

CSC535: Probabilistic Graphical Models

Bayesian Deep Learning

Prof. Jason Pacheco

Outline

- Artificial Neural Network (ANN) : A Review
- Shortcomings of Standard Deep Learning
- Bayesian Deep Learning
- Bayesian Neural Network (BNN) Inference

Outline

- Artificial Neural Network (ANN) : A Review
- Shortcomings of Standard Deep Learning
- Bayesian Deep Learning
- Bayesian Neural Network (BNN) Inference

Basis Functions

Basis functions transform linear models into nonlinear ones...

...but it is often difficult to find a good basis transformation

Learning Basis Functions

What if we could learn a basis function so that a simple linear model performs well...

...this is essentially what standard neural networks do...

Neural Networks

- Flexible nonlinear transformations of data
- Resulting transformation is easily fit with a linear model
- Relatively efficient learning procedure scales to massive data
- Apply to many Machine Learning / Data Science problems
 - Regression
 - Classification
 - Dimensionality reduction
 - Function approximation
 - Many application-specific problems

Neural Networks

Forms of NNs are used all over the place nowadays...

Large Language Models

Text Documents Machine Translation		
DETECT LANGUAGE ENGLISH	SPANISH FRENCH \checkmark \longleftrightarrow SPANISH ENGLISH ARABIC \checkmark	
Hello world!	× ¡Hola Mundo! 꽄	\$
	12 / 5000	□ / <

Rosenblatt's Perceptron

Despite recent attention, neural networks are fairly old

In 1957 Frank Rosenblatt constructed the first (single layer) neural network known as a "perceptron"

He demonstrated that it is capable of recognizing characters projected onto a 20x20 "pixel" array of photosensors

Rosenblatt's Perceptron

FIG. 1 - Organization of a biological brain. (Red areas indicate active cells, responding to the letter X.) Association System Mosaic of Projection area Response (In some models) (A-units) Units Sensory Points **Output Signal** Topographic Random Connections Connections Feedback Circuits FIG. 2 — Organization of a perceptron.

Perceptron

- In Rosenblatt's perceptron, the inputs are tied directly to output
- "Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics" (1962)
- Criticized by Marvin Minsky in book "Perceptrons" since can only learn linearly-separable functions

Multilayer Perceptron

This is the quintessential Neural Network...

...also called Feed Forward Neural Net or Artificial Neural Net

"Deep" Neural Networks

Modern Deep Neural networks add many hidden layers

...and have many millions of parameters to learn

[Source: Krizhevsky et al. (NIPS 2012)]

Handwritten Digit Classification

Classifying handwritten digits is the "Hello World" of NNs

Modified National Institute of Standards and Technology (MNIST) database contains 60k training and 10k test images Each character is centered in a 28x28=784 pixel grayscale image

784

Each image pixel is a numer in [0,1] indicated by highlighted color

[Source: 3Blue1Brown: https://www.youtube.com/watch?v=aircAruvnKk]

Feedforward Procedure

Each node computes a weighted combination of nodes at the previous layer...

 $w_1x_1 + w_2x_2 + \ldots + w_nx_n$

Then applies a *nonlinear function* to the result

 $\sigma(w_1x_1+w_2x_2+\ldots+w_nx_n+b)$

Often, we also introduce a constant *bias* parameter

Nonlinear Activation functions

We call this an *activation function* and typically write it in vector form, $\sigma(w_1x_1 + w_2x_2 + \ldots + w_nx_n + b) = \sigma(w^Tx + b)$

An early choice was the logistic function,

$$\sigma(w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$$

Later found to lead to slow learning and *ridge* functions like the rectified linear unit (ReLU),

$$\sigma(w^T x + b) = \max(0, w^T x + b)$$

Or the smooth Gaussian error linear unit (GeLU), $v = w^T x + b$ $\sigma(v) = v \Phi(v)$ Gaussian CDF

Multilayer Perceptron

Final layer is typically a linear model...for classification this is a Logistic Regression

$$\sigma(w^T x + b) = \frac{1}{1 + e^{-(w^T x + b)}}$$

Vector of activations from previous layer

Recall that for multiclass logistic regression with K classes,

 $p(\text{Class} = k \mid x) \propto \sigma(w_k^T x + b_k)$

[Source: 3Blue1Brown: https://www.youtube.com/watch?v=aircAruvnKk]

784

$13,\!002$

Each parameter has some impact on the output...need to tweak (learn) all parameters simultaneously to improve prediction accuracy

How to adjust weights?

Score based on difference between final layer and onehot vector of true class...

Our cost function for ith input is error in terms of weights / biases...

$$\operatorname{Cost}_i(w_1,\ldots,w_n,b_1,\ldots,b_n)$$

13,002 Parameters in this network

...minimize cost over all training data...

$$\min_{w,b} \mathcal{L}(w,b) = \sum_{i} \operatorname{Cost}_{i}(w_{1},\ldots,w_{n},b_{1},\ldots,b_{n})$$

This is a super high-dimensional optimization (13,002 dimensions in this example)...how do we solve it?

Gradient descent!

Need to find zero derivative (gradient) solution...

Actually, the situation is much worse, since the cost is super (13,002) high dimensional...but we proceed as if...

Training the MLP is challenging...but it's much easier than how Rosenblatt did it

Play with a small multilayer perceptron on a binary classification task...

https://playground.tensorflow.org/

Computing the Derivative

So we need to compute derivatives of a super complicated function...

$$\frac{d}{dw}\mathcal{L}(w) = \sum_{i} \frac{d}{dw} \operatorname{Cost}_{i}(w)$$

Dropped bias terms for simplicity

Recall the derivative chain rule

$$\frac{d}{dw}f(g(w)) = \frac{d}{dg(w)}f(g(w))\left(\frac{d}{dw}g(w)\right)$$
Derivative of f at its argument g(w) respect to w e.g. treat g(w) as a variable

Backpropagation

[Source: 3Blue1Brown: <u>https://www.youtube.com/watch?v=aircAruvnKk</u>]

Activation at final layer involves weighted combination of activations at previous layer...

Which involves a weighted combination of the layer before it...

And so on...

 $\sigma(w_n^T \sigma(w_{n-1}^T \sigma(w_{n-2}^T \sigma(\dots))))$

Backpropagation

Backpropagation is the procedure of repeatedly applying the derivative chain rule to compute the full derivative

Example

$$\frac{d}{dz}\sigma(z) = \sigma(z)(1 - \sigma(z))$$

$$\frac{d}{dz}\sigma(\sigma(z)) = \sigma(\sigma(z))(1 - \sigma(\sigma(z)))\frac{d}{dz}\sigma(z)$$

This is simply the derivative chain rule applied through the entire network, from the output to the input

Backpropagation

- Implementation-wise all we need is a function that computes the derivative of each nonlinear activation
- We can repeatedly call this function, starting at the end of the network and moving backwards
- In practice, neural network implementations use *auto differentiation* to compute the derivative on-the-fly
- Can do this efficiently on graphical processing units (GPUs) on extremely large training datasets

Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer perceptron that approximates f(x) with arbitrary accuracy.

- Specific cases for arbitrary depth (number of hidden layers) and arbitrary width (number of nodes in a layer)
- Not a constructive proof (doesn't guarantee you can learn parameters)
- Corollary : The multilayer perceptron is a *universal turing machine*
- Also means it can easily overfit training data (regularization is critical)

Outline

- Artificial Neural Network (ANN) : A Review
- Shortcomings of Standard Deep Learning
- Bayesian Deep Learning
- Bayesian Neural Network (BNN) Inference

Some Drawbacks of Standard Deep Learning

- Predictions can be "brittle" (i.e. very discontinuous w.r.t. input)
- Fail to generalize outsize training data (regularization important)
- Difficult to tune learning procedure
- Unable to accurately quantify uncertainty over predictions
- Lack privacy (memorize training data)
- Lack interpretability (models are "black box")
- Pose safety issues in critical applications

How many r's are in the word "strawberry"?

There are 2 r's in the word "strawberry".

Wrong

I apologize for the error in my previous response. You are correct to point out that I was mistaken. Let me correct that:

There is actually only 1 'r' in the word "strawberry".

Thank you for bringing this to my attention. I always aim for accuracy, and I appreciate the opportunity to provide the correct information.

Wrong

I apologize again for the confusion. You're right to point out that I'm still incorrect. Let me take a moment to carefully count the letters:

s-t-r-a-w-b-e-r-r-y

After a careful recount, I can now state with certainty:

There are 2 'r's in the word "strawberry".

This is the correct answer. The first 'r' appears after the 't', and the second 'r' is the second-to-last letter of the word. Thank you for your patience as we arrived at the accurate answer. If you have any more questions or need clarification on anything else, please don't hesitate to ask.

Brittleness : Discontinuities in Predictions

Nearly imperceptible changes to input change prediction

All images in right column predicted as "ostrich"

Szegedy et al. "Intriguing properties of neural networks." ICLR 2014

Deep Learning Has No Common Sense

They often fail to generalize to novel instances

Alcorn et al. "Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects." CVPR 2019

Safety Concerns

Variety of black-box physical attacks left-toright:

- Artistic graffiti
- Subtle graffiti
- Poster

Can reliably cause ANN to misclassify as intended target (e.g. speed limit 45mph)

Does not require knowledge of network internals

Deep Learning is Opaque

It is often unclear <u>what</u> a DL system has learned

- This can be dangerous!
 - Biases and bugs may exist
 - Only discovered when it's too late!
- Important real-world applications must account for this
 - Diagnosing medical patients
 - Self-driving cars
 - Safety-critical systems
 - Etc.
Privacy Concerns

Large DNNs capable of memorizing training data...

Figure 1: **Our extraction attack.** Given query access to a neural network language model, we extract an individual person's name, email address, phone number, fax number, and physical address. The example in this figure shows information that is all accurate so we redact it to protect privacy.

Carlini et al. demonstrate that training data can be recovered from GPT-2, a large language model...

...this can be done in a black-box manner (i.e. without knowledge of network internals)

** Carlini et al. "Extracting training data from large language models." USENIX 2021

Outline

- Artificial Neural Network (ANN) : A Review
- Shortcomings of Standard Deep Learning
- Bayesian Deep Learning
- Bayesian Neural Network (BNN) Inference

Uncertainty Quantification

- Many of the shortcomings of DL can be addressed by quantifying uncertainty
- Uncertainty comes in a variety of forms:
 - Uncertainty that can be eliminated with more training data (epistemic)
 - Uncertainty that is inherent in the stochastic process (aleotoric)
- Preliminary work aims to calibrate uncertainty in the prediction layer (e.g. softmax) via "network uncertainty calibration"

(left) Before calibration (right) after calibration on CIFAR-100 image classification task

Guo et al. "On Calibration of Modern Neural Networks." NeurIPS. 2017

Probabilistic Perspectives on Deep learning

DNNs typically provide a deterministic mapping of inputs-to-predictions:

Prediction
$$\longrightarrow y = f_{\theta}(x)$$
 Input
Network Parameters: Weights,
architecture, activation funcs

Can extend this to *discriminative* probability model relatively easily:

$$p(y \mid x, \theta)$$

- E.g. use 2nd-to-last softmax layer as PMF (bad idea)
- Use networks to parameterize parametric density

$$p(y \mid x, \theta) = \mathcal{N}(y \mid \mu_{\theta}(x), \Sigma_{\theta}(x))$$

Idea Treat parameters as random variables with prior $\theta \sim p(\theta)$ to define generative model:

$$p(\theta, y \mid x)$$

Think of this

as a prior

over models

Benefits

- Can compute posterior over all networks $p(\theta \mid x)$
- Or marginalize over network parameters $p(y \mid x) = \int p(\theta, y \mid x) d\theta$
- Natural approach to quantify uncertainty over network and/or prediction
- Distinguish between epistemic and aleotoric uncertainty*
- There is always a prior...Bayesian methods just make it explicit

<u>* Der Kiureghian and Ditlevsen. "Aleatory or epistemic? Does it matter?." Structural safety (2009)</u>

* Kendall and Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurIPS. (2017)

Point Estimate vs. Bayesian DL Correspondence

The learning process of Bayesian DL fundamentally differs from point estimate ANNs

Instead of minimizing a loss function, Bayesian DL does inference via MCMC, Variational, etc.

Online prediction often requires inference (unless amortized inference is done)

Source: Jospin et al. "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users." IEEE Comp. Intell. Mag. (2022)

Bayesian Neural Network

- Both standard ANN and BNN require functional model
- BNN additionally requires stochastic model (likelihoods, priors)
- Stochastic model depends on whether weights or nodes are random
- Either choice determines structure of the underlying PGM

Bayesian Neural Network

Many different constructions, but all essentially a stochastic ANN

An ANN construction with parameters $\theta = (W, b)$:

$$\begin{aligned} & \boldsymbol{l}_0 = \boldsymbol{x}, \\ & \boldsymbol{l}_i = s_i (\boldsymbol{W}_i \boldsymbol{l}_{i-1} + \boldsymbol{b}_i) \quad \forall i \in [1, n] \\ & \boldsymbol{y} = \boldsymbol{l}_n. \end{aligned}$$

Two main types of BNNs

- Add stochastic activations at nodes
- Make parameters random (add priors)

Fig. 3: (a) Point estimate neural network, (b) stochastic neural network with a probability distribution for the activations, and (c) stochastic neural network with a probability distribution over the weights.

Source: Jospin et al. "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users." IEEE Comp. Intell. Mag. (2022)

Bayesian Neural Network

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

Source: Jospin et al. "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users." IEEE Comp. Intell. Mag. (2022)

Inference in a BNN

Given training data $D = \{Dx, Dy\}$ compute posterior over network params,

$$p(\boldsymbol{\theta}|D) = \frac{p(D_{\boldsymbol{y}}|D_{\boldsymbol{x}},\boldsymbol{\theta})p(\boldsymbol{\theta})}{\int_{\boldsymbol{\theta}} p(D_{\boldsymbol{y}}|D_{\boldsymbol{x}},\boldsymbol{\theta}')p(\boldsymbol{\theta}')d\boldsymbol{\theta}'} \propto p(D_{\boldsymbol{y}}|D_{\boldsymbol{x}},\boldsymbol{\theta})p(\boldsymbol{\theta}).$$

- Represents distribution over all possible networks based on training data
- In general restricted to a subclass, i.e. fixed architecture / activations
- Parameters are typically network weights
- Inference is intractable in general, need look at algorithms we've learned

Prediction in a BNN

When predicting we often marginalize over network parameters,

$$p(\boldsymbol{y}|\boldsymbol{x}, D) = \int_{\boldsymbol{\theta}} p(\boldsymbol{y}|\boldsymbol{x}, \boldsymbol{\theta'}) p(\boldsymbol{\theta'}|D) d\boldsymbol{\theta'}.$$

Marginal $p(y \mid x, D)$ characterizes predictive uncertainty of the network.

Given samples from posterior,

 $\boldsymbol{\theta}_i \sim p(\boldsymbol{\theta}|D);$

Can sample predictions in feedforward process,

 $oldsymbol{y}_i = \Phi_{oldsymbol{ heta}_i}(oldsymbol{x});$

Algorithm 1 Inference procedure for a BNN.Define $p(\theta|D) = \frac{p(D_y|D_x, \theta)p(\theta)}{\int_{\theta} p(D_y|D_x, \theta')p(\theta')d\theta'};$ for i = 0 to N doDraw $\theta_i \sim p(\theta|D);$ $y_i = \Phi_{\theta_i}(x);$ return $Y = \{y_i | i \in [0, N)\}, \ \Theta = \{\theta_i | i \in [0, N)\};$

Prediction in a BNN

Approach generates a set of predictions from an ensemble of networks,

$$Y = \{ \boldsymbol{y}_i | i \in [0, N) \}, \ \Theta = \{ \boldsymbol{\theta}_i | i \in [0, N) \};$$

Can use model averaging for a single prediction,

$$\hat{\boldsymbol{y}} = rac{1}{|\Theta|} \sum_{\boldsymbol{\theta}_i \in \Theta} \Phi_{\boldsymbol{\theta}_i}(\boldsymbol{x}).$$

Sample covariance can be used to quantify predictive uncertainty,

$$\boldsymbol{\Sigma}_{\boldsymbol{y}|\boldsymbol{x},D} = \frac{1}{|\Theta|-1} \sum_{\boldsymbol{\theta}_i \in \Theta} \left(\Phi_{\boldsymbol{\theta}_i}(\boldsymbol{x}) - \boldsymbol{\hat{y}} \right) \left(\Phi_{\boldsymbol{\theta}_i}(\boldsymbol{x}) - \boldsymbol{\hat{y}} \right)^{\mathsf{T}}.$$

Better uncertainty estimates are possible (e.g. predictive entropy)

Prediction in a BNN

One can also consider the empirical distribution over predictions,

$$\hat{\boldsymbol{p}} = rac{1}{|\Theta|} \sum_{\boldsymbol{ heta}_i \in \Theta} \Phi_{\boldsymbol{ heta}_i}(\boldsymbol{x}).$$

The maximum a posteriori (MAP) prediction is then,

$$\hat{\boldsymbol{y}} = rg\max_i p_i \in \hat{\boldsymbol{p}}.$$

- Uncertainty given via the empirical entropy
- Straightforward for classification tasks
- Continuous (i.e. regression) predictions require density estimation

Generalizing Beyond Supervised Learning

Bayesian DL can effectively use unlabeled data and uncertain labels...

(a) Noisy labels (b) Semi-supervised learning

x $\boldsymbol{\theta}$ x'

(c) Data augmentation

(d) Meta-learning

(e) Self-supervised learning

- Noisy Labels Annotations can be imprecise
- Semi-Supervised Use, both, labeled and unlabeled training data
- Augmentation Transformations of inputs that do not change label
- Meta-Learning Learn how to learn
- Self-Supervised Labels are directly obtained from inputs, but do not relate to the task...need to learn a proxy task

Active Learning in a BNN

...uncertainty over prediction allows us to be smart about what data we need to label **Algorithm 2** Active learning loop with a BNN. while $U \neq \emptyset$ and $\Sigma_{y|x_{max},D}$ < threshold and C < MaxCdo Draw $\Theta = \{ \boldsymbol{\theta}_i \sim p(\boldsymbol{\theta}|D) | i \in [0, N) \};$ for $x \in U$ do $\boldsymbol{\Sigma}_{\boldsymbol{y}|\boldsymbol{x},D} = \frac{1}{|\boldsymbol{\Theta}|-1} \sum_{\boldsymbol{\theta}_i \in \boldsymbol{\Theta}} \left(\Phi_{\boldsymbol{\theta}_i}(\boldsymbol{x}) - \hat{\boldsymbol{y}} \right) \left(\Phi_{\boldsymbol{\theta}_i}(\boldsymbol{x}) - \hat{\boldsymbol{y}} \right)^{\mathsf{T}};$ if $\Sigma_{\boldsymbol{y}|\boldsymbol{x},D} > \Sigma_{\boldsymbol{y}|\boldsymbol{x}_{max},D}$ then $x_{max} = x;$ end if end for $D_{\boldsymbol{x}} = D_{\boldsymbol{x}} \cup \{\boldsymbol{x}_{\max}\};$ $D_{\boldsymbol{y}} = D_{\boldsymbol{y}} \cup \{ \text{Oracle}(\boldsymbol{x}_{\max}) \};$ $U = U \setminus \{\boldsymbol{x}_{\max}\};$ C = C + 1: end while

Source: Jospin et al. "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users." IEEE Comp. Intell. Mag. (2022)

Source: Settles et al. "Active Learning Literature Survey." Univ. of Wisc. Madison TR. (2010)

Conclusions

Standard Deep Learning

- Works great much of the time if we only care about predictive accuracy
- Point estimate-based learning can be brittle, yield poor uncertainty calibration

Bayesian Deep Learning

- Combines DL models with Bayesian concepts and inference
- Directly represents uncertainty over network and predictions
- More robust predictive models than point estimates
- Significantly increases computational burden
- Some simple "approximately Bayesian" methods perform decently

Outline

- Artificial Neural Network (ANN) : A Review
- Shortcomings of Standard Deep Learning
- Bayesian Deep Learning
- Bayesian Neural Network (BNN) Inference

Maximum Likelihood Estimation

Neural network can be viewed as probabilistic model with weights learned by maximum likelihood

$$\mathbf{w}^{\text{MLE}} = \arg \max_{\mathbf{w}} P(\mathcal{D}|\mathbf{w})$$
$$= \arg \max_{\mathbf{w}} \prod_{i} P(y_i|x_i, \mathbf{w})$$
$$\textbf{Distribution over predictions}$$

Frequentist : Weights are fixed. Data are random variables.

MAP Estimation

Bayesian : Weights are random variables with prior *P(w)*

Most frequentist approaches include regularizer in learning, which implicitly plays the role of a prior belief

Inferring the Predictive Distribution

We can substitute our best estimate of weights,

$$P(\hat{y}|\hat{x}) = P(\hat{y}|\hat{x}, \mathbf{w}^{\text{MAP}})$$

Or marginalize over the network weights via the posterior,

$$P(\hat{y}|\hat{x}) = \mathbb{E}_{P(\mathbf{w}|\mathcal{D})}[P(\hat{y}|\hat{x}, \mathbf{w})]$$
$$= \int P(\hat{y}|\hat{x}, \mathbf{w})P(\mathbf{w}|\mathcal{D})d\mathbf{w}$$

Second approach performs *inference*; accounts for weight uncertainty

Inferring Network Weights

Need to compute posterior uncertainty over weights, given training data...

...but how to compute the posterior?

$$P(\mathbf{w}|\mathcal{D}) = \frac{P(\mathcal{D}|\mathbf{w})P(\mathbf{w})}{P(\mathcal{D})} \left(= \frac{P(\mathcal{D}|\mathbf{w})P(\mathbf{w})}{\int P(\mathcal{D}|\mathbf{w})P(\mathbf{w})d\mathbf{w}} \right)$$

Bayesian DL Inference

	Benefits	Limitations	Use cases	
MCMC (V.A)	Directly samples the posterior	Requires to store a very large number of samples	Small and average models	
Classic methods (HMC, NUTS)(§V-A)	State of the art samplers limit autocorrelation between samples	Do not scale well to large models	Small and critical models	Can b
SGLD and derivates (§V-E2a)	Provide a well behaved Markov Chain with minibatches	Focus on a single mode of the posterior	Models with larger datasets	e com
Warm restarts (§V-E2a)	Help a MCMC method explore different modes of the posterior	Requires a new burn-in sequence for each restart	Combined with a MCMC sampler	bined
Variational inference (V.B)	The variational distribution is easy to sample	Is an approximation	Large scale models	
Bayes by backprop (§V-C)	Fit any parametric distribution as posterior	Noisy gradient descent	Large scale models	\ Ca
Monte Carlo-Dropout (§V-E1)	Can transform a model using dropout into a BNN	Lack expressive power	Dropout based models	n be c
Laplace approximation (§V-E2b)	By analyzing standard SGD get a BNN from a MAP	Focus on a single mode of the posterior	Unimodals large scale models	ombin
Deep ensembles (§V-E2b)	Help focusing on different modes of the posterior	Cannot detect local uncertainty if used alone	Multimodals models and combined with other VI methods) ed

Source: Jospin et al. "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users." IEEE Comp. Intell. Mag. (2022)

Monte Carlo Dropout

Dropout

- Typically used as regularizer in training
- Each grad update randomly remove nodes
- Ensures network not overly sensitive to small subset of edges

(a) Standard Neural Net

(b) After applying dropout.

Monte Carlo Dropout

- Do dropout at prediction...generate ensemble of predictions by dropping a subset of edges for each
- Equivalent to VI with variational distribution for each weight as,

 $\begin{aligned} \boldsymbol{z}_{i,j} &\sim \text{Bernoulli}(p_i), \\ \boldsymbol{W}_i &= \boldsymbol{M}_i \cdot \text{diag}(\boldsymbol{z}_i), \end{aligned}$

Monte Carlo Dropout

Distribution of outputs quantifies uncertainty

Mauna Loa CO2 Concentrations

Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).

Bayesian DL Inference

	Benefits	Limitations	Use cases	
MCMC (V.A)	Directly samples the posterior	Requires to store a very large number of samples	Small and average models	
Classic methods (HMC, NUTS)(§V-A)	State of the art samplers limit autocorrelation between samples	Do not scale well to large models	Small and critical models	Can b
SGLD and derivates (§V-E2a)	Provide a well behaved Markov Chain with minibatches	Focus on a single mode of the posterior	Models with larger datasets	e com
Warm restarts (§V-E2a)	Help a MCMC method explore different modes of the posterior	Requires a new burn-in sequence for each restart	Combined with a MCMC sampler	bined
Variational inference (V.B)	The variational distribution is easy to sample	Is an approximation	Large scale models	
Bayes by backprop (§V-C)	Fit any parametric distribution as posterior	Noisy gradient descent	Large scale models	
Monte Carlo-Dropout (§V-E1)	Can transform a model using dropout into a BNN	Lack expressive power	Dropout based models	n be c
Laplace approximation (§V-E2b)	By analyzing standard SGD get a BNN from a MAP	Focus on a single mode of the posterior	Unimodals large scale models	ombin
Deep ensembles (§V-E2b)	Help focusing on different modes of the posterior	Cannot detect local uncertainty if used alone	Multimodals models and combined with other VI methods) ed

Source: Jospin et al. "Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users." IEEE Comp. Intell. Mag. (2022)

Variational Approximation

Minimize KL between $q(w \mid \theta)$ and $posteriop(w \mid D)$.

[Source: David Blei]

Variational Inference

Recall the Kullback-Leibler divergence given as,

$$\mathrm{KL}[q(x) \| P(x)] \equiv \int q(x) \log \frac{q(x)}{P(x)} dx$$

Our variational parameters are given by,

$$\theta^* = \arg\min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w}|\mathcal{D})} d\mathbf{w}$$
$$= \arg\min_{\theta} \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathcal{D}|\mathbf{w})P(\mathbf{w})} d\mathbf{w}$$

Variational Loss

So our loss function is given by,

$$\mathcal{F}(\mathcal{D}, \theta) = \int q(\mathbf{w}|\theta) \log \frac{q(\mathbf{w}|\theta)}{P(\mathbf{w})} - q(\mathbf{w}|\theta) \log P(\mathcal{D}|\mathbf{w}) d\mathbf{w}$$
$$= \mathrm{KL}[q(\mathbf{w}|\theta) \| P(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w}|\theta)}[\log P(\mathcal{D}|\mathbf{w})]$$

Just differentiate the loss function and optimize, right?

$$\nabla_{\theta} \mathcal{F}(\mathcal{D}, \theta) = \nabla_{\theta} \mathrm{KL}[q(\mathbf{w}|\theta) \| P(\mathbf{w})] - \nabla_{\theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[\log P(\mathcal{D}|\mathbf{w})]$$

No. We don't get a straightforward Monte Carlo estimator...

$$\begin{aligned} \frac{\partial}{\partial \theta} \mathbb{E}_{q(w|\theta)}[f(w,\theta)] &= \int \frac{\partial}{\partial \theta} q(w \mid \theta) f(w,\theta) \, dw \\ &= \int q'(w \mid \theta) f(w,\theta) \, dw + \int q(w \mid \theta) f'(w,\theta) \, dw \end{aligned}$$

... first term is not an expected value!

Reparameterization Trick

Proposition 1. Let ϵ be a random variable having a probability density given by $q(\epsilon)$ and let $\mathbf{w} = t(\theta, \epsilon)$ where $t(\theta, \epsilon)$ is a deterministic function. Suppose further that the marginal probability density of \mathbf{w} , $q(\mathbf{w}|\theta)$, is such that $q(\epsilon)d\epsilon = q(\mathbf{w}|\theta)d\mathbf{w}$. Then for a function f with derivatives in \mathbf{w} :

$$\frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] = \mathbb{E}_{q(\epsilon)} \left[\frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right].$$

Proof of Reparameterization Trick

$$\begin{split} \frac{\partial}{\partial \theta} \mathbb{E}_{q(\mathbf{w}|\theta)}[f(\mathbf{w},\theta)] &= \frac{\partial}{\partial \theta} \int f(\mathbf{w},\theta) q(\mathbf{w}|\theta) d\mathbf{w} \\ &= \frac{\partial}{\partial \theta} \int f(\mathbf{w},\theta) q(\epsilon) d\epsilon \\ &= \mathbb{E}_{q(\epsilon)} \left[\frac{\partial f(\mathbf{w},\theta)}{\partial \mathbf{w}} \frac{\partial \mathbf{w}}{\partial \theta} + \frac{\partial f(\mathbf{w},\theta)}{\partial \theta} \right] \end{split}$$

Variational Loss

So our loss function is given by,

$$\mathcal{F}(\mathcal{D},\theta) = \mathrm{KL}[q(\mathbf{w}|\theta) \| P(\mathbf{w})] - \mathbb{E}_{q(\mathbf{w}|\theta)}[\log P(\mathcal{D}|\mathbf{w})]$$

Given samples $\{w^{(i)}\}_{i=1}^n \sim q(w \mid \theta)$ approximate loss as,

$$\mathcal{F}(\mathcal{D}, \theta) \approx \sum_{i=1}^{n} \log q(\mathbf{w}^{(i)}|\theta) - \log P(\mathbf{w}^{(i)}) - \log P(\mathcal{D}|\mathbf{w}^{(i)})$$

Use reparameterization trick to calculate gradient.

So we need a deterministic function s.t. $\mathbf{w} = t(\theta, \epsilon)$.

Suppose we want to sample a Gaussian RV,

 $\mathbf{w} \sim \mathcal{N}(\mu, \sigma^2)$

But we only know how to sample a standard Gaussian RV, $\epsilon \sim \mathcal{N}(0,1)$

Gaussians are closed under linear transformations so,

$$\mathbf{w} = \underbrace{\boldsymbol{\mu} + \boldsymbol{\sigma}\boldsymbol{\epsilon}}_{\mathbf{w}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\sigma}^2)$$
$$\mathbf{w} = t(\boldsymbol{\theta}, \boldsymbol{\epsilon})$$

1. Sample $\epsilon \sim \mathcal{N}(0, I)$. 2. Let $\mathbf{w} = \mu + \log(1 + \exp(\rho)) \circ \epsilon$. 3. Let $\theta = (\mu, \rho)$. 4. Let $f(\mathbf{w}, \theta) = \log q(\mathbf{w}|\theta) - \log P(\mathbf{w})P(\mathcal{D}|\mathbf{w})$. 5. Calculate the gradient with respect to the mean $\Delta_{\mu} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \mu}.$ (3)6. Calculate the gradient with respect to the standard deviation parameter ρ

$$\Delta_{\rho} = \frac{\partial f(\mathbf{w}, \theta)}{\partial \mathbf{w}} \frac{\epsilon}{1 + \exp(-\rho)} + \frac{\partial f(\mathbf{w}, \theta)}{\partial \rho}.$$
 (4)

7. Update the variational parameters:

$$\mu \leftarrow \mu - \alpha \Delta_{\mu} \tag{5}$$
$$\rho \leftarrow \rho - \alpha \Delta_{\rho}. \tag{6}$$

Done by backpropagtation
Noisy Regression

Figure 5. Regression of noisy data with interquatile ranges. Black crosses are training samples. Red lines are median predictions. Blue/purple region is interquartile range. Left: Bayes by Back-prop neural network, Right: standard neural network.

Blundell et al., ICML. 2015

Fashion MNIST

70k images, 28x28, 10 classes of clothing objects

Source: https://www.nitarshan.com/bayes-by-backprop/

MNIST Out-of-Sample Prediction

Trained on FMNIST, tested on MNIST

Source: <u>https://www.nitarshan.com/bayes-by-backprop/</u>

In-Sample MNIST Prediction

Table 1. Classification Error Rates on MNIST. \star indicates resultused an ensemble of 5 networks.

Method	# Units/Laye	# Weights	Test Error
SGD, no regularisation (Simard et al., 2003)	800	1.3m	1.6%
SGD, dropout (Hinton et al., 2012)			$\approx 1.3\%$
SGD, dropconnect (Wan et al., 2013)	800	1.3m	$\mathbf{1.2\%^{\star}}$
SGD	400	500k	1.83%
	800	1.3m	1.84%
	1200	2.4m	1.88%
SGD, dropout	400	500k	1.51%
	800	1.3m	1.33%
	1200	2.4m	1.36%
Bayes by Backprop, Gaussian	400	500k	1.82%
	800	1.3m	1.99%
	1200	2.4m	2.04%
Bayes by Backprop, Scale mixture	400	500k	1.36%
	800	1.3m	1.34%
	1200	2.4m	1.32 %

Figure 3. Histogram of the trained weights of the neural network, for Dropout, plain SGD, and samples from Bayes by Backprop.

Blundell et al., ICML. 2015

Weight Pruning (MNIST)

Remove weights by their signal-to-noise ratio...

Proportion removed	# Weights	Test Error
0%	2.4m	1.24%
50%	1.2m	1.24%
75%	600k	1.24%
95%	120k	1.29%
98%	48k	1.39%

...95% weights removed with minimal affect on accuracy.

Blundell et al., ICML. 2015