

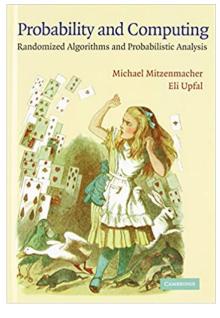
CSC535: Probabilistic Graphical Models

Probability Primer

Prof. Jason Pacheco

Administrivia

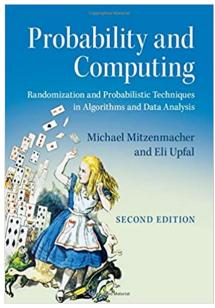
- Homework 1 will be out Mon 8/31, next week
- Reading: Murphy, Secs. 2.1 and 2.2
- Questions: Raise hand in Zoom or get my attention
- Lots of source material from this book...



Mitzenmacher, M. and Upfal, E. "Probability and Computing"

← First Edition

Second Edition \rightarrow



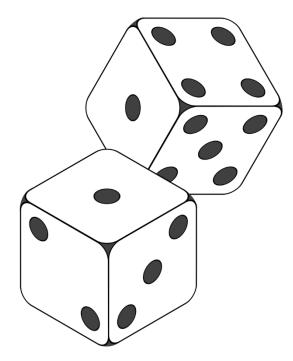
(Lecture Slides from Eli Upfal's course)

Suppose we roll <u>two fair dice</u>...

- > What are the possible outcomes?
- > What is the *probability* of rolling **even** numbers?
- > What is the *probability* of rolling **odd** numbers?
- If one die rolls 1, then what is the probability of the second die also rolling 1?
- How to mathematically formulate outcomes and their probabilities?

...this is an **experiment** or **random process**.

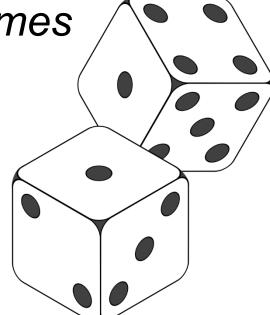
Formulate as probability space having <u>3 components</u>



A **sample space** Ω : set of all possible outcomes of the experiment.

Dice Example: All combinations of dice rolls,

 $\Omega = \{(1,1), (1,2), \dots, (6,5), (6,6)\}$



An **event space** *F* : Family of sets representing <u>allowable events</u>, where each set in *F* is a subset of the sample space Ω.

Dice Example: Event that we roll even numbers,

$$E = \{(2,2), (2,4), \dots, (6,4), (6,6)\} \in \mathcal{F}$$

A probability function $P : \mathcal{F} \to \mathbf{R}$ satisfying:

- 1. For any event $E, 0 \le P(E) \le 1$
- **2.** $P(\Omega) = 1$ and $P(\emptyset) = 0$
- 3. For any *finite* or *countably infinite* sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots

$$P\Big(\bigcup_{i\geq 1} E_i\Big) = \sum_{i\geq 1} P(E_i)$$

Axioms of Probability
sequence of

$$E_1, E_2, E_3, \dots$$

(Fair) Dice Example: Probability that we roll <u>even numbers</u>, $P((2,2) \cup (2,4) \cup \ldots \cup (6,6)) = P((2,2)) + P((2,4)) + \ldots + P((6,6))$

9 Possible outcomes, each with equal probability of occurring

$$=\frac{1}{36}+\frac{1}{36}+\ldots+\frac{1}{36}=\frac{9}{36}$$

Some rules regarding set of event space \mathcal{F} ...

- $\succ \mathcal{F}$ must include \emptyset and Ω
- $\succ \mathcal{F}$ is **closed** under set operations, if $E_1, E_2 \in \mathcal{F}$ then:
 - $E_1 \cup E_2 \in \mathcal{F}$
 - $E_1 \cap E_2 \in \mathcal{F}$
 - $\overline{E_1} = \Omega E_1 \in \mathcal{F}$

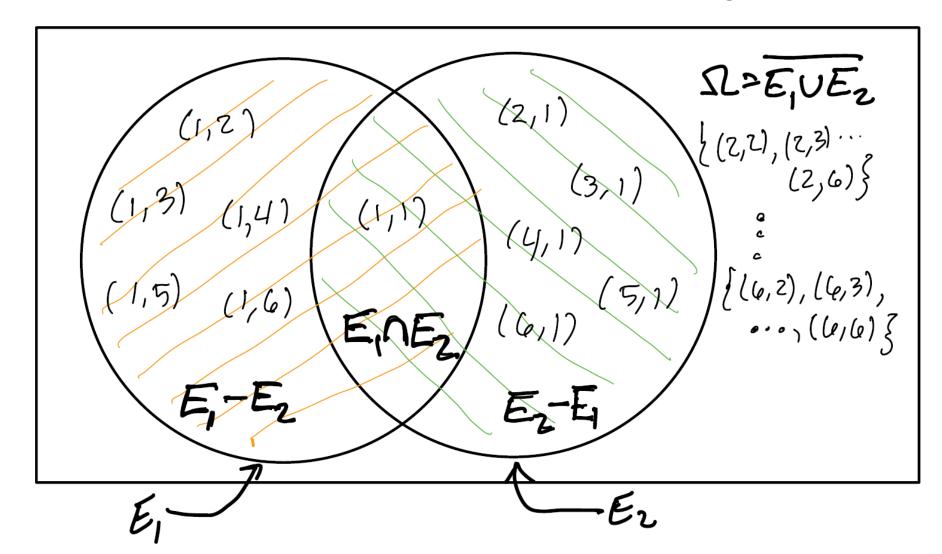
Two dice example: If $E_1, E_2 \in \mathcal{F}$ where,

 $E_1: \textit{First die equals 1} \qquad E_2: \textit{Second die equals 1} \\ E_1 = \{(1,1), (1,2), \dots, (1,6)\} \qquad E_2 = \{(1,1), (2,1), \dots, (6,1)\}$

Then we must include (at least) the following events...

Operation	Value	Interpretation
$E_1 \cup E_2$	$\left\{(1,1),(1,2),\ldots,(1,6),(2,1),\ldots,(6,1)\right\}$	Any die rolls 1
$E_1 \cap E_2$	$\{(1,1)\}$	Both dice roll 1
$E_1 - E_2$	$\{(1,2),(1,3),(1,4),(1,5),(1,6)\}$	First die rolls 1 only
$\overline{E_1 \cup E_2}$	$\{(2,2),(2,3),\ldots,(2,6),(3,2),\ldots,(6,6)\}$	No die rolls 1

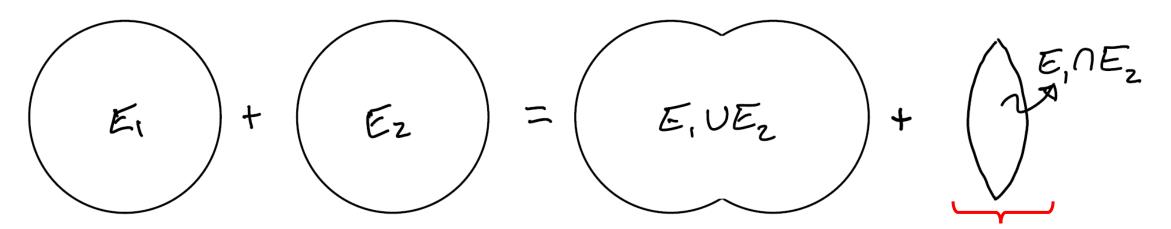
Can interpret these operations as a Venn diagram...



Lemma: For <u>any</u> two events E_1 and E_2 ,

 $P(E_1 \cup E_2) = Pr(E_1) + P(E_2) - P(E_1 \cap E_2)$

Graphical Proof:



Subtract from both sides

Lemma: For <u>any</u> two events E_1 and E_2 ,

 $P(E_1 \cup E_2) = Pr(E_1) + P(E_2) - P(E_1 \cap E_2)$

Proof:

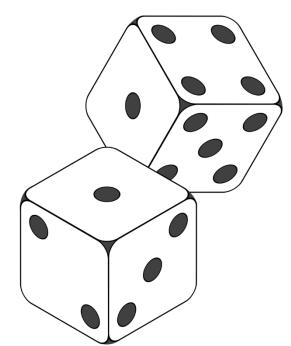
 $P(E_1) = P(E_1 - (E_1 \cap E_2)) + P(E_1 \cap E_2)$ $P(E_2) = P(E_2 - (E_1 \cap E_2)) + P(E_1 \cap E_2)$ $P(E_1 \cup E_2) = P(E_1 - (E_1 \cap E_2)) + P(E_2 - (E_1 \cap E_2)) + P(E_1 \cap E_2)$

Random Variables

Suppose we are interested in a distribution over the <u>sum of dice</u>...

<u>Option 1</u> Let E_i be event that the sum equals *i*

Two dice example:



 $E_2 = \{(1,1)\}$ $E_3 = \{(1,2), (2,1)\}$ $E_4 = \{(1,3), (2,2), (3,1)\}$

 $E_5 = \{(1,4), (2,3), (3,2), (4,1)\}$ $E_6 = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$

Enumerate all possible means of obtaining desired sum. Gets cumbersome for N>2 dice...

Random Variables

Suppose we are interested in a distribution over the <u>sum of dice</u>...

Option 2 Use a function of sample space...

Definition A random variable $X(\omega)$ for $\omega \in \Omega$ is a <u>real-valued function</u> $X : \Omega \to \mathbb{R}$. A discrete random variable takes on only a finite or countably infinite number of values.

For *discrete* RVs X = x is an **event** with **probability mass function**:

$$p(X = x) = \sum_{\omega \in \Omega : X(\omega) = x} P(\omega)$$

Random Variables

Some notes on random variables (RVs)...

- \succ We denote the RV by capital X and its realization by lowercase x
- > Generally use shorthand X instead of $X(\omega)$
- > Other common shorthand: p(x) = p(X = x)
- > Any function f(X) of an RV is also an RV, e.g. $Y(\omega) = f(X(\omega))$
- > More shorthand: the joint distribution of RVs $p(X, Y) = p(X \cap Y)$
- We will use "distribution" loosely to refer to distributions, PMFs, probability density and cumulative distribution functions (defined later)

Fundamental Rules of Probability

Given two RVs *X* and *Y* the **conditional distribution** is:

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\sum_{x} p(X=x,Y)}$$

Multiply both sides by p(Y) to obtain the **probability chain rule**:

$$p(X,Y) = p(Y)p(X \mid Y)$$

For $N \operatorname{RVs} X_1, X_2, \ldots, X_N$:

$$p(X_1, X_2, \dots, X_N) = p(X_1)p(X_2 \mid X_1) \dots p(X_N \mid X_{N-1}, \dots, X_1)$$

Chain rule valid
for any ordering
$$= p(X_1) \prod_{i=2}^N p(X_i \mid X_{i-1}, \dots, X_1)$$

Fundamental Rules of Probability

Law of total probability

$$p(Y) = \sum_{x} p(Y, X = x)$$

$$\begin{array}{ll} \mathbf{Proof} & \sum_{x} p(Y,X=x) = \sum_{x} p(Y) p(X=x \mid Y) & \text{(chain rule)} \\ & = p(Y) \sum_{x} p(X=x \mid Y) & \text{(distributive property)} \\ & = p(Y) & \text{(axiom of probability)} \end{array}$$

Generalization for conditionals:

$$p(Y \mid Z) = \sum_{x} p(Y, X = x \mid Z)$$

<u>Question</u>: Roll two dice and let their outcomes be $X_1, X_2 \in \{1, ..., 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$p(X_1 \mid X_2) = \frac{p(X_1, X_2)}{p(X_2)}$$

Which of the following are true?

a)
$$p(X_1 = 1 | X_2 = 1) > p(X_1 = 1)$$

b)
$$p(X_1 = 1 | X_2 = 1) = p(X_1 = 1)$$

Outcome of die 2 doesn't affect die 1

c)
$$p(X_1 = 1 | X_2 = 1) < p(X_1 = 1)$$

<u>Question:</u> Let $X_1 \in \{1, ..., 6\}$ be outcome of die 1, as before. Now let $X_3 \in \{2, 3, ..., 12\}$ be the sum of both dice. Which of the following are true?

a)
$$p(X_1 = 1 | X_3 = 3) > p(X_1 = 1)$$

b) $p(X_1 = 1 | X_3 = 3) = p(X_1 = 1)$
c) $p(X_1 = 1 | X_3 = 3) < p(X_1 = 1)$

Only 2 ways to get $X_3 = 3$, each with equal probability:

$$(X_1 = 1, X_2 = 2)$$
 or $(X_1 = 2, X_2 = 1)$

SO

$$p(X_1 = 1 \mid X_3 = 3) = \frac{1}{2} > \frac{1}{6} = p(X_1 = 1)$$

Intuition...

Consider P(B|A) where you want to bet on *B* Should you pay to know A?

In general you would pay something for A if it changed your belief about B. In other words if,

 $P(B|A) \neq P(B)$

Definition Two random variables X and Y are <u>independent</u> if and only if,

$$p(X = x, Y = y) = p(X = x)p(Y = y)$$

for all values x and y, and we say $X \perp Y$.

Definition RVs X_1, X_2, \ldots, X_N are <u>mutually independent</u> if and only if,

$$p(X_1 = x_1, \dots, X_N = x_N) = \prod_{i=1}^N p(X_i = x_i)$$

- > Independence is symmetric: $X \perp Y \Leftrightarrow Y \perp X$
- > Equivalent definition of independence: p(X | Y) = p(X)

Definition Two random variables X and Y are <u>conditionally independent</u> given Z if and only if,

$$p(X = x, Y = y \mid Z = z) = p(X = x \mid Z = z)p(Y = y \mid Z = z)$$

for all values x, y, and z, and we say that $X \perp Y \mid Z$.

> N RVs conditionally independent, given Z, if and only if:

$$p(X_1, \dots, X_N \mid Z) = \prod_{i=1}^N p(X_i \mid Z)$$
 Shorthand notation Implies for all *x*, *y*, *z*

Equivalent def'n of conditional independence: $p(X \mid Y, Z) = p(X \mid Z)$ Symmetric: $X \perp Y \mid Z \Leftrightarrow Y \perp X \mid Z$

Administrivia

Homework 1

- Out now, see course webpage or D2L
- ➤ Due: Wed, 9/9
- ➤ (Easy) Worth 4 points vs. standard 7

> Office hours:

- ➤ Tue, 3-4:30pm (local time)
- ➢ Will add Zoom meeting in D2L
- > Optional hours: Thurs, 9-10:30am (message me on Piazza before)

Recap

> A random process is modeled by a probability space (Ω, \mathcal{F}, P) where:

- \succ Sample space Ω is the set of all possible outcomes
- > Event space \mathcal{F} is the set of events, each being a subset of Ω
- > Probability function P assigns a probability in [0, 1] to each event
- > Axioms of probability
 - 1. For any event $E, 0 \le P(E) \le 1$
 - **2.** $P(\Omega) = 1$ and $P(\emptyset) = 0$
 - 3. For any *finite* or *countably infinite* sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots

$$P\Big(\bigcup_{i\geq 1} E_i\Big) = \sum_{i\geq 1} P(E_i)$$

- > An event space must contain $\{\Omega, \emptyset\}$
- > Must be closed under:
 - Complements
 - Countable unions
 - Countable intersections

Recap

- \succ A random variable is a <u>function</u> of samples to real values: $X : \Omega \to \mathbb{R}$
- $\succ X = x$ Is an event with probability: $p(X = x) = \sum_{\omega \in \Omega : X(\omega) = x} P(\omega)$
- Some fundamental rules of probability:
 - ► Conditional: $p(X | Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\sum_x p(X=x,Y)}$
 - > Law of total probability: $p(Y) = \sum_{x} p(Y, X = x)$
 - > Probability chain rule: p(X, Y) = p(Y)p(X | Y)
- ➢ Independence of RVs:
 - Two RVs X & Y are independent iff: p(X | Y) = p(X)
 - ► Equivalently: p(X, Y) = p(X)p(Y)
 - \succ X & Y are <u>conditionally independent</u> given Z iff: p(X | Y, Z) = p(X | Z)
 - ► Equivalently: p(X, Y | Z) = p(X | Z)p(Y | Z)

Outline

- Moments of (discrete) random variables
- Some useful discrete distributions
- Continuous probability

Outline

Moments of (discrete) random variables

Some useful discrete distributions

Continuous probability

Definition The <u>expectation</u> of a discrete RV X, denoted by $\mathbf{E}[X]$, is:

$$\mathbf{E}[X] = \sum_x x \, p(X=x)$$
 Su value

Summation over all values in domain of X

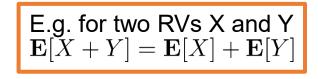
Example Let *X* be the sum of two fair dice, then:

$$\mathbf{E}[X] = \frac{1}{36} \cdot 2 + \frac{1}{36} \cdot 3 + \dots + \frac{1}{36} \cdot 12 = 7$$

Theorem (Linearity of Expectations) For any finite collection of discrete $RVs X_1, X_2, \ldots, X_N$ with finite expectations,

Corollary For any constant c $\mathbf{E}[cX] = c\mathbf{E}[X]$

$$\mathbf{E}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbf{E}[X_i]$$



Definition The <u>conditional expectation</u> of a discrete RV X, given Y is:

$$\mathbf{E}[X \mid Y = y] = \sum_{x} x \, p(X = x \mid Y = y)$$

Example Roll two standard six-sided dice and let X be the result of the first die and let Y be the sum of both dice, then:

$$\mathbf{E}[X_1 \mid Y = 5] = \sum_{x=1}^{4} x \, p(X_1 = x \mid Y = 5)$$
$$= \sum_{x=1}^{4} x \frac{p(X_1 = x, Y = 5)}{p(Y = 5)} = \sum_{x=1}^{4} x \frac{1/36}{4/36} = \frac{5}{2}$$

Conditional expectation follows properties of expectation (linearity, etc.)

Definition The variance of a RV X is defined as,

$$\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$$
 (X-units)²

The standard deviation is
$$\sigma[X] = \sqrt{\operatorname{Var}[X]}$$
. (X-units)

Lemma An equivalent form of variance is:

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2$$

Proof Keep in mind that E[X] is a constant,

 $\mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2 - 2X\mathbf{E}[X] + \mathbf{E}[X]^2]$

 $= \mathbf{E}[X^2] - 2\mathbf{E}[X]\mathbf{E}[X] + \mathbf{E}[X]^2$

 $= \mathbf{E}[X^2] - \mathbf{E}[X]^2$

(Distributive property)

(Linearity of expectations)

(Algebra)

Definition The <u>covariance</u> of two RVsX and Y is defined as,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$$

Lemma For any two RVs X and Y,

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X,Y)$$

e.g. variance is not a linear operator.

Proof $Var[X + Y] = E[(X + Y - E[X + Y])^2]$

 $\begin{array}{ll} \text{(Linearity of expectation)} & = \mathbf{E}[(X+Y-\mathbf{E}[X]-\mathbf{E}[Y])^2] \\ \text{(Distributive property)} & = \mathbf{E}[(X-\mathbf{E}[X])^2+(Y-\mathbf{E}[Y])^2+2(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Linearity of expectation)} & = \mathbf{E}[(X-\mathbf{E}[X])^2]+\mathbf{E}[(Y-\mathbf{E}[Y])^2]+2\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Definition of Var / Cov)} & = \mathbf{Var}[X]+\mathbf{Var}[Y]+2\mathbf{Cov}(X,Y) \end{array}$

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Proof:
$$\mathbf{E}[XY] = \sum_{x} \sum_{y} (x \cdot y) p(X = x, Y = y)$$

 $= \sum_{x} \sum_{y} (x \cdot y) p(X = x) p(Y = y)$ (Independence)
 $= \left(\sum_{x} x \cdot p(X = x)\right) \left(\sum_{y} y \cdot p(Y = y)\right) = \mathbf{E}[X]\mathbf{E}[Y]$ (Linearity of Expectation)

Example Let $X_1, X_2 \in \{1, ..., 6\}$ be RVs representing the result of rolling two fair standard die. What is the mean of their product?

$$\mathbf{E}[X_1 X_2] = \mathbf{E}[X_1] \mathbf{E}[X_2] = 3.5^2 = 12 \cdot \frac{1}{4}$$

Question: What is the variance of their sum? $Var[X_1 + X_2] = Var[X_1] + Var[X_2] + 2Cov(X_1, X_2)$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])(X_2 - \mathbf{E}[X_2])]$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])]\mathbf{E}[(X_2 - \mathbf{E}[X_2])]$ = Var $[X_1]$ + Var $[X_2]$ + 2 (E $[X_1]$ - E $[X_1]$) (E $[X_2]$ - E $[X_2]$) = Var $[X_1]$ + Var $[X_2]$

Theorem: If $X \perp Y$ then $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$ Corollary: If $X \perp Y$ then $\operatorname{Cov}(X, Y) = 0$ Corollary: For collection of RVs X_1, X_2, \ldots, X_N : $\operatorname{Var}(\sum_{i=1}^N X_i) = \sum_{i=1}^N \operatorname{Var}(X_i)$

Law of Total Expectation *Let X and Y be discrete RVs with finite expectations, then:*

$$\mathbf{E}[X] = \mathbf{E}_{Y}[\mathbf{E}_{X}[X \mid Y]]$$
Proof
$$\mathbf{E}_{Y}[\mathbf{E}_{X}[X \mid Y]] = \mathbf{E}_{Y}\left[\sum_{x} x \cdot p(x \mid Y)\right]$$

$$= \sum_{y}\left[\sum_{x} x \cdot p(x \mid y)\right] \cdot p(y) \quad (\text{ Definition of expectation })$$

$$= \sum_{y}\sum_{x} x \cdot p(x, y) \quad (\text{ Probability chain rule })$$

$$= \sum_{x} x \sum_{y} \cdot p(x, y) \quad (\text{ Linearity of expectations })$$

$$= \sum_{x} x \cdot p(x) = \mathbf{E}[X] \quad (\text{ Law of total probability })$$

Outline

> Moments of (discrete) random variables

Some useful discrete distributions

Continuous probability

Useful Discrete Distributions

Bernoulli *A.k.a.* the coinflip distribution on binary RVs $X \in \{0, 1\}$ $p(X) = \pi^X (1 - \pi)^{(1-X)}$

Where π is the probability of **success** (e.g. heads), and also the mean

 $\mathbf{E}[X] = \pi \cdot 1 + (1 - \pi) \cdot 0 = \pi$

Suppose we flip N independent coins X_1, X_2, \ldots, X_N , what is the distribution over their sum $Y = \sum_{i=1}^N X_i$

Num. "successes" out of N trials

Binomial Dist. p(Y = h)

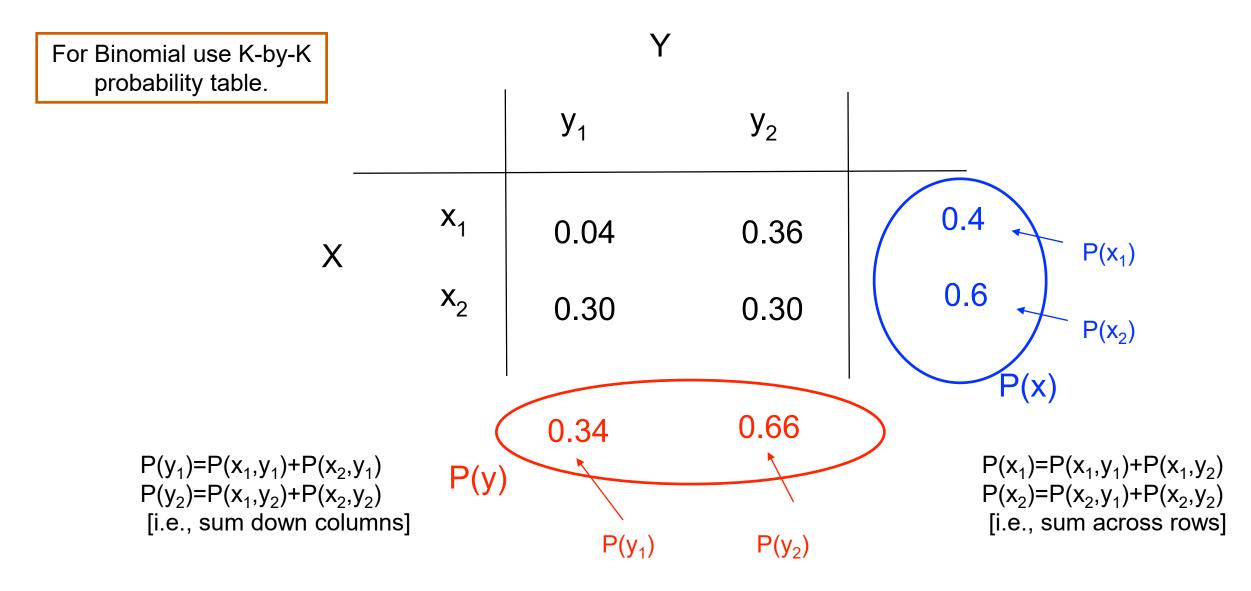
Num. ways to obtain k successes out of N

$$k) = \binom{N}{k} \pi^k (1-\pi)^{N-k}$$

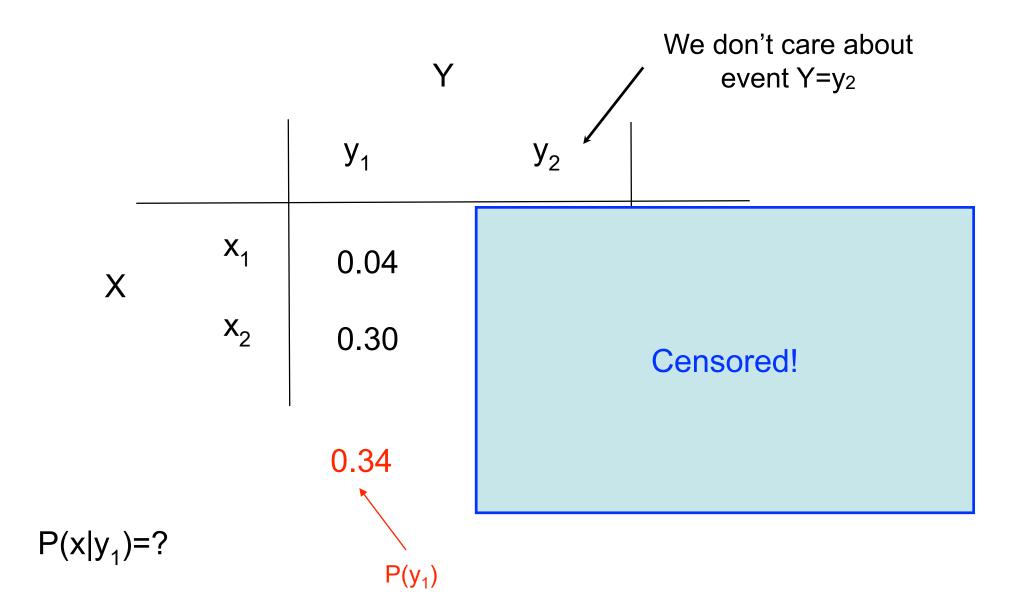
Binomial Mean: $\mathbf{E}[Y] = N \cdot \pi$ Sum of means for N indep. Bernoulli RVs

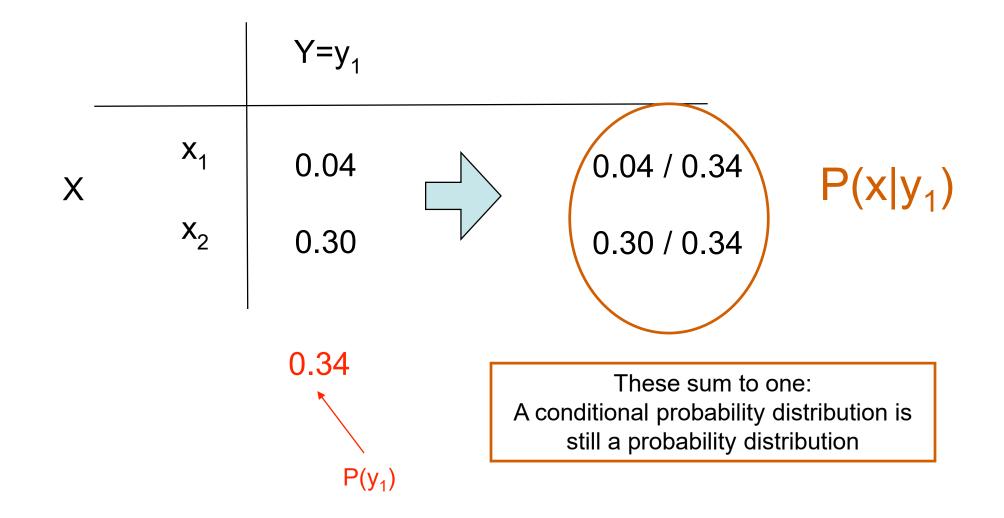
Useful Discrete Distributions

Represent joint Bernoulli distribution as probability table...



Useful Discrete Distributions





Question: How many flips until we observe a success?

Geometric *Distribution on number of independent draws of* $X \sim \text{Bernoulli}(\pi)$ *until success:*

$$p(Y=n)=(1-\pi)^{n-1}\pi$$
 $\mathbf{E}[Y]=rac{1}{\pi}$ $\left[egin{array}{c} \pi=1/2 \ \mathrm{takes} \ \mathrm{two \ flips \ on \ avg.} \end{array}
ight]$

E.g. for fair coin

e.g. there must be n-1 failures (tails) before a success (heads).

Question: How many more flips of we have already seen k failures?

$$p(Y = n + k \mid Y > k) = \frac{p(Y = n + k, Y > k)}{p(Y > k)} = \frac{p(Y = n + k)}{p(Y > k)}$$
$$= \frac{(1 - \pi)^{n + k - 1} \pi}{\sum_{i=k}^{\infty} (1 - \pi)^{i} \pi} = \frac{(1 - \pi)^{n + k - 1} \pi}{(1 - \pi)^{k}} = (1 - \pi)^{n - 1} \pi = p(Y = n)$$
For $0 < x < 1, \sum_{i=k}^{\infty} x^{i} = \frac{x^{k}}{(1 - x)}$ Corollary: $p(Y > k) = (1 - \pi)^{k - 1}$

Categorical *Distribution on integer-valued* $RVX \in \{1, ..., K\}$

$$p(X) = \prod_{k=1}^{K} \pi_k^{\mathbf{I}(X=k)}$$
 or $p(X) = \sum_{k=1}^{K} \mathbf{I}(X=k) \cdot \pi_k$

with parameter $p(X = k) = \pi_k$ and Kronecker delta:

$$\mathbf{I}(X=k) = \left\{ \begin{array}{ll} 1, & \text{If } X=k \\ 0, & \text{Otherwise} \end{array} \right.$$

Can also represent X as *one-hot* binary vector,

 $X \in \{0,1\}^K$ where $\sum_{k=1}^K X_k = 1$ then $p(X) = \prod_{k=1}^K \pi_k^{X_k}$

This representation is special case of the multinomial distribution

What if we count outcomes of *N* independent categorical RVs?

Multinomial Distribution on K-vector $X \in \{0, N\}^K$ of counts of N repeated trials $\sum_{k=1}^{K} X_k = N$ with PMF:

$$p(x_1,\ldots,x_K) = \binom{n}{x_1 x_2 \ldots x_K} \prod_{k=1}^K \pi_k^{x_k}$$

Number of ways to partition N objects into K groups:

$$\binom{n}{x_1 x_2 \dots x_K} = \frac{n!}{x_1! x_2! \dots x_K!}$$

Leading term ensures PMF is properly normalized:

$$\sum_{x_1} \sum_{x_2} \dots \sum_{x_K} p(x_1, x_2, \dots, x_K) = 1$$

A Poisson RV X with <u>rate</u> parameter λ has the following distribution: $p(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$ Mean and variance both scale with parameter $\mathbf{E}[X] = \mathbf{Var}[X] = \lambda$

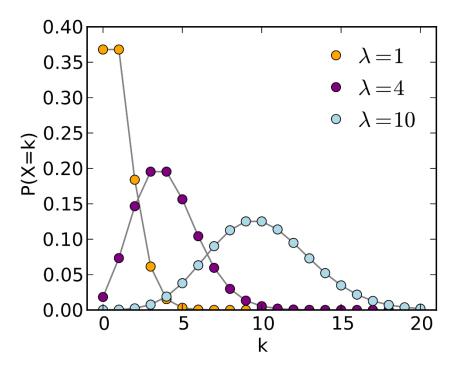
Represents number of times an *event* occurs in an interval of time or space.

Ex. Probability of overflow floods in 100 years,

 $p(\text{koverflow floods in 100 yrs}) = \frac{e^{-1}1^k}{k!}$

Lemma (additive closure) The sum of a finite number of Poisson RVs is a Poisson RV.

 $X \sim \text{Poisson}(\lambda_1), \quad Y \sim \text{Poisson}(\lambda_2), \quad X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$



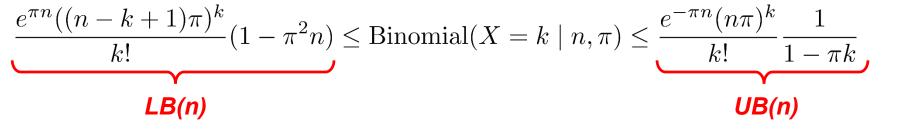
Avg. 1 overflow flood every 100 years,

makes setting rate parameter easy.

Theorem Let $X \sim \text{Binomial}(n, \pi(n))$ where $\pi(n)$ is a function of n and $\lim_{n \to \infty} n \cdot \pi(n) = \lambda$ for some constant λ . Then for any fixed k:

 $\lim_{n \to \infty} \operatorname{Binomial}(X \mid n, \pi(n)) = \operatorname{Poisson}(X \mid \lambda)$

Proof Sketch Use Taylor expansion of e^x and $(1 - \pi)^k \ge (1 - \pi k)$ to upper and lower bound Binomial probability as a function of n:



As $n \to \infty$ it must be that $\pi(n) \to 0$ so that $\lim_{n\to\infty} n \cdot \pi(n) = \lambda$ is constant. Then $1/(1 - \pi k) \to 1$ and $1 - \pi^2 n \to 1$. The difference $[(n - k + 1)\pi] - n\pi$ approaches 0. Therefore:

$$\lim_{n \to \infty} \text{LB}(n) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{ and } \quad \lim_{n \to \infty} \text{UB}(n) = \frac{e^{-\lambda} \lambda^k}{k!} \quad \text{ Bounds converge so result holds.}$$

Outline

> Moments of (discrete) random variables

Some useful discrete distributions

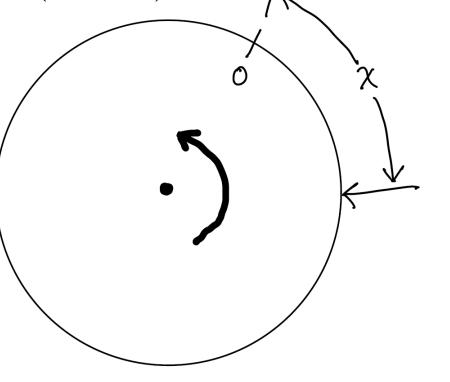
Continuous probability

Experiment Spin continuous wheel and measure X displacement from 0 **Question** Assuming uniform probability, what is p(X = x)?

First, recall axioms of probability...

- 1. For any event $E, 0 \le P(E) \le 1$
- **2.** $P(\Omega) = 1$ and $P(\emptyset) = 0$
- 3. For any *finite* or *countably infinite* sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots

$$P\Big(\bigcup_{i\geq 1} E_i\Big) = \sum_{i\geq 1} P(E_i)$$



Sample space Ω is all points (real numbers) in [0,1)

 \blacktriangleright Let $p(X = x) = \pi$ be the probability of any single outcome

 \succ Let S(k) be set of any k *distinct* points in [0, 1) then,

 $P(x \in S(k)) = k\pi$

▷ Since $0 < P(x \in S(k)) < 1$ by axioms of probability, $k\pi < 1$ for any k

For the effore: $\pi = 0$ and $P(x \in S(k)) = p(X = x) = 0$

What does this mean?

 \succ Let *E* be event that $x \in S(k)$

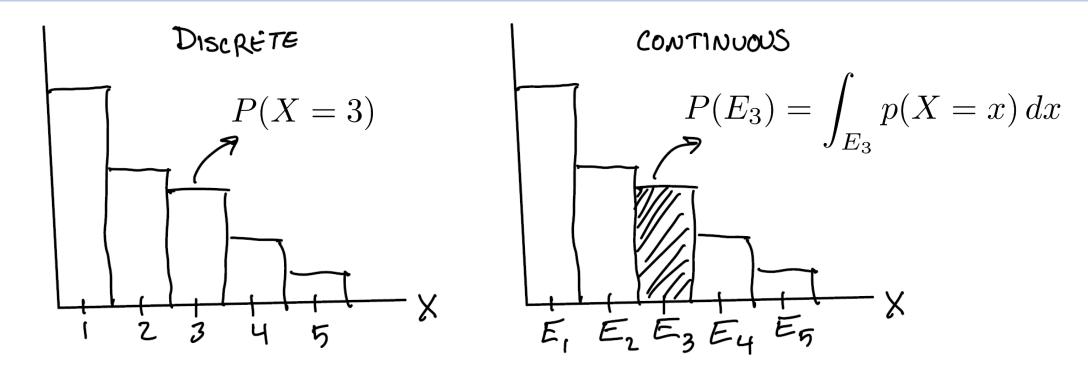
➤ In infinite sample space, an event may be **possible** but have zero "probability"
➤ Since $P(\bar{E}) = 1 - P(E) = 1$ events may have "probability" 1 but **not certain**

Assign probability to intervals, not individual values

We could just accept this oddity...



...or we could try to convince ourselves that it is sensible.



 \succ Events represented as intervals $a \leq X < b$ with probability,

$$P(a \le X < b) = \int_{a}^{b} p(X = x) \, dx$$

Specific outcomes have zero probability $P(X = 0) = P(x \le X < x) = 0$ Solutions have nonzero probability density p(X = x)

Definition The <u>cumulative distribution function</u> (CDF) of a real-valued continuous RV X is the function given by,

 $F(x) = P(X \le x)$

Different ways to represent probability of interval, CDF is just a convention.

> Can easily measure probability of closed intervals,

$$P(a \le X < b) = F(b) - F(a)$$

 \succ If X is absolutely continuous (i.e. differentiable) then,

$$f(x) = \frac{dF(x)}{dx}$$
 and $F(t) = \int_{-\infty}^{t} f(x) dx$

Fundamental Theorem of Calculus

Where f(x) is the *probability density function* (PDF)

 \blacktriangleright Typically use shorthand P for CDF and p for PDF instead of F and f

Most definitions for discrete RVs hold, replacing PMF with PDF/CDF...

Two RVs X & Y are **independent** if and only if,

p(x,y) = p(x)p(y) or $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$

Conditionally independent given Z iff, $p(x, y \mid z) = p(x \mid z)p(y \mid z)$ or $P(x, y \mid z) = P(x \mid z)P(y \mid z)$

Probability chain rule,

 $p(x,y) = p(x)p(y \mid x)$ and $P(x,y) = P(x)P(y \mid x)$

...and by replacing summation with integration...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{Y}} p(x, y) \, dy$$

Expectation of a continuous random variable,

$$\mathbf{E}[X] = \int_{\mathcal{X}} x \cdot p(x) \, dx$$

Covariance of two continuous random variables X & Y,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])] = \int_{\mathcal{X}} \int_{\mathcal{Y}} (x - \mathbf{E}[X])(y - \mathbf{E}[Y])p(x,y) \, dx dy$$

Caution Some technical subtleties arise in continuous spaces...

For **discrete** RVs X & Y, the conditional

P(Y=y)=0 means impossible

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

is **undefined** when $P(Y=y) = 0 \dots$ no problem.

For continuous RVs we have, $P(X \le x \mid Y = y) = \frac{P(X \le x, Y = y)}{P(Y = y)}$

but numerator and denominator are 0/0.

P(Y=y)=0 means improbable, but not impossible

Defining the conditional distribution as a limit fixes this...

$$\begin{split} P(X \leq x \mid Y = y) &= \lim_{\delta \to 0} P(X \leq x \mid y \leq Y \leq y + \delta) \\ &= \lim_{\delta \to 0} \frac{P(X \leq x, y \leq Y \leq y + \delta)}{P(y \leq Y \leq y + \delta)} \\ &= \lim_{\delta \to 0} \frac{P(X \leq x, Y \leq y + \delta) - P(X \leq x, Y \leq y)}{P(Y \leq y + \delta) - P(Y \leq y)} \\ &= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)}{P(y + \delta) - P(y)} \, du \\ &= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\left(\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)\right) / \delta}{(P(y + \delta) - P(y)) / \delta} \, du \\ &= \int_{-\infty}^{x} \frac{\frac{\partial^{2}}{\partial x \partial y} P(u, y)}{\frac{\partial}{\partial y} P(y)} \, du \quad = \int_{-\infty}^{x} \frac{p(u, y)}{p(y)} \, du \end{split}$$

Definition The conditional PDF is given by, $p(x \mid y) = \frac{p(x,y)}{p(y)}$

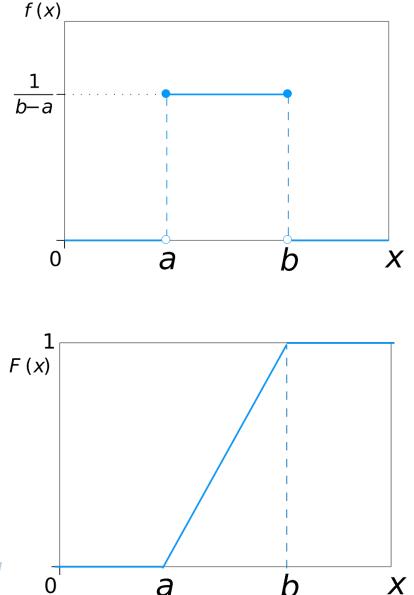
(Fundamental theorem of calculus) (Assume interchange limit / integral)

(Multiply by $rac{\delta}{\delta}=1$)

(Definition of partial derivative) (Definition PDF)

Uniform distribution on interval [a, b], $p(x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{if } b \le x \end{cases} \quad P(X \le x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{x-a}{b-a} & \text{if } a \le x \le b, \\ 1 & \text{if } b \le x \end{cases} \quad \frac{1}{b-a}$ Say that $X \sim U(a, b)$ whose moments are, $\mathbf{E}[X] = \frac{b+a}{2}$ $\mathbf{Var}[X] = \frac{(b-a)^2}{12}$ Suppose $X \sim U(0,1)$ and we are told $X \leq \frac{1}{2}$ what is the conditional distribution? $P(X \le x \mid X \le \frac{1}{2}) = U(0, \frac{1}{2})$

Holds generally: Uniform closed under conditioning



Exponential distribution with scale λ ,

$$p(x) = \lambda e^{-\lambda x}$$
 $P(x) = 1 - e^{-\lambda x}$

for X>0. Moments given by,

$$\mathbf{E}[X] = \frac{1}{\lambda} \qquad \qquad \mathbf{Var}[X] = \frac{2}{\lambda^2}$$

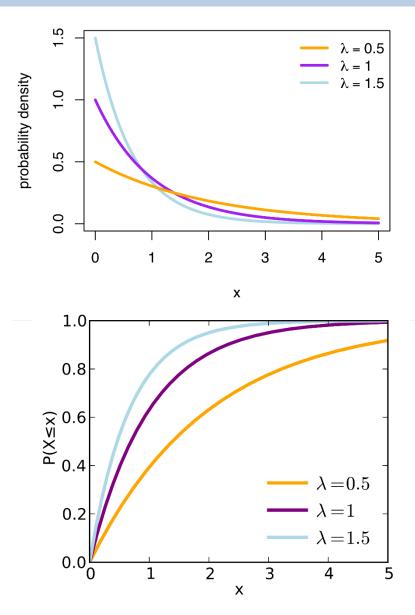
Useful properties

• Closed under conditioning If $X \sim \text{Exponential}(\lambda)$ then,

$$P(X \ge s + t \mid X \ge s) = P(X \ge s) = e^{-\lambda s}$$

• Minimum Let X_1, X_2, \ldots, X_N be i.i.d. exponentially distributed with scale parameters $\lambda_1, \lambda_2, \ldots, \lambda_N$ then,

 $P(\min(X_1, X_2, \dots, X_N)) = \text{Exponential}(\sum_i \lambda_i)$



Gaussian (a.k.a. Normal) distribution with mean mean (location) μ and variance (scale) σ^2 parameters,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{1}{2}(x-\mu)^2/\sigma^2}$$

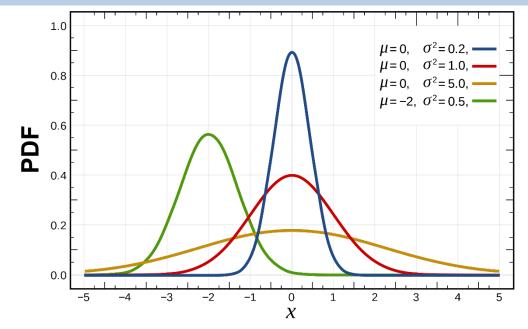
We say $X \sim \mathcal{N}(\mu, \sigma^2)$.

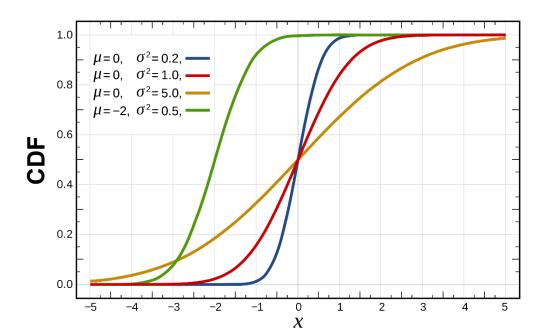
Useful Properties

• Closed under additivity:

 $X \sim \mathcal{N}(\mu_x, \sigma_x^2) \qquad Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$ $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

- Closed under linear functions (a and b constant): $aX+b\sim \mathcal{N}(a\mu_x+b,a^2\sigma_x^2)$





Multivariate Gaussian On RV $X \in \mathcal{R}^d$ with mean $\mu \in \mathcal{R}^d$ and positive semidefinite covariance matrix $\Sigma \in \mathcal{R}^{d \times d}$,

$$p(x) = |2\pi\Sigma|^{-1/2} \exp{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

Moments given by parameters directly.

Useful Properties

- Closed under additivity (same as univariate case)
- Closed under linear functions,

 $AX + b \sim \mathcal{N}(A\mu_x + b, A\Sigma A^T)$

Where $A \in \mathcal{R}^{m \times d}$ and $b \in \mathcal{R}^m$ (output dimensions may change)

Closed under conditioning and marginalization

Will discuss Gaussians a lot more when we cover exponential families

