2, x_3, x_4) = p(x_1)p(x_2 \mid x_1)p(x_3 \mid x_1, x_2)p(x_4 \mid x_1, x_2, x_3)$$

Valid for any ordering of the random variables...

$$p(x_1, x_2, x_3, x_4) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_1, x_3)p(x_2 \mid x_1, x_3, x_4)$$

For a collection of N RVs and any permutation ρ :

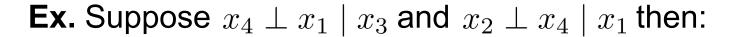
$$p(x_1, \dots, x_N) = p(x_{\rho(1)}) \prod_{i=2}^N p(x_{\rho(i)} \mid x_{\rho(i-1)}, \dots, x_{\rho(1)})$$

Conditional Independence

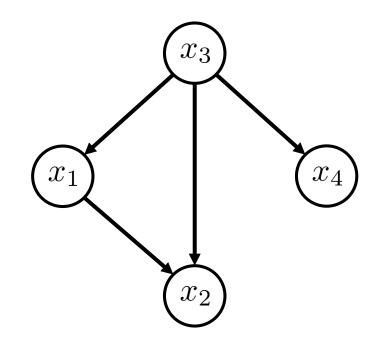
Recall two RVs X and Y are **conditionally independent** given Z (or $X \perp Y \mid Z$) iff:

$$p(X \mid Y, Z) = p(X \mid Z)$$

Idea Apply chain rule with ordering that exploits conditional independencies to simplify the terms



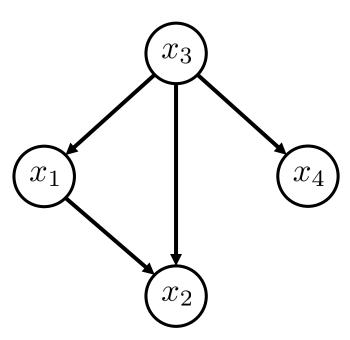
$$p(x) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_1, x_3)p(x_2 \mid x_1, x_3, x_4)$$
$$= p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_3)p(x_2 \mid x_1, x_3)$$



Can visualize conditional dependencies using directed acyclic graph (DAG)

Directed Graphs

Def. A <u>directed graph</u> is a graph with edges $(s, t) \in \mathcal{E}$ (arcs) connecting parent vertex $s \in \mathcal{V}$ to a child vertex $t \in \mathcal{V}$



Def. Parents of vertex $t \in \mathcal{V}$ are given by the set of nodes with arcs pointing to t,

$$Pa(t) = \{s : (s, t) \in \mathcal{E}\}$$

Children of $t \in \mathcal{V}$ are given by the set,

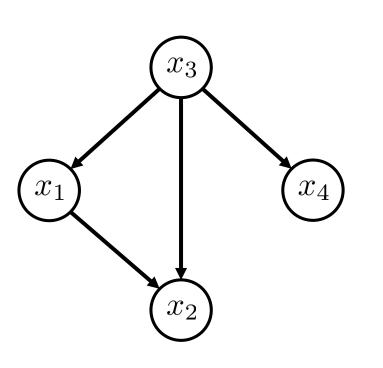
$$Ch(t) = \{t : (t, k) \in \mathcal{E}\}\$$

Ancestors are parents-of-parents.

Descendants are children-of-children.

Bayes Network

Model factors are normalized conditional distributions:



$$p(x) = \prod_{s \in \mathcal{V}} p(x_s \mid x_{\text{Pa}(s)})$$
Parents of node s

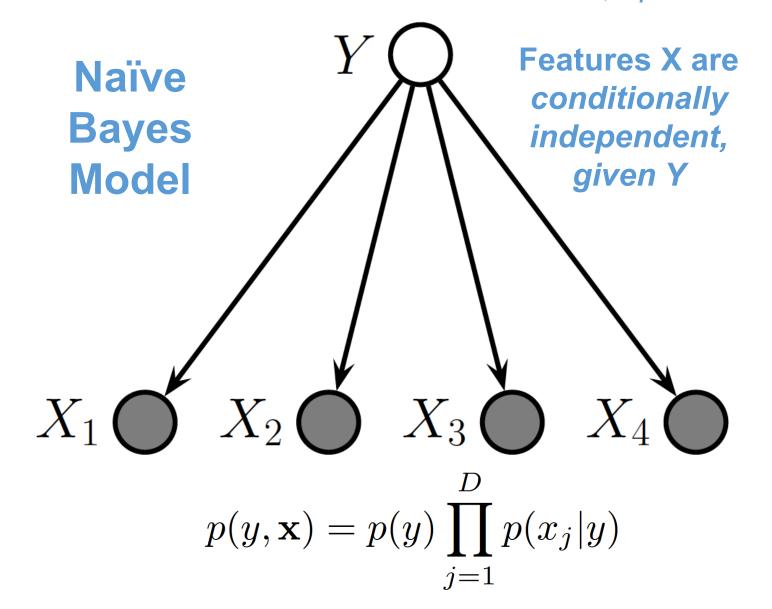
Directed acyclic graph (DAG) specifies factorized form of joint probability:

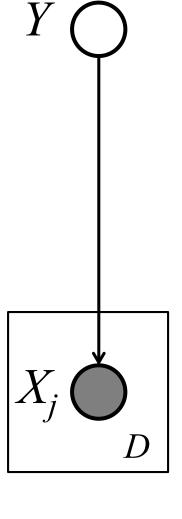
$$p(x) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_3)p(x_2 \mid x_1, x_3)$$

Locally normalized factors yield globally normalized joint probability

Shading & Plate Notation

Convention: Shaded nodes are observed, open nodes are latent/hidden/unobserved

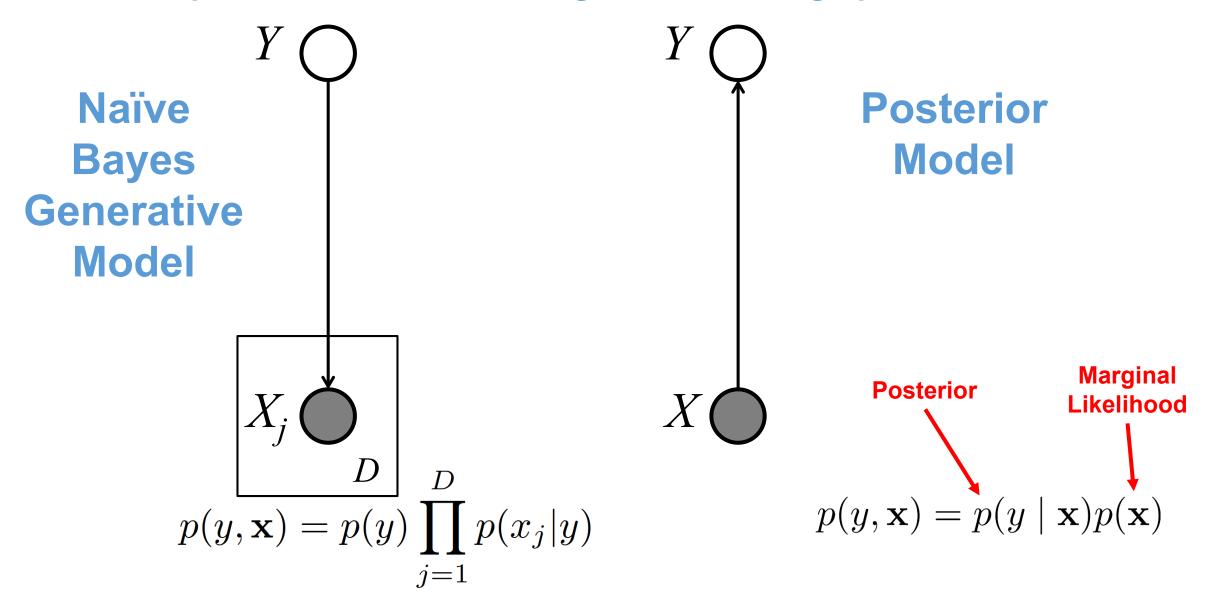




Plates denote replication of random variables

Inference

Interpret inference as inverting arrows in the graphical model



Example: Gaussian Mixture Model

Bayes nets are easily simulated via ancestral sampling...

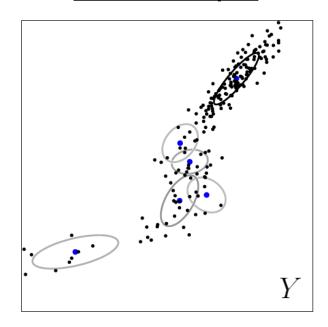
Probability Model

$$\pi \sim \text{Dirichlet}(\cdot)$$
 $\mu_k \sim \mathcal{N}(\cdot)$
 $\sigma_k \sim \text{Inv-Gamma}(\cdot)$
 $z_n \mid \pi \sim \text{Cat}(\pi)$
 $y_n \mid z_n, \mu_{z_n}, \sigma_{z_n} \sim \mathcal{N}(\mu_{z_n}, \sigma_{z_n})$

Bayes Net

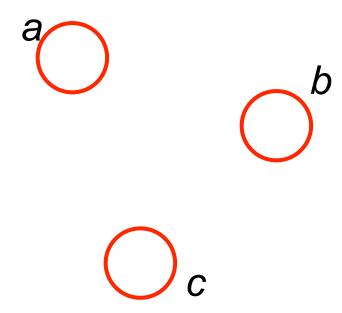


Joint Sample

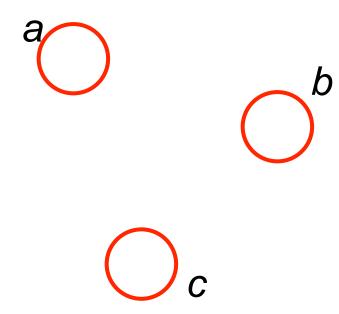


Sample all nodes with no parents, then children, etc., to terminals. Can sample nodes at same level in parallel.

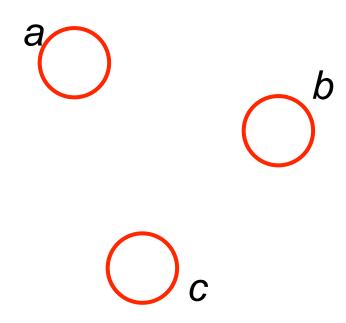
What is the joint factorization?



$$p(a,b,c) = p(a)p(b)p(c)$$

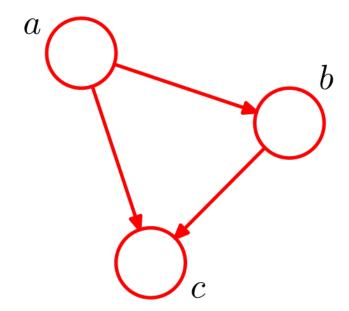


Are a and b independent ($a \perp b$)?



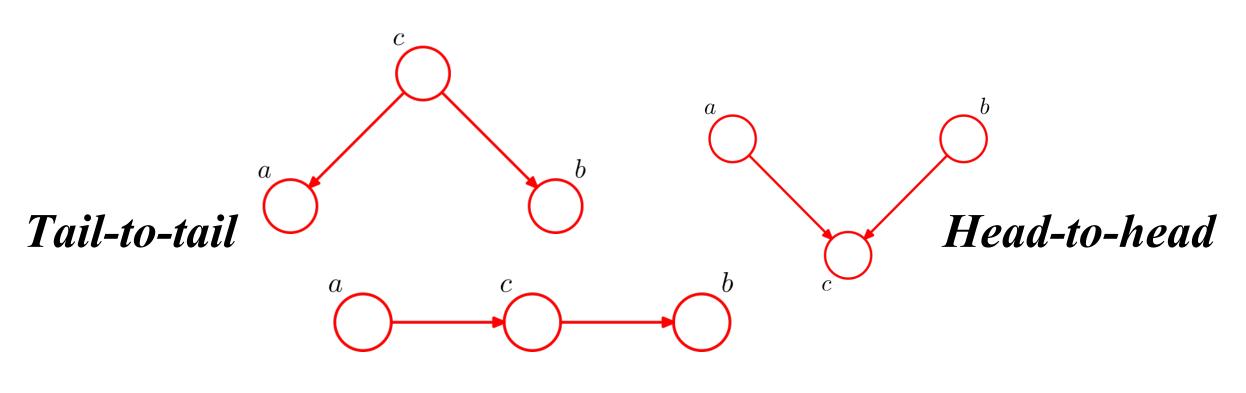
p(a,b,c) = p(a)p(b)p(c)

$$p(a,b,c) = p(a)p(b|a)p(c|a,b)$$



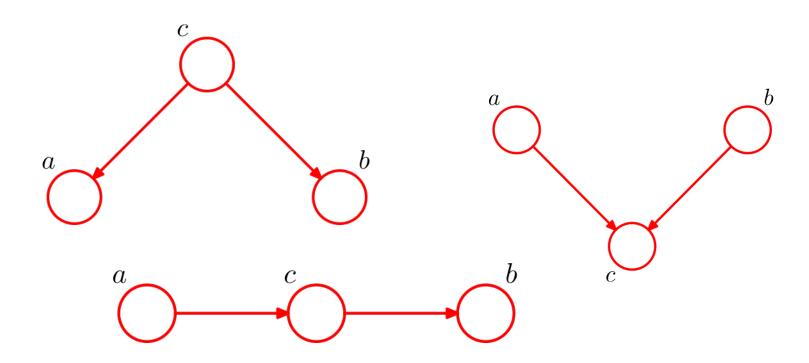
Note there are **no conditional independencies** (fully connected graph)

Three interesting cases



Head-to-tail

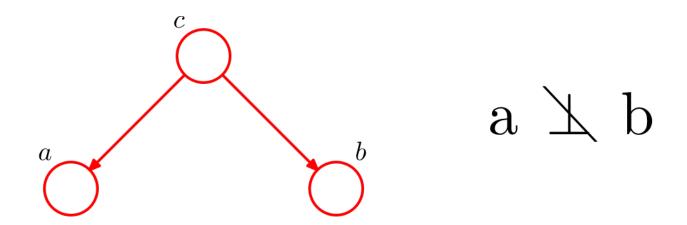
Three interesting cases



For each case, consider two questions:

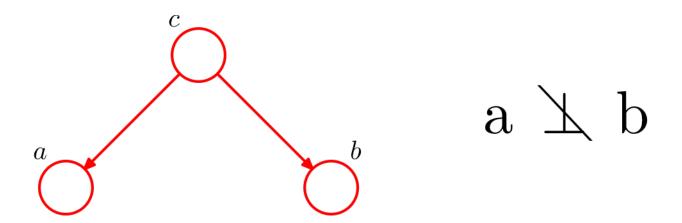
- 1) Is $a \perp b$?
- 2) Is $a \perp b \mid c$? (i.e. c is observed)

Case one (tail-to-tail)

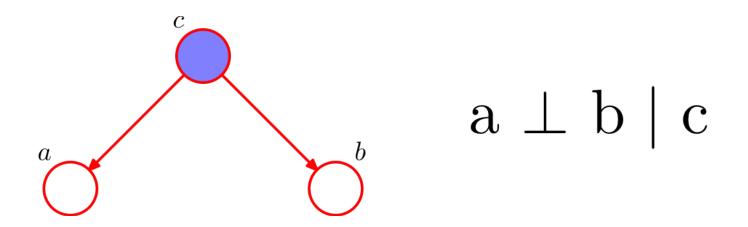


If you know a, that informs you about c (by Bayes) which informs you about b.

Case one (tail-to-tail)



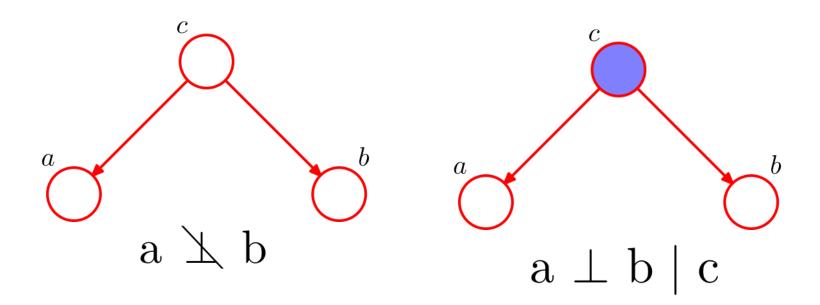
We can prove this intuitive claim with a counter example. (HW question)



$$p(a,b,c) = p(c)p(a|c)p(b|c)$$
 (what the graph represents in general) $p(a,b|c) = p(a|c)p(b|c)$ (with c observed)

This is the definition of $a \perp b|c$

Case one (tail-to-tail) summary

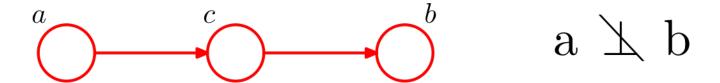


Tail-to-tail case
With no conditioning, no independence
With conditioning, we have independence

Case two (head-to-tail)

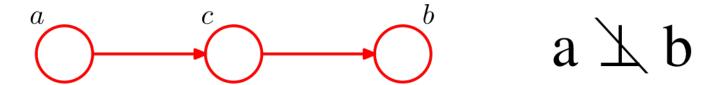
If you know a, that informs you about c, which informs you about b.

Case two (head-to-tail)



The graph represents p(a,b,c) = p(a)p(c|a)p(b|c)

Case two (head-to-tail)



The graph represents p(a,b,c) = p(a)p(c|a)p(b|c)

Algebraically,

$$p(a,b) = \sum_{c} p(a,b,c) = p(a) \sum_{c} p(c|a) p(b|c)$$

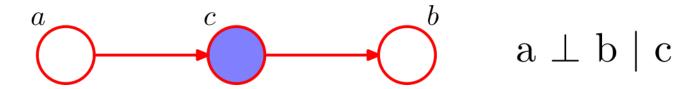
If $a \perp b$ then the above would also have to be equal to p(a)p(b)

$$p(a,b) = \sum_{c} p(a,b,c) = p(a) \sum_{c} p(c|a) p(b|c)$$

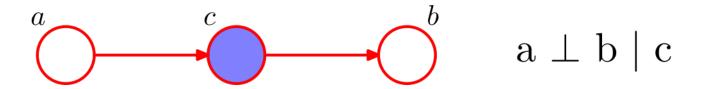
If $a \perp b$ then the above **also** equals p(a)p(b)

To prove the claim that a \searrow b we can construct a counter example where the above is false.

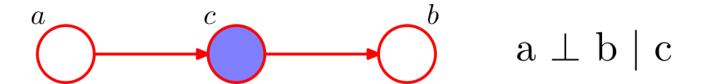
Homework Question



$$p(a,b \mid c) = \frac{p(a,b,c)}{p(c)}$$
 (why?)



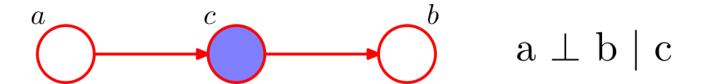
$$p(a,b \mid c) = \frac{p(a,b,c)}{p(c)}$$
 (definition)
$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
 (why?)



$$p(a,b \mid c) = \frac{p(a,b,c)}{p(c)}$$
 (definition)

$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
 (from graph)

$$= \frac{p(a)p(a|c)p(c)p(b|c)}{p(a)p(c)}$$
 (why?)

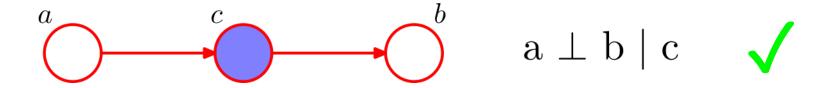


$$p(a,b \mid c) = \frac{p(a,b,c)}{p(c)}$$
 (definition)

$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
 (from graph)

$$= \frac{p(a)p(a|c)p(c)p(b|c)}{p(a)p(c)}$$
 (Bayes on $p(c|a)$)

$$= p(a|c)p(b|c)$$
 (why?)



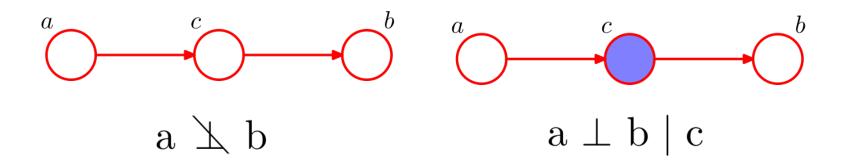
$$p(a,b \mid c) = \frac{p(a,b,c)}{p(c)}$$
 (definition)

$$= \frac{p(a)p(c|a)p(b|c)}{p(c)}$$
 (from graph)

$$= \frac{p(a)p(a|c)p(c)p(b|c)}{p(a)p(c)}$$
 (Bayes on $p(c|a)$)

$$= p(a|c)p(b|c)$$
 (canceling factors)

Case two (head-to-tail) summary

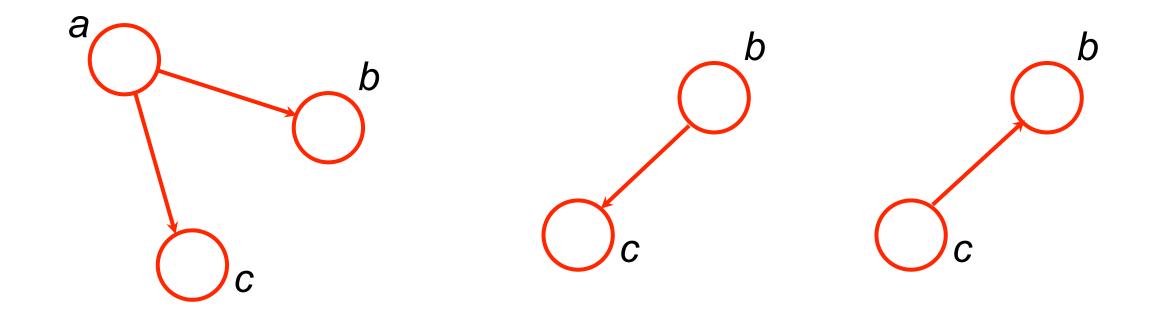


Head-to-tail case
With no conditioning, no independence
With conditioning, we have independence

(Same as case one!)

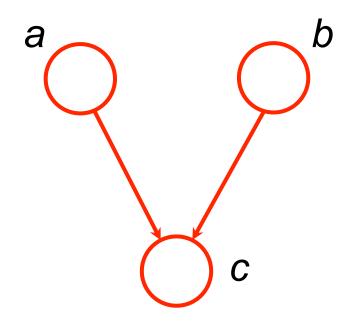
Are b and c independent $(b \perp c)$?

$$p(b,c) = \sum_{a} p(a)p(b \mid a)p(c \mid a) = p(b)p(c \mid b) = p(c)p(b \mid c)$$



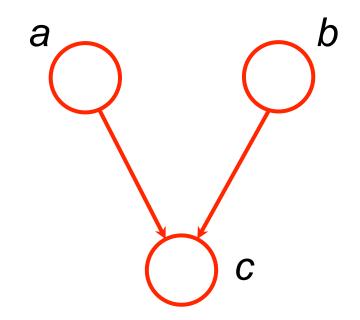
$$p(b,c) \neq p(b)p(c)$$

Are a and b independent ($a \perp b$)?



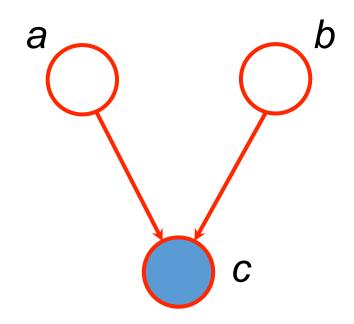
p(a,b,c) = p(a)p(b)p(c|a,b)

Are a and b independent $(a \perp b)$?



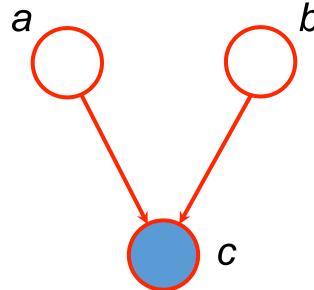
$$p(a,b) = \sum_{c} p(a)p(b)p(c \mid a,b) = p(a)p(b)$$

Are a and b conditionally independent ($a \perp b \mid c$)?



$$p(a,b,c) = p(a)p(b)p(c|a,b)$$

Are a and b conditionally independent ($a \perp b \mid c$)?

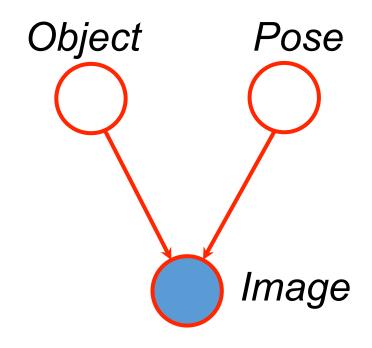


Attempt at algebraic proof.

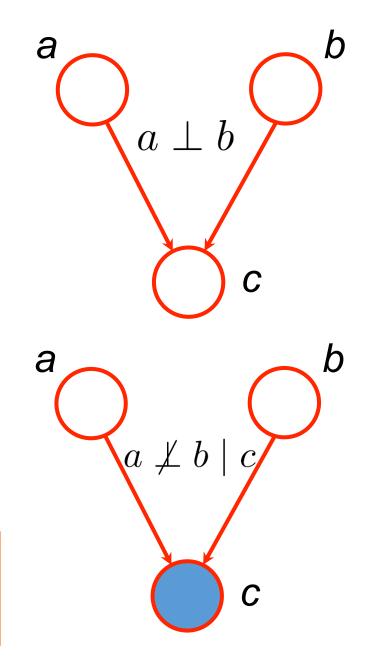
 $p(a,b|c) = \frac{p(a,b,c)}{p(c)}$ $= \frac{p(a)p(b)p(c|a,b)}{p(c)}$ $\neq p(a|c)p(b|c) \quad \text{(in general)}$

Unless the algebra reduces to something obviously false, we typically look for a counter example

Both latent variables must explain same observed data so become dependent



Phenomenon in Bayes networks known as **explaining away**



Administrivia

- HW2
 - Will be posted right after class
 - Due Wed, Sep 30, 11:59pm
- HW1: Being graded

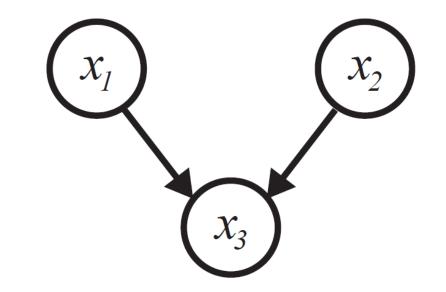
Markov Properties

How can we be sure a PGM is **correct** for a distribution p(x)?

Probability Model:

$$p(x_1, x_2, x_3) = p(x_1)p(x_2)p(x_3 \mid x_1, x_2)$$

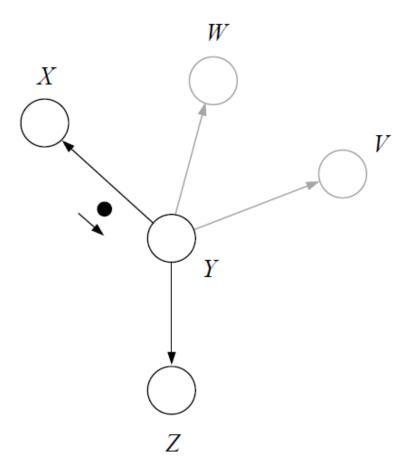
Graphical Model:



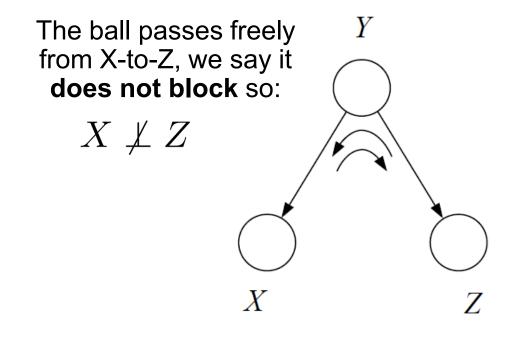
It must satisfy **all** of the conditional independencies of p(x), then we say p(x) **is Markov with respect to** the graph.

[Source: Michael I Jordan]

To test if $X \perp Z \mid Y$ imagine rolling a "ball" from X towards Z

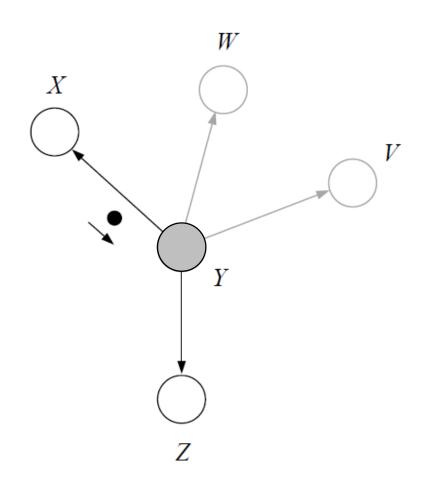


The ball follows rules defined by the canonical 3-node subgraphs we've discussed

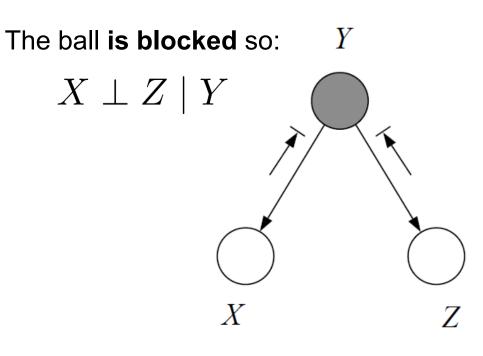


[Source: Michael I Jordan]

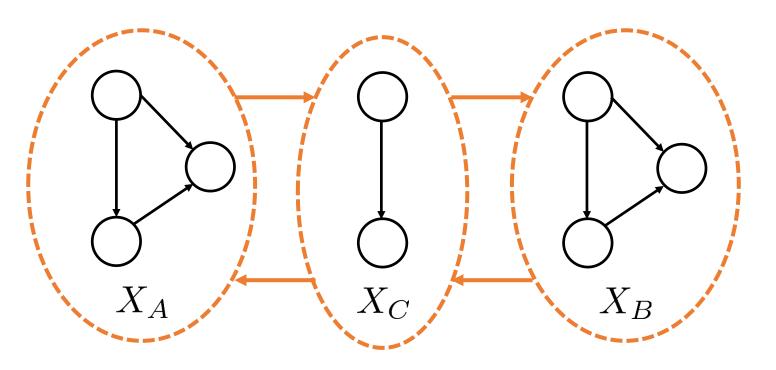
To test if $X \perp Z \mid Y$ imagine rolling a "ball" from X towards Z



The ball follows rules defined by the canonical 3-node subgraphs we've discussed



To test if $X_A \perp X_B \mid X_C$ roll ball from every node in X_A ...



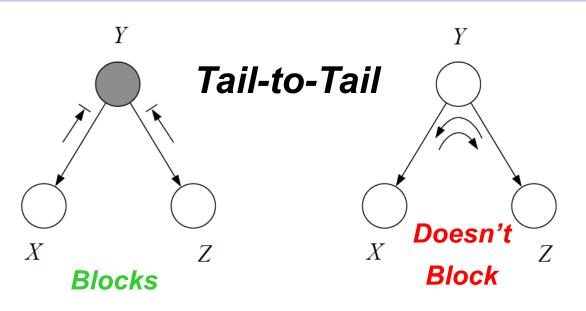
If any ball reaches any node in X_B then

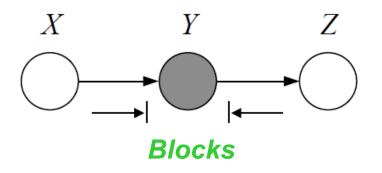
 $X_A \not\perp X_B \mid X_C$

Otherwise:

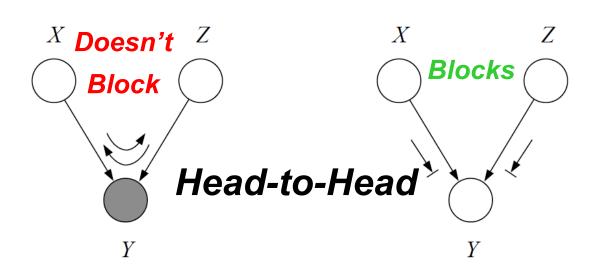
$$X_A \perp X_B \mid X_C$$

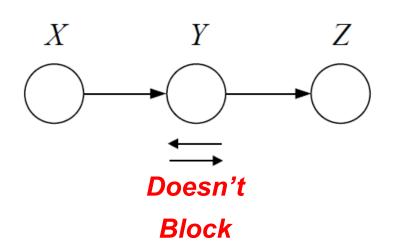
Tests for property of *directed separation* (d-separation): if X_C separates / blocks X_A from X_B then $X_A \perp X_B \mid X_C$





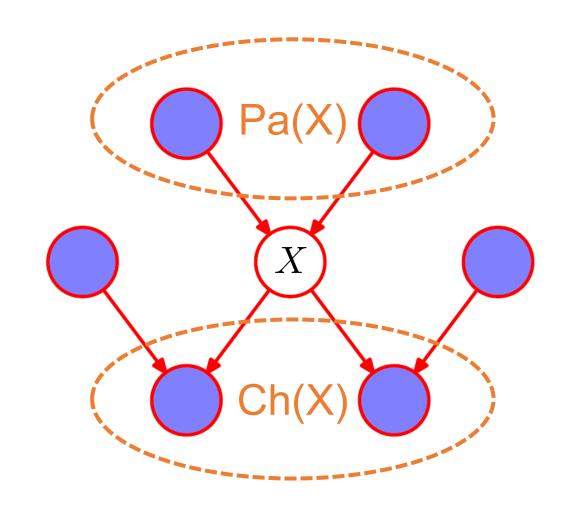
Head-to-Tail





Markov Blanket

X conditionally independent of all other nodes, given its Markov blanket

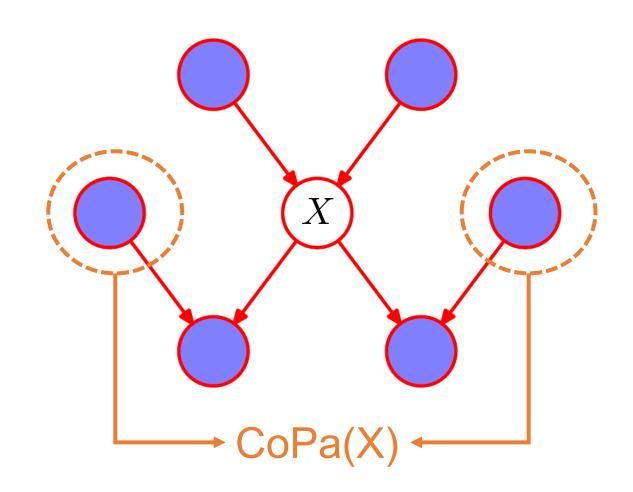


Markov Blanket

X conditionally independent of all other nodes, given its Markov blanket

Q: Why co-parents?

A: Explaining away



Markov Blanket

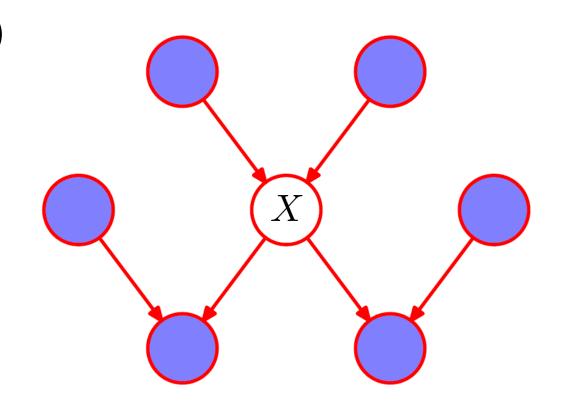
X conditionally independent of all other nodes, given its Markov blanket

Definition A RV X with distribution p(x) that is Markov w.r.t. graph $G = (V, \mathcal{E})$ has a **Markov blanket** given by:

$$\mathrm{Mb}(X) = \mathrm{Pa}(X) \cup \mathrm{Ch}(X) \cup \mathrm{CoPa}(X)$$

For any $Y \notin \mathrm{Mb}(X)$:

$$X \perp Y \mid \mathrm{Mb}(X)$$



Markov blanket used to simplify inference and distribute computation (e.g. Gibbs sampler, variational inference, etc.)

Directed Models Summary

Distribution factorized as product of conditionals via chain rule

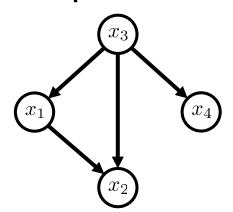
$$p(x_1, x_2, x_3, x_4) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_1, x_3)p(x_2 \mid x_1, x_3, x_4)$$

Choose ordering where terms simplify due to conditional independence

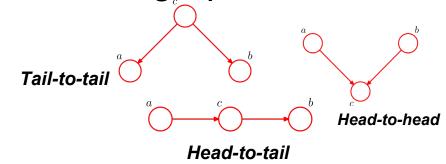
Eg. Suppose $x_4 \perp x_1 \mid x_3$ and $x_2 \perp x_4 \mid x_1$ then:

$$p(x) = p(x_3)p(x_1 \mid x_3)p(x_4 \mid x_3)p(x_2 \mid x_1, x_3)$$

 Directed graph encodes factorized distribution via conditional independence properties



- Test independence using canonical subgraphs:
- Straightforward simulation via ancestral sampling



Outline

Directed graphical models

- Bayes Nets
- Conditional dependence

Undirected graphical models

- Markov random fields (MRFs)
- Factor graphs

Factorized Probability Distributions

A probability distribution over RVs $x = (x_1, \dots, x_d)$ can be written as a product of factors,

$$p(x) = \frac{1}{Z} \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

A minimal factorization is one where all factors are maximal cliques (not a strict subset of any other clique) in the MRF

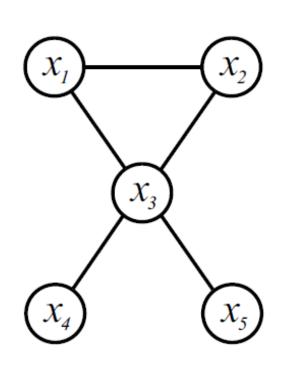
Where:

- C a collection of subsets of indices $\{1,\ldots,d\}$
- $\psi(\cdot)$ are nonnegative factors (or potential functions)
- Z the normalizing constant (or partition function)

$$Z = \int \prod_{c \in \mathcal{C}} \psi_c(x_c) \, dx_c$$

Undirected Graphical Models

A graph $\mathcal{G}=(\mathcal{V},\mathcal{E})$ is a set of vertices \mathcal{V} and edges \mathcal{E} . An edge $(s,t)\in\mathcal{E}$ connects two vertices $s,t\in\mathcal{V}$.



In undirected models edges are specified irrespective of node ordering so that,

$$(s,t) \in \mathcal{E} \Leftrightarrow (t,s) \in \mathcal{E}$$

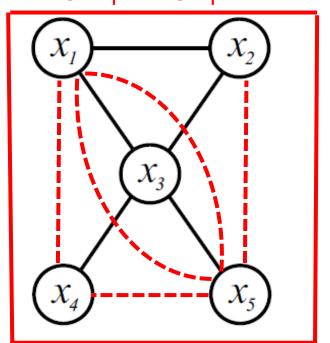
Distributions are typically specified with unknown normalization (easier to specify),

$$p(x) \propto \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in \mathcal{C}$ (fully connected subgraph) in the MRF

Complete Graph

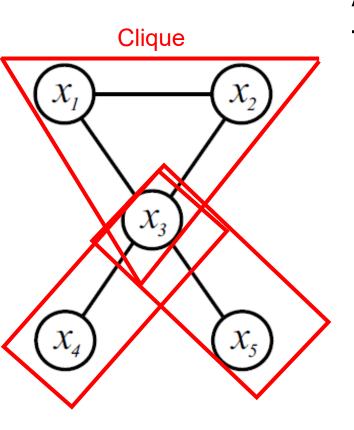


An MRF does not imply a unique factorization, for example all the following are "valid":

$$\psi(x_1, x_2, x_3, x_4, x_5)$$

Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in \mathcal{C}$ (fully connected subgraph) in the MRF



An MRF does not imply a unique factorization, for example all the following are "valid":

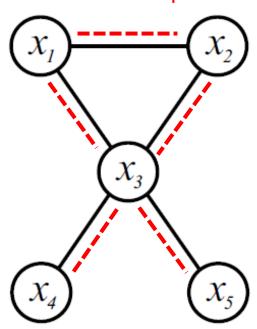
$$\psi(x_1, x_2, x_3, x_4, x_5)$$

$$\psi(x_1, x_2, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$$

Markov Random Fields (MRFs)

A factor $\psi_c(x_c)$ corresponds to a clique $c \in \mathcal{C}$ (fully connected subgraph) in the MRF

Pairwise Cliques



An MRF does not imply a unique factorization, for example all the following are "valid":

$$\psi(x_1, x_2, x_3, x_4, x_5)$$

$$\psi(x_1, x_2, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$$

$$\psi(x_1, x_2)\psi(x_2, x_3)\psi(x_1, x_3)\psi(x_3, x_4)\psi(x_3, x_5)$$

A factorization is *valid* if it satisfies the *Global* Markov property, defined by conditional independencies

Conditional Independence (Undirected)

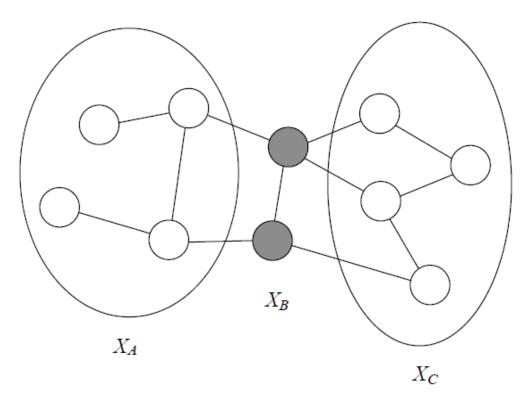
We say x_A and x_C are independent or $x_A \perp \!\!\! \perp x_C$ if:

$$p(x_A, x_C) = p(x_A)p(x_C)$$

We say they are *conditionally* independent or $x_A \perp \!\!\! \perp x_C \mid x_B$ if:

$$p(x_A, x_C \mid x_B) = p(x_A \mid x_B)p(x_C \mid x_B)$$

Def. We say p(x) is *globally Markov* w.r.t. \mathcal{G} if $x_A \perp \!\!\! \perp x_C \mid x_B$ in any separating set of \mathcal{G} .



Conditional independence in undirected graphical models is defined by separating sets

Global & Local Markov Properties

Global Markov Property

- Set B separates A from C if all paths from A to C pass through B
- By definition, distribution is Markov if and only if for any B separating A and C:

$$p(x_A, x_C \mid x_B) = p(x_A \mid x_B)p(x_C \mid x_B)$$

$$p(x_A \mid x_B, x_C) = p(x_A \mid x_B)$$
 $p(x_C \mid x_B, x_A) = p(x_C \mid x_B)$

Local Markov Property

• Given its *neighbors*, each node is independent of all other variables

$$p(x_s \mid x_{\mathcal{V} \setminus s}) = p(x_s \mid x_{\Gamma(s)})$$
 Markov blanket only includes immediate neighbors (we needed co-parents in Bayes nets)

This local Markov property is a special case of the global Markov property

[Source: Erik Sudderth]

Hammersley-Clifford Theorem

Thorem (Hammersley-Clifford). Let C denote the set of cliques of an undirected graph G. A probability distribution defined as a normalized product of non-negative potential functions on those cliques is then always Markov with respect to G:

$$p(x) \propto \prod_{c \in \mathcal{C}} \psi_c(x_c)$$

Conversely, any strictly positive density which is Markov with respect to \mathcal{G} can be represented in this factored form.

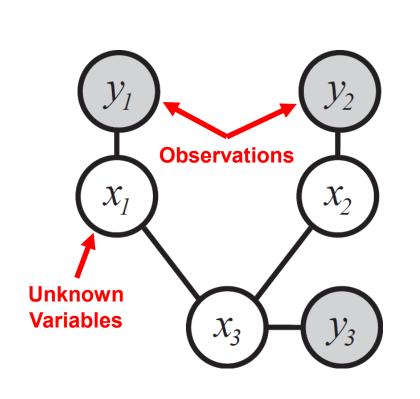
Global Markov Property Joint Factorization

(Graph Separation Implies Independence)

(Potential Function for Each Clique)

Pairwise Markov Random Field

Often easier to specify and do inference on pairwise model

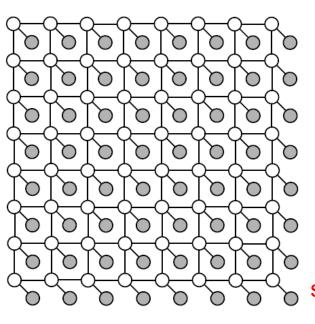


$$p(x,y) \propto \prod_{s \in \mathcal{V}} \psi_s(x_s,y) \prod_{(s,t) \in \mathcal{E}} \psi_{st}(x_s,x_t)$$
Likelihood Prior

Restricted class of MRFs

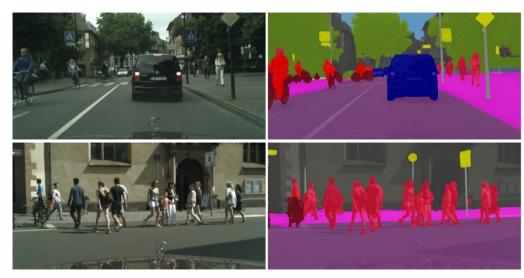
- 2-node factor exists for every edge
- Explicit factorization of joint distribution
- High-order factors not always easily decomposed into pairwise terms

Example: Image Segmentation



Don't need to know log-partition to specify model

[Source: Kundu, A. et al., CVPR16]



Pairwise MRF energy: $-\log p(x,y) = \log Z + \sum_i \psi_i(x_i,y_i) + \sum_{(i,j)} \psi_{i,j}(x_i,x_j)$ Don't need to specify

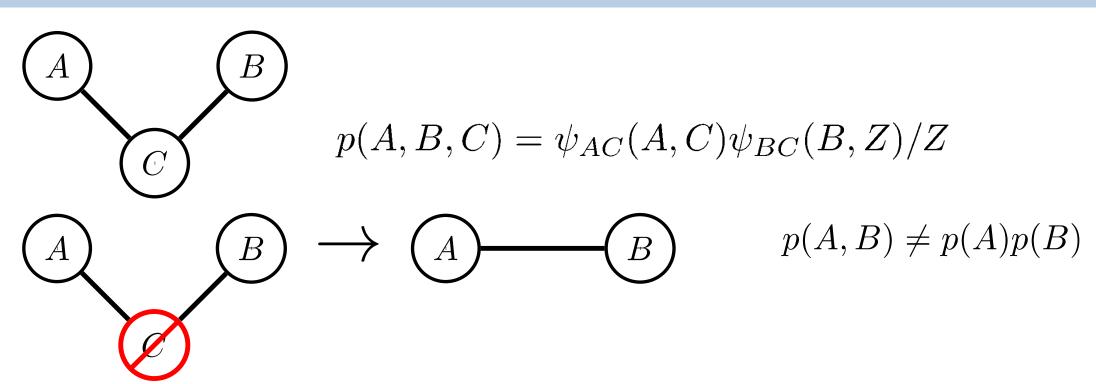
normalized conditionals as in Bayes Nets

Low energy configurations = High probability

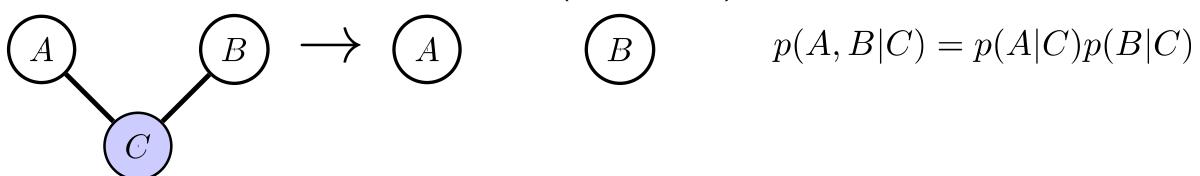
L2 Likelihood: $\psi_i(x_i, y_i) = \|x_i - y_i\|^2$ Potts model: $\psi_{i,j}(x_i, x_j) = \mathbb{I}(x_i = x_j)$

MAP (minimum energy) configuration = Piecewise constant regions

Transformations of Undirected Models



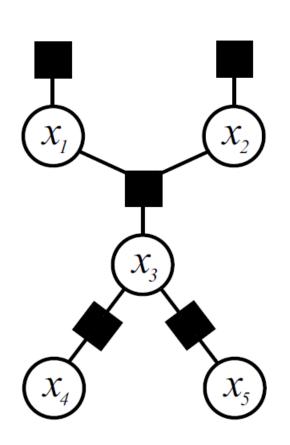
Marginalising over C makes A and B (graphically) dependent.



Conditioning on C makes A and B independent:

Factor Graphs

A hypergraph $\mathcal{H}=(\mathcal{V},\mathcal{F})$ where a hyperedge $f\in\mathcal{F}$ is a subset of vertices $f\subset\mathcal{V}$.



Factor node for each product term in the joint factorization:

Graphical model makes factorization explicit

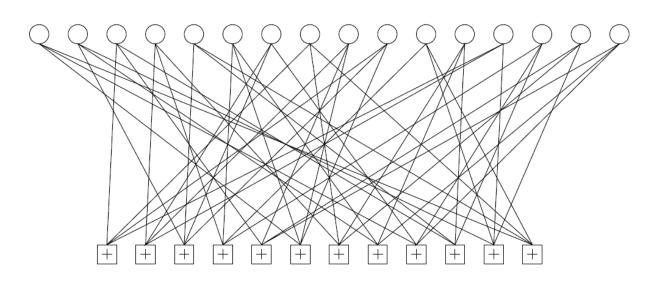
$$p(x) \propto \prod_{f \in \mathcal{F}} \psi_f(x_f)$$

where $x_f = \{x_i : i \in f\}$ the set of variables in factor f. For example:

$$\psi(x_1)\psi(x_2)\psi(x_1,x_2,x_3)\psi(x_3,x_4)\psi(x_3,x_5)$$

Example: Low Density Parity Check Codes

Factor Graph Representation



Sparse Parity Check Matrix

Transmitted Code

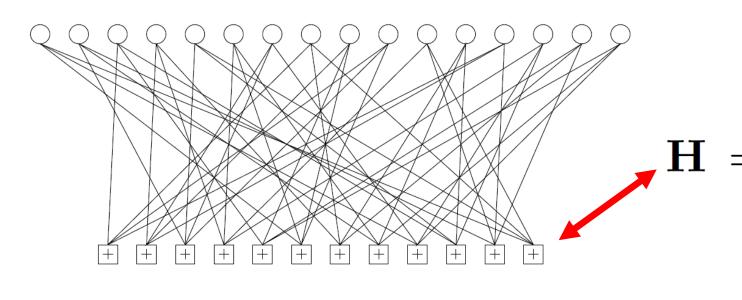
 $\begin{array}{c} t \sim p(t) \\ \hline \\ \text{Noisy} \\ \text{Channel} \end{array}$

Received Code

$$r \mid t \sim p(r \mid t)$$
Decoder
$$t^* = \arg\max_t p(t \mid r)$$

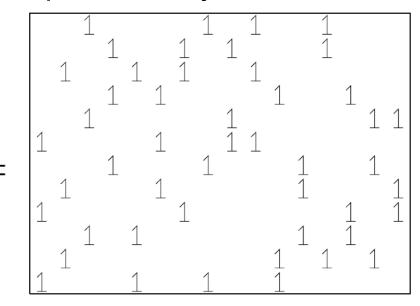
Example: Low Density Parity Check Codes

Factor Graph Representation



n-th bit

Sparse Parity Check Matrix

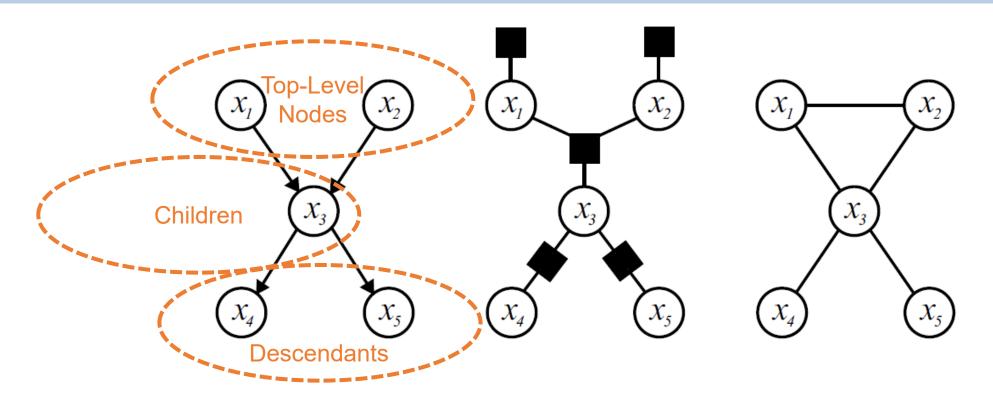


- Valid codes have zero parity: $p(t) \propto \mathbb{I}(Ht = 0 \mod 2)$
- Chanel noise model arbitrary, e.g. flip bits w/ € probability:

$$p(r \mid t) = \prod p(r_n \mid t_n) = \prod (1 - \epsilon)^{\mathbb{I}(r_n = t_n)} \epsilon^{\mathbb{I}(r_n \neq t_n)}$$

[Source: David MacKay]

Simulation



Bayes Nets Ancestral sampling successively samples from conditionals:

$$p(\mathbf{x}) = \prod_{i \in \mathcal{V}} p(x_i \mid x_{\text{Pa}(i)})$$
 so $x_i \sim p(x_i \mid x_{\text{Pa}(i)})$

Undirected Graphs Lack locally normalized conditionals to sample from

Undirected Models Summary

Joint factorization as nonnegative factors (potentials) over subsets:

$$p(x) \propto \prod_{f \in \mathcal{F}} \psi_f(x_f)$$

- Easier to specify models compared to Bayes nets since:
 - Factors do not need to be normalized conditional probabilities
 - May specify up to unknown normalization constant
- Easier to verify Markov independence via separating sets
- Factorization ambiguous in MRFs, but explicit in factor graphs (factor graphs generally preferred)
- Simulation is not easy in general. Can't do ancestral sampling.

