
CSC535: Probabilistic Graphical Models

Bayesian Deep Learning

Prof. Jason Pacheco

Outline

• Artificial Neural Network (ANN) : A Review

• Shortcomings of Standard Deep Learning

• Bayesian Deep Learning

• Bayesian Neural Network (BNN) Inference

Outline

• Artificial Neural Network (ANN) : A Review

• Shortcomings of Standard Deep Learning

• Bayesian Deep Learning

• Bayesian Neural Network (BNN) Inference

Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

(Logistic Regression)

Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I
reused these from the SVM slides

Neural Networks

• Flexible nonlinear transformations of data
• Resulting transformation is easily fit with a linear model
• Relatively efficient learning procedure scales to massive data
• Apply to many Machine Learning / Data Science problems

• Regression
• Classification
• Dimensionality reduction
• Function approximation
• Many application-specific problems

Neural Networks
Forms of NNs are used all over the place nowadays…

Large Language Models Self-Driving Cars

Machine Translation

Creepy Robots

Rosenblatt’s Perceptron
In 1957 Frank Rosenblatt constructed
the first (single layer) neural network

known as a “perceptron”

He demonstrated that it is capable of
recognizing characters projected onto a

20x20 “pixel” array of photosensors

Despite recent attention,
neural networks are fairly old

Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output
• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)
• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions

Multilayer Perceptron

[Source: http://neuralnetworksanddeeplearning.com]

Input layer
perceptrons

Hidden layer
perceptrons

This is the quintessential Neural Network…
…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers
allows NN to learn
arbitrary functions

http://neuralnetworksanddeeplearning.com/

“Deep” Neural Networks

[Source: Krizhevsky et al. (NIPS 2012)]

Modern Deep Neural networks add many hidden layers

…and have many millions of parameters to learn

Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of
Standards and Technology

(MNIST) database contains 60k
training and 10k test images

Each character is centered
in a 28x28=784 pixel

grayscale image

Multilayer Perceptron for MNIST Classification[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each image pixel is a
numer in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes

at the previous layer…

Then applies a nonlinear
function to the result

Often, we also introduce
a constant bias parameter

Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and ridge
functions like the rectified linear unit (ReLU),

Or the smooth Gaussian error linear unit (GeLU),
Gaussian CDF

Multilayer Perceptron

Final layer is typically a linear
model…for classification this is

a Logistic Regression

Recall that for multiclass
logistic regression with K

classes,

Vector of activations from
previous layer

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Each parameter has some impact
on the output…need to tweak

(learn) all parameters
simultaneously to improve

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

For each training example,
predict label and adjust

weights…

• How to score final layer output?
• How to adjust weights?

Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class…

Input

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron
Our cost function for ith input is error in terms of weights / biases…

13,002 Parameters
in this network

…minimize cost over all training data…

This is a super high-dimensional optimization (13,002
dimensions in this example)…how do we solve it?

Gradient descent!

Training Multilayer Perceptron
Need to find zero derivative (gradient) solution…

Convex Cost Function

YAY!

Non-convex Cost Function

Boo!

High-Dimensional Non-convex

Super Boo!

Actually, the situation is much worse, since the cost is super
(13,002) high dimensional…but we proceed as if…

Training the Multilayer Perceptron

Training the MLP is
challenging…but it’s much easier

than how Rosenblatt did it

Example

Play with a small multilayer perceptron on a
binary classification task…

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Computing the Derivative

So we need to compute derivatives of a super complicated
function…

Dropped bias terms
for simplicity

Recall the derivative chain rule

Differentiate g with
respect to w

Derivative of f at its
argument g(w)

e.g. treat g(w) as a variable

Backpropagation
[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk]

Activation at final layer involves
weighted combination of

activations at previous layer…

Which involves a weighted
combination of the layer before

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk

Backpropagation

Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative

Example

This is simply the derivative chain rule applied through the
entire network, from the output to the input

Backpropagation

• Implementation-wise all we need is a function that computes
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the
network and moving backwards

• In practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs)
on extremely large training datasets

Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer
perceptron that approximates f(x) with arbitrary accuracy.

• Specific cases for arbitrary depth (number of hidden layers) and
arbitrary width (number of nodes in a layer)

• Not a constructive proof (doesn’t guarantee you can learn parameters)

• Corollary : The multilayer perceptron is a universal turing machine

• Also means it can easily overfit training data (regularization is critical)

Outline

• Artificial Neural Network (ANN) : A Review

• Shortcomings of Standard Deep Learning

• Bayesian Deep Learning

• Bayesian Neural Network (BNN) Inference

Some Drawbacks of Standard Deep Learning

• Predictions can be “brittle” (i.e. very discontinuous w.r.t. input)
• Fail to generalize outsize training data (regularization important)
• Difficult to tune learning procedure
• Unable to accurately quantify uncertainty over predictions
• Lack privacy (memorize training data)
• Lack interpretability (models are “black box”)
• Pose safety issues in critical applications

How many r’s are in the word “strawberry”?

There are 2 r's in the word "strawberry".

Wrong

I apologize for the error in my previous response. You
are correct to point out that I was mistaken. Let me
correct that:

There is actually only 1 'r' in the word "strawberry".

Thank you for bringing this to my attention. I always
aim for accuracy, and I appreciate the opportunity to
provide the correct information.

Wrong

I apologize again for the confusion. You're right to
point out that I'm still incorrect. Let me take a
moment to carefully count the letters:

s-t-r-a-w-b-e-r-r-y

After a careful recount, I can now state with certainty:

There are 2 'r's in the word "strawberry".

This is the correct answer. The first 'r' appears after
the 't', and the second 'r' is the second-to-last letter of
the word. Thank you for your patience as we arrived
at the accurate answer. If you have any more
questions or need clarification on anything else,
please don't hesitate to ask.

Brittleness : Discontinuities in Predictions
Nearly imperceptible changes to input change prediction

Szegedy et al. “Intriguing properties of neural networks.” ICLR 2014

All images in right column predicted as “ostrich”

https://arxiv.org/pdf/1312.6199.pdf

Deep Learning Has No Common Sense

They often fail to generalize to novel instances

Alcorn et al. “Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects.” CVPR 2019

https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Alcorn_Strike_With_a_Pose_Neural_Networks_Are_Easily_Fooled_by_CVPR_2019_paper.pdf
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf

Safety Concerns

Variety of black-box
physical attacks left-to-
right:
• Artistic graffiti
• Subtle graffiti
• Poster

Evtimov et al. “Robust Physical-World Attacks on ML Models.” 2017

Can reliably cause ANN
to misclassify as

intended target (e.g.
speed limit 45mph)

Does not require
knowledge of network

internals

https://s3.observador.pt/wp-content/uploads/2017/08/08133934/1707-08945.pdf

Deep Learning is Opaque

• This can be dangerous!
• Biases and bugs may exist
• Only discovered when it’s too late!

• Important real-world applications must account for this
• Diagnosing medical patients
• Self-driving cars
• Safety-critical systems
• Etc.

It is often unclear what a DL system has learned

Privacy Concerns

Large DNNs capable of memorizing training data…

Carlini et al. demonstrate that training
data can be recovered from GPT-2, a

large language model…

…this can be done in a black-box manner
(i.e. without knowledge of network

internals)

** Carlini et al. “Extracting training data from large language models.” USENIX 2021

https://www.usenix.org/system/files/sec21-carlini-extracting.pdf

Outline

• Artificial Neural Network (ANN) : A Review

• Shortcomings of Standard Deep Learning

• Bayesian Deep Learning

• Bayesian Neural Network (BNN) Inference

Uncertainty Quantification
• Many of the shortcomings of DL can be

addressed by quantifying uncertainty

• Uncertainty comes in a variety of forms:
• Uncertainty that can be eliminated with more

training data (epistemic)
• Uncertainty that is inherent in the stochastic

process (aleotoric)

• Preliminary work aims to calibrate
uncertainty in the prediction layer (e.g.
softmax) via “network uncertainty
calibration”

Guo et al. “On Calibration of Modern Neural Networks.” NeurIPS. 2017

(left) Before calibration (right) after
calibration on CIFAR-100 image

classification task

http://proceedings.mlr.press/v70/guo17a/guo17a.pdf

Probabilistic Perspectives on Deep learning

DNNs typically provide a deterministic mapping of inputs-to-predictions:

Prediction Input
Network Parameters: Weights,
architecture, activation funcs

Can extend this to discriminative probability model relatively easily:

• E.g. use 2nd-to-last softmax layer as PMF (bad idea)
• Use networks to parameterize parametric density

ANN outputs

Bayesian Perspective on Deep Learning

Idea Treat parameters as random variables with prior to define
generative model:

Benefits
• Can compute posterior over all networks
• Or marginalize over network parameters
• Natural approach to quantify uncertainty over network and/or prediction
• Distinguish between epistemic and aleotoric uncertainty*
• There is always a prior…Bayesian methods just make it explicit

* Der Kiureghian and Ditlevsen. "Aleatory or epistemic? Does it matter?." Structural safety (2009)

* Kendall and Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurIPS. (2017)

Think of this
as a prior

over models

https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

Point Estimate vs. Bayesian DL Correspondence

The learning process of
Bayesian DL fundamentally
differs from point estimate

ANNs

Instead of minimizing a loss
function, Bayesian DL does

inference via MCMC,
Variational, etc.

Online prediction often
requires inference (unless

amortized inference is done)

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Bayesian Neural Network

• Both standard ANN and BNN require functional model
• BNN additionally requires stochastic model (likelihoods, priors)
• Stochastic model depends on whether weights or nodes are random
• Either choice determines structure of the underlying PGM

Stochastic Weights Stochastic Nodes

Bayesian Neural Network

Many different constructions, but all essentially a stochastic ANN

An ANN construction with parameters :

Two main types of BNNs
• Add stochastic activations at

nodes
• Make parameters random (add

priors)

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial
for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Bayesian Neural Network

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Inference in a BNN

Given training data D={Dx,Dy} compute posterior over network params,

• Represents distribution over all possible networks based on training
data

• In general restricted to a subclass, i.e. fixed architecture / activations
• Parameters are typically network weights
• Inference is intractable in general, need look at algorithms we’ve

learned

Prediction in a BNN
When predicting we often marginalize over network parameters,

Given samples from
posterior,

Can sample predictions in
feedforward process,

Training Data

Training Labels

Marginal characterizes predictive uncertainty of the network.

Prediction in a BNN

Approach generates a set of predictions from an ensemble of networks,

Can use model averaging for a single prediction,

Sample covariance can be used to quantify predictive uncertainty,

Better uncertainty estimates are possible (e.g. predictive entropy)

Prediction in a BNN

One can also consider the empirical distribution over predictions,

The maximum a posteriori (MAP) prediction is then,

• Uncertainty given via the empirical entropy
• Straightforward for classification tasks
• Continuous (i.e. regression) predictions require density estimation

Generalizing Beyond Supervised Learning
Bayesian DL can effectively use unlabeled data and uncertain labels…

• Noisy Labels Annotations can be imprecise
• Semi-Supervised Use, both, labeled and unlabeled training data
• Augmentation Transformations of inputs that do not change label
• Meta-Learning Learn how to learn
• Self-Supervised Labels are directly obtained from inputs, but do not

relate to the task…need to learn a proxy task

Active Learning in a BNN

…uncertainty over prediction
allows us to be smart about
what data we need to label

Data annotation is
expensive…

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Source: Settles et al. “Active Learning Literature Survey.” Univ. of Wisc. Madison TR. (2010)

Conclusions

Standard Deep Learning
• Works great much of the time if we only care about predictive accuracy
• Point estimate-based learning can be brittle, yield poor uncertainty

calibration

Bayesian Deep Learning
• Combines DL models with Bayesian concepts and inference
• Directly represents uncertainty over network and predictions
• More robust predictive models than point estimates
• Significantly increases computational burden
• Some simple “approximately Bayesian” methods perform decently

Outline

• Artificial Neural Network (ANN) : A Review

• Shortcomings of Standard Deep Learning

• Bayesian Deep Learning

• Bayesian Neural Network (BNN) Inference

Maximum Likelihood Estimation

Neural network can be viewed as probabilistic model with
weights learned by maximum likelihood

w
MLE = argmax

w

P (D|w)

= argmax
w

∏

i

P (yi|xi,w)

Distribution over predictions

Frequentist : Weights are fixed. Data are random variables.

MAP Estimation

Bayesian : Weights are random variables with prior P(w)

Log-prior over weights

Most frequentist approaches include regularizer in learning,
which implicitly plays the role of a prior belief

Inferring the Predictive Distribution

We can substitute our best estimate of weights,

P (ŷ|x̂) = P (ŷ|x̂,wMAP)

Or marginalize over the network weights via the posterior,

P (ŷ|x̂) = EP (w|D)[P (ŷ|x̂,w)]

=

∫
P (ŷ|x̂,w)P (w|D)dw

Second approach performs inference; accounts for
weight uncertainty

Inferring Network Weights

Need to compute posterior
uncertainty over weights, given

training data…

P (w|D) = P (D|w)P (w)
P (D)

(

= P (D|w)P (w)∫
P (D|w)P (w)dw

)

…but how to compute the
posterior?

Bayesian DL Inference

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Monte Carlo Dropout
Dropout
• Typically used as regularizer in training
• Each grad update randomly remove nodes
• Ensures network not overly sensitive to

small subset of edges

Monte Carlo Dropout
• Do dropout at prediction…generate ensemble of predictions by

dropping a subset of edges for each
• Equivalent to VI with variational distribution for each weight as,

Monte Carlo Dropout

Distribution of outputs quantifies uncertainty

Source: https://medium.com/@ciaranbench/monte-carlo-dropout-a-practical-guide-4b4dc18014b5

https://medium.com/@ciaranbench/monte-carlo-dropout-a-practical-guide-4b4dc18014b5

Mauna Loa CO2 Concentrations

Gal and Ghahramani. ICML. 2016

Bayesian DL Inference

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Variational Approximation

Minimize KL between and posterior .q(w | θ) p(w | D)

[Source: David Blei]

θinit

θ∗
KL(q(w | θ)‖p(w | D))

p(w | D)

Variational Inference

Recall the Kullback-Leibler divergence given as,

KL[q(x)‖P (x)] ≡

∫
q(x) log

q(x)

P (x)
dx

Our variational parameters are given by,

θ∗ = argmin
θ

∫
q(w|θ) log

q(w|θ)

P (w|D)
dw

= argmin
θ

∫
q(w|θ) log

q(w|θ)

P (D|w)P (w)
dw

Variational Loss

So our loss function is given by,

F(D, θ) =

∫
q(w|θ) log

q(w|θ)

P (w)
− q(w|θ) logP (D|w)dw

= KL[q(w|θ)‖P (w)]− Eq(w|θ)[logP (D|w)]

Just differentiate the loss function and optimize, right?

∇θF(D, θ) = ∇θKL[q(w|θ)‖P (w)]−∇θEq(w|θ)[logP (D|w)]

Gradient-Based Optimization

No. We don’t get a straightforward Monte Carlo estimator…

…first term is not an expected value!

Reparameterization Trick

Proof of Reparameterization Trick

Variational Loss

So our loss function is given by,

F(D, θ) = KL[q(w|θ)‖P (w)]− Eq(w|θ)[logP (D|w)]

Given samples approximate loss as,

Use reparameterization trick to calculate gradient.

Gaussian Reparameterization

Suppose we want to sample a Gaussian RV,
w ∼ N (µ,σ2)

But we only know how to sample a standard Gaussian RV,
ε ∼ N (0, 1)

Gaussians are closed under linear transformations so,
w = µ+ σε

w = t(θ, ε)

So we need a deterministic function s.t. .

Done by
backpropagtation

Noisy Regression

Blundell et al., ICML. 2015

Fashion MNIST
70k images, 28x28, 10 classes of clothing objects

Source: https://www.nitarshan.com/bayes-by-backprop/

https://www.nitarshan.com/bayes-by-backprop/

MNIST Out-of-Sample Prediction

Source: https://www.nitarshan.com/bayes-by-backprop/

Trained on FMNIST, tested on MNIST

https://www.nitarshan.com/bayes-by-backprop/

In-Sample MNIST Prediction

Blundell et al., ICML. 2015

Weight Pruning (MNIST)

Remove weights by their signal-to-noise ratio…

…95% weights removed with minimal affect on accuracy.

Blundell et al., ICML. 2015

