
CSC535: Probabilistic Graphical Models 

Final Exam Review

Prof. Jason Pacheco



Administrative Items

• Final will be out Tuesday, 12/10

• Due 12/18 @ 11:59pm

• 4 questions (20 points) + Extra Credit (1 point)

• You may provide handwritten responses (scanned PDF)

• Make sure handwriting is clear and easy-to-read



Topics

• Probability and Statistics

• Probabilistic Graphical Models

• Message Passing Inference

• Parameter Learning

• Monte Carlo Methods
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Probability and Random Events

Fundamental Rules of Probability
➢ Conditional:

➢ Law of total probability:

➢ Probability chain rule:

Independence of RVs
➢ Two RVs X & Y are independent iff:

➢ Equivalently:

➢ X & Y are conditionally independent given Z iff:

➢ Equivalently:



Tabular Method

P(x1)=P(x1,y1)+P(x1,y2)

P(x2)=P(x2,y1)+P(x2,y2)

[i.e., sum across rows]
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Let X, Y be binary RVs with the joint probability table

P(y1)=P(x1,y1)+P(x2,y1)

P(y2)=P(x1,y2)+P(x2,y2)

[i.e., sum down columns]

For Binomial use K-by-K 

probability table.



Tabular Method
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Tabular Method
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0.34

P(y1)

P(x|y1)
0.04 / 0.34 

0.30 / 0.34 

These sum to one:

A conditional probability distribution is 

still a probability distribution

0.04  

0.30  



Bayes’ Rule

likelihood function 

for the parametersprior probability

marginal likelihood
posterior probability

Posterior represents all uncertainty after observing data…



Bayesian Inference Example

 A recent home test states that you have high 
BP.  Should you start medication?

Getty Images
About 29% of American adults have 

high blood pressure (BP). Home test 

has 30% false positive rate and no 

false negative error.



• Latent quantity of interest is hypertension:

• Measurement of hypertension:

• Prior:

• Likelihood:   

Bayesian Inference Example

About 29% of American adults have 

high blood pressure (BP). Home test 

has 30% false positive rate and no 

false negative error.

Getty Images



Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have 

high blood pressure (BP). Home test 

has 30% false positive rate and no 

false negative error.

Getty Images



Bayesian Estimation

Task: produce an estimate    of    after observing data  .   

Bayes estimators minimize expected loss function:

Example: Minimum mean squared error (MMSE):

Posterior mean always minimizes squared error. 
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Directed Graphical Models

• Distribution factorized as product of conditionals via chain rule

• Choose ordering where terms simplify due to conditional independence

Eg. Suppose                     and                     then:

• Directed graph encodes factorized distribution via conditional 
independence properties

Tail-to-tail

Head-to-tail

Head-to-head

• Test independence using canonical subgraphs:

• Straightforward simulation via 
ancestral sampling



To test if                          roll ball from every node in       …

Bayes Ball Algorithm

If any ball reaches any 
node in       then      

Otherwise:

Tests for property of directed separation (d-separation): if       
separates / blocks      from       then     .



Bayes Ball Algorithm

Tail-to-Tail

Head-to-Head

Head-to-Tail

Blocks

Doesn’t

Block
Blocks

Blocks

Doesn’t

Block

Doesn’t

Block



Undirected Graphical Models

• Easier to specify models compared to Bayes nets since:
• Factors do not need to be normalized conditional probabilities

• May specify up to unknown normalization constant

• Joint factorization as nonnegative factors (potentials) over subsets:

• Easier to verify Markov independence via separating sets

• Factorization ambiguous in MRFs, but explicit in
factor graphs (factor graphs generally preferred)

• Simulation is not easy in general.  Can’t do 
ancestral sampling. 



We say      and      are conditionally
independent                       given
variables      iff,

Conditional Independence (Undirected)

[ Source: Michael I. Jordan]

Conditional independence

in undirected graphical models

is defined by separating sets

Def. We say        is globally Markov
w.r.t.     if                       in any 
separating set of    .



Markov Random Fields (MRFs)

A factor           corresponds to a clique          (fully connected 
subgraph) in the MRF

An MRF does not imply a unique factorization, 
for example either of the following are “valid”:

A factorization is valid if it satisfies the Global 
Markov property, defined by conditional 

independencies



Factor Graphs

Factor graphs make factorization explicit…

Factor node for each product term in the joint 
factorization:

where                            the set of variables in 
factor f.  For example:           

Factor nodes correspond to MRF cliques
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Bayes Net → MRF

Difficulty Effort

SATGrade

Letter

JobHappy

Drop local normalization

Difficulty Effort

SATGrade

Letter

JobHappy

Added edges marry 

parents (moralization)



Variable Elimination

Difficulty Effort

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L 

Worst-case 
Complexity:



Variable Elimination

Effort

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L 

Worst-case 
Complexity:

Fill-in edge since Effort passes

message to Grade and SAT
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Worst-case 
Complexity:

Fill-in Edge
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Variable Elimination

Job

Elimination order D, E, H, G, S, L 

Worst-case 
Complexity:

What if we choose a 
different elimination order?



Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Eliminate G first…

Add fill-in edges 
to connect all 

neighbors

Complexity 
depends on 

elimination order…

For N variables 
worst case is:



Computational Complexity

Difficulty Effort

SAT

Letter

JobHappy

Eliminate G first…

Worst-case 
Complexity:

Complexity 
depends on 

elimination order…

For N variables 
worst case is:



Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S G,S,L,J H,G,J
E,G G,S G,J

Elimination order    induces graph with 
maximal cliques         and width: 

➢ Complexity of variable elimination is

➢ Lowest complexity given by the treewidth:
It is NP-hard to compute treewidth, 

and therefore an optimal 

elimination order (of course…)



Variable Elimination Summary

➢ Variable elimination allows computation of marginals / conditionals

➢ Algorithm is valid for any graphical model

➢ Suffices to show variable elimination for MRFs, since Bayes nets → 
MRFs by moralization

➢ Worst-case complexity is dependent on elimination order, and is 
exponential in number of variables

➢ Optimal ordering = treewidth, is NP-hard to compute



Sum-Product Belief Propagation

A

B C

D E F G

Forward-Backward extends to any 
tree-structured pairwise MRF

Pass messages from leaves-
to-root, then root-to-leaves

A

C

F G

Marginal given by incoming 
messages (e.g. node C):



Pairwise MRF Sum-Product Belief Propagation

Message

Marginal

Message updates depend only on Markov blanket…

Messages involve a sum over 

products, hence the name “sum-

product algorithm”



Factor Graph Sum-Product Belief Propagation

1

Marginal is product of incoming factor-to-variable messages:



Marginal Inference Algorithms

One Marginal All Marginals

T
re

e
G

ra
p

h

Elimination applied

to leaves of tree

Variable

Elimination

Belief Propagation (BP)

or sum-product

algorithm

Junction Tree Algorithm

BP on a junction tree

(special clique tree)



Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3

X2X5

Theorem A clique tree resulting from variable elimination satisfies the 
running intersection property and is thus a junction tree

X1

X2

X3

X4

X5

X6

Clique tree edges are separator sets in original MRF…so clique tree 
encodes conditional independencies



Junction Tree

Definition (Running intersection) For any pair of clique nodes V,W all 
cliques on the unique path between V and W contain shared variables

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3

X2X5

Junction Tree Not A Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3

X2

Not all clique trees are 

junction trees

Theorem A clique tree resulting from variable elimination satisfies the 
running intersection property and is thus a junction tree



Junction Trees and Triangulation

• A chord is an edge connecting two non-adjacent nodes in some cycle

• A cycle is chordless if it contains no chords

• A graph is triangulated (chordal) if it contains no chordless cycles of length 4 or more 

A B

C D

A,B

A,C

B,D

C,D
D

A

C

B

Theorem:  The maximal cliques of a graph have a corresponding 
junction tree if and only if that undirected graph is triangulated

➢ Key induction argument in constructing junction tree from triangulation

➢ Implies existence of elimination ordering which introduces no new edges

Lemma:  For a non-complete triangulated graph with at least 3 nodes, there is a decomposition of 

the nodes into disjoint sets A, B, S such that S separates A from B, and S is complete.



Induced Graph

X1

X2

X3

X4

X5

X6

Recall the induced graph is the union over intermediate graphs from 
running variable elimination

Intermediate

Factor Edges

The induced graph is chordal thus:

• Maximal cliques of the induced graph 
form a junction tree

• It admits an elimination ordering that 
introduces no new edges

Logic of junction tree algorithm:
1. Triangulate the graph

a. Implies a junction tree

b. Induces an elimination order

2. Run sum-product BP on junction tree 
to compute all clique marginals



Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages

Constant:

Random:

Parallel (Synchronous) Updates

At iteration i update all messages in parallel using 

current messages mi-1 from previous iteration:

• Store, both, the previous messages (from iteration 

i-1) and current messages (from iteration i)

• Many convergence results assume parallel 

updates



Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages

Constant:

Random:

Asynchronous (Sequential) Updates

Choose an ordering of nodes and update using the 

latest available messages:

• Simplifies updates since only need to keep track 

of one copy of messages

• Makes parallel processing trickier



Pseudocode from Murphy’s Textbook



Loopy BP on Factor Graphs

Set of neighbors of node s:

xs

xv

xw

xt

xu

fxs

xv

xw

xt

xu

f

Marginal Distribution of Each Variable:

Loopy BP:

Message updates can 

be iteratively computed 

on graphs with cycles.

But marginals not 

guaranteed correct!

Marginal Distribution of Each Factor:
Clique of variables linked by factor.



Message Passing Inference Summary

•  Brute-force enumeration exponential regardless of graph

•  Sum-Product BP
• Exact inference in tree-structure graphs in O(TK2) time for T nodes, 

each taking K states

• Reduces to Forward-Backward in HMMs

• Same for Max-Product BP (reduces to Viterbi in HMMs)

•  Variable elimination
• Exact marginals in general graphs

• Worst-case complexity exponential in size of largest clique

• Need to rerun from scratch for each marginal

• Complexity dependent on elimination order (NP-hard to optimize)



Message Passing Inference Summary

•  Junction Tree Algorithm
• Exact marginals in general graphs

• Caches messages to compute all marginals

• Worst-case complexity exponential in size of largest clique

• Optimizing Jtree is NP-hard (corresponds to finding treewidth)

• Loopy BP
• BP updates only depend on tree-structured Markov blanket

•  Approximate inference in loopy graphs

•  No guarantees, but works well empirically in many instances

•  Some techniques to improve convergence
• Message damping

• Asynchronous message update schedules
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Maximum Likelihood Estimation

Log-Likelihood Function 

doesn’t change argmax 

since log is monotonic

Logarithm serves a couple of practical purposes:

If concave then just solve for zero-gradient solution,

1) Simplifies derivatives for conditionally independent data 

2) Avoids numerical under/overflow



MLE of Gaussian Mean

Assume data are i.i.d. univariate Gaussian,
Variance is known

Log-likelihood function:

Constant doesn’t 

depend on mean

MLE estimate is least squares estimator:

MLE doesn’t change when we:

1) Drop constant terms (in   )

2) Minimize negative log-likelihood



Maximum A Posteriori (MAP) Estimation

Recall the MAP estimator maximizes posterior probability,

Prior serves as regularizer in regularized MLE:

( Bayes’ rule )

( Probability Chain Rule )

( Monotonicity of Logarithm )



Marginal Likelihood Calculation

Recall the Gaussian Mixture Model…

Marginal Likelihood (likelihood function):

Sum over all possible KN assignments,
which we cannot compute

Clustering

Motivation Approximate MLE / MAP when we 
cannot compute the marginal likelihood in 

closed-form



Expectation Maximization

Initialize Parameters:

At iteration t do:

E-Step:

M-Step:

Until convergence

Complete Data Log-Likelihood



Example: Gaussian Mixture Model

Commonly refer to q(zn) as responsibility

E-Step:



Example: Gaussian Mixture Model

M-Step:

Start with mean parameter     , 

where



EM Lower Bound

Bound gap is the Kullback-Leibler divergence KL(q||p),

( Multiply by 1 )

( Definition of KL )

➢ Similar to a “distance” between q and p

➢ This is why solution to E-step is 



Properties of Expectation Maximization Algorithm

Sequence of bounds is monotonic,

Guaranteed to converge 
(Pf. Monotonic sequence bounded above.)

Converges to a local maximum of the 
marginal likelihood 

After each E-step bound is tight at
so likelihood calculation is exact (for those 
parameters)



MAP EM

Easily extends to (approximate) MAP estimation,

E-step unchanged / Slightly modifies M-step,

E-Step M-Step

Properties of both MLE / MAP EM

• Monotonic in             or                             (for MAP)

• Provably converge to local optima (hence approximate estimation)



Learning Summary

Maximum a posteriori (MAP) maximizes posterior probability,

Parameters are random quantities with prior        .

Corresponds to regularized MLE for specific prior/regularizer pair,

Gaussian prior=L2, Laplacian prior=L1

Straightforward sequential updating, e.g. Bayesian linear regression
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Inference (and related) Tasks

•  Simulation:

•  Compute expectations:

•  Optimization:

•  Compute normalizer / marginal likelihood:



Inference (and related) Tasks

•  Simulation:

•  Compute expectations:

•  Optimization:

•  Compute normalizer / marginal likelihood:



Monte Carlo Estimation

One reason to sample a distribution is to approximate 
expected values under that distribution…

Expected value of function         w.r.t. distribution         given by,

➢ Doesn’t always have a closed-form for arbitrary functions

➢ Suppose we have iid samples:

➢ Monte Carlo estimate of expected value, 

Samples must be independent!



Markov chain Monte Carlo methods

• The approximations of expectation that we have looked at so far have 

assumed that the samples are independent draws. 

• This sounds good, but in high dimensions, we do not know how to get 

good independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition

• If you have finally found a region of high probability, stick around for a bit, enjoy 
yourself, grab some more samples.



Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the Markov chain). 

• MCMC is often a good hammer for complex, high dimensional, problems. 

• Main downside is that it is not “plug-and-play”

• Doing well requires taking advantage to the structure of your problem

• MCMC tends to be expensive (but take heart---there may not be any other solution, 
and at least your problem is being solved). 

• If there are faster solutions, you can incorporate that (and MCMC becomes a way to 
improve/select these good guesses). 



Metropolis Algorithm



Metropolis Algorithm

If things get better, always 

accept. If they get worse, 

sometimes accept.

Always emit one or the 

other



Metropolis Example

Green follows accepted proposals

Red are rejected moves.



Beyond the Metropolis Method

Metropolis requires the proposal to be symmetric,

This often results in a chain that takes a long time to 

converge to a stationary distribution (long burn in time)

Example The most common proposal (Gaussian),

exhibits random walk dynamics that are inefficient

Metropolis-Hastings relaxes this symmetry requirement…



Metropolis-Hastings MCMC method 



• Like Metropolis, but now q() is not necessarily 

symmetric.

• If Metropolis-Hastings has detailed balance, then it 

converges to the target distribution under weak 

conditions.

• The converse is not true, but generally samplers of interest 
will have detailed balance 

Does Metropolis-Hastings converge to the target distribution? 



MCMC So Far…

Metropolis Algorithm

• Sample RV from proposal  

• Proposal must be symmetric 

• Accept with probability 

Metropolis-Hastings Algorithm

• Proposal does not have to be symmetric

• Accept with probability

Both methods require choosing proposal, which can be hard



Gibbs Sampling

Let          be the target distribution on random variables,

Consider the complete conditional distribution

where                                                  all RVs except 

Idea Don’t sample all RVs from one proposal.  Sample each 
from its corresponding complete conditional,

We call this method Gibbs Sampling



Gibbs Sampling

Recall that an RV is conditionally independent 
of all RVs given its Markov Blanket

Bayes NetMRF

So complete conditionals only depend on Markov Blanket,

Immediate

Neighbors

Parents, Children,

Co-Parents

[ Source: Bishop, C. PRML ]



Condition on most recent samples

Can choose any order (or randomize)



Gibbs sampling 

• Gibbs sampling is special case of M-H (but we always 

accept)

• Unlike M-H we do not have to choose proposal

• The proposal distribution will be cycle over

• Transition function T() varies (cycles) over time

• Relaxation of our assumption used to provide intuition about 
convergence

• It still OK because the concatenation of the T() for a cycle converge 

• We must be able to compute and sample from

• This is not always possible in general! 

• This is not the sample as sampling from the generative 

model, e.g. Ancestral Sampling in a Bayes Net samples 

from 



(Source: D. MacKay)



(Source: D. MacKay)
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(Source: D. MacKay)



Examples of Gibbs 

• Gibbs can be very good if one can compute and sample from the 

complete conditional distributions

• This is often feasible for MRFs of discrete RVs

• Typical examples include symmetric systems like the Markov random field grids we 
had for images

• Complete conditionals only depend on immediate neighboring pixels

• Continuous models are more complicated, and typically restricted to 

exponential family distributions (we will discuss in the next lecture)



Example: Image Denoising

Problem Given observed image 
corrupted by i.i.d. noise, infer “clean” 

denoised image.  

[ Source: Bishop, C. PRML ]

Noisy Image Latent Image



Example: Image Denoising

Observation noise

Use a “grid graph” where each pixel is 
connected to its up/down/left/right neighbors,

Where                              for convenience

Observation Likelihood:

Pairwise Similarity:

Smoothness prior

Complete conditional only depends on immediate neighbors,

Normalizer only requires summing 
over 4 neighbors       . 



Examples of Gibbs 

(From Dellaert and Zhu tutorial)



Examples of Gibbs 

(From Dellaert and Zhu tutorial)
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