

CSC535: Probabilistic Graphical Models

Probability and Statistics

Prof. Jason Pacheco

Administrative Items

Office Hours

- Fridays @ 3-5pm
- Held via Zoom
- Zoom link in Piazza

HW₁

- Assignment on D2L
- Due by 11:59pm Tuesday September 10
- 10 points, 4 questions, discrete and continuous probability

Outline

- Random Variables and Discrete Probability
- > Fundamental Rules of Probability
- Expected Value and Moments
- > Useful Discrete Distributions
- Continuous Probability

Outline

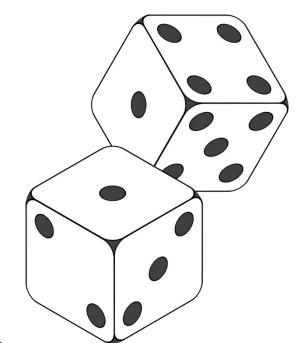
- > Random Variables and Discrete Probability
- > Fundamental Rules of Probability
- Expected Value and Moments
- > Useful Discrete Distributions
- > Continuous Probability

Suppose we roll two fair dice...

- What are the possible outcomes?
- > What is the *probability* of rolling **even** numbers?
- > What is the *probability* of rolling **odd** numbers?

...probability theory gives a mathematical formalism to addressing such questions...

Definition An **experiment** or **trial** is any process that can be repeated with well-defined outcomes. It is *random* if more than one outcome is possible.



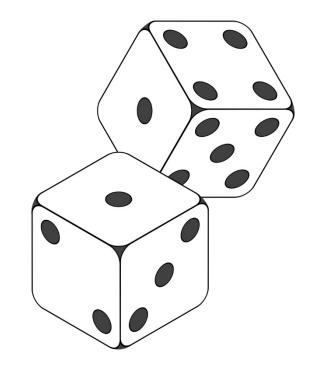
Definition An **outcome** is a possible result of an experiment or trial, and the collection of all possible outcomes is the **sample space** of the experiment,

Definition An **event** is a *set* of outcomes (a subset of the sample space),

Example Event Roll at least a single 1 {(1,1), (1,2), (1,3), ..., (1,6), ..., (6,1)}

Assume each outcome is equally likely, and sample space is <u>finite</u>, then the probability of event is:

$$P(E) = \frac{|E|}{|\Omega|} \label{eq:possible}$$
 Number of outcomes in event set
$$|E| \label{eq:possible}$$
 Number of possible outcomes in sample space



This is the uniform probability distribution

Example Probability that we roll *only* even numbers,

$$E^{\text{even}} = \{(2, 2), (2, 4), \dots, (6, 4), (6, 6)\}$$

$$P(E^{\text{even}}) = \frac{|E^{\text{even}}|}{|\Omega|} = \frac{9}{36}$$

Example Probability that the sum of both dice is even,

$$E^{\text{sum even}} = \{(1,1), (1,3), (1,5), \dots, (2,2), (2,4), \dots\}$$

$$P(E^{\text{sum even}}) = \frac{|E^{\text{sum even}}|}{|\Omega|} = \frac{18}{36} = \frac{1}{2}$$

Example Probability that the sum of both dice is greater than 12,

$$E^{>12} = \emptyset$$

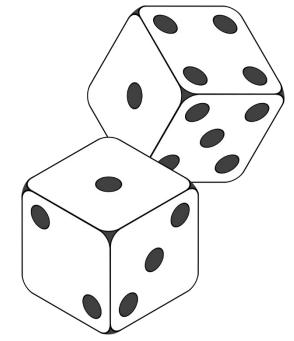
$$P(E^{>12}) = \frac{|E^{>12}|}{|\Omega|} = 0$$

i.e. we can reason about the probability of impossible outcomes

Random Variables

Suppose we are interested in a distribution over the <u>sum of dice</u>...

Option 1 Let E_i be event that the sum equals i



Two dice example:

$$E_2 = \{(1,1)\}$$
 $E_3 = \{(1,2),(2,1)\}$ $E_4 = \{(1,3),(2,2),(3,1)\}$
 $E_5 = \{(1,4),(2,3),(3,2),(4,1)\}$ $E_6 = \{(1,5),(2,4),(3,3),(4,2),(5,1)\}$

Enumerate all possible means of obtaining desired sum. Gets cumbersome for N>2 dice...

Random Variables

Option 2 Use a function of sample space...

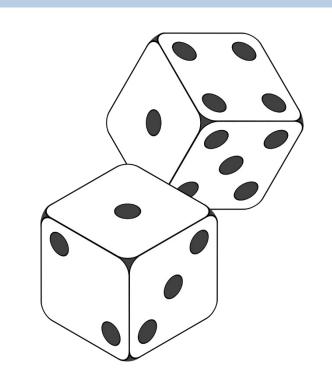
(Informally) A random variable is an unknown quantity that maps events to numeric values.

Example X is the *sum of two dice* with values,

$$X \in \{2, 3, 4, \dots, 12\}$$

Example Flip a coin and let random variable Y represent the outcome,

$$Y \in \{ \text{Heads, Tails} \}$$



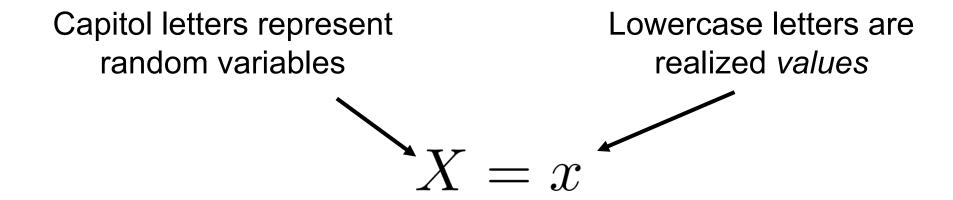
Discrete vs. Continuous Probability

Discrete RVs take on a finite or countably infinite set of values **Continuous** RVs take an uncountably infinite set of values

 Representing / interpreting / computing probabilities becomes more complicated in the continuous setting

We will focus on discrete RVs for now...

Random Variables and Probability



X=x is the **event** that X takes the value x

Example Let X be the random variable (RV) representing the sum of two dice with values,

$$X \in \{2, 3, 4, \dots, 12\}$$

X=5 is the *event* that the dice sum to 5.

Probability Mass Function

A function p(X) is a **probability mass function (PMF)** of a discrete random variable if the following conditions hold:

(a) It is nonnegative for all values in the support,

$$p(X = x) \ge 0$$

(b) The sum over all values in the support is 1,

$$\sum_{x} p(X = x) = 1$$

Intuition Probability mass is conserved, just as in physical mass. Reducing probability mass of one event must increase probability mass of other events so that the definition holds...

Probability Mass Function

Example Let X be the outcome of a single fair die. It has the PMF,

$$p(X=x) = \frac{1}{6} \qquad \text{for } x=1,\ldots,6 \qquad \text{ Uniform Distribution}$$

Example We can often represent the PMF as a vector. Let S be an RV that is the sum of two fair dice. The PMF is then,

Observe that S does not follow a uniform distribution
$$p(S) = \begin{pmatrix} p(S=2) \\ p(S=3) \\ p(S=4) \\ \vdots \\ p(S=12) \end{pmatrix} = \begin{pmatrix} 1/36 \\ 1/18 \\ 1/2 \\ \vdots \\ 1/36 \end{pmatrix}$$

Functions of Random Variables

Any function f(X) of a random variable X is also a random variable and it has a probability distribution

Example Let X_I be an RV that represents the result of a fair die, and let X_2 be the result of another fair die. Then,

$$S = X_1 + X_2$$

Is an RV that is the *sum of two fair dice* with PMF p(S).

NOTE Even if we know the PMF p(X) and we know that the PMF p(f(X)) exists, it is not always easy to calculate!

PMF Notation

 We use p(X) to refer to the probability mass function (i.e. a function of the RV X)

• We use p(X=x) to refer to the probability of the *outcome* X=x (also called an "event")

• We will often use p(x) as shorthand for p(X=x)

Definition Two (discrete) RVs X and Y have a *joint PMF* denoted by p(X,Y) and the probability of the event X=x and Y=y denoted by p(X=x,Y=y) where,

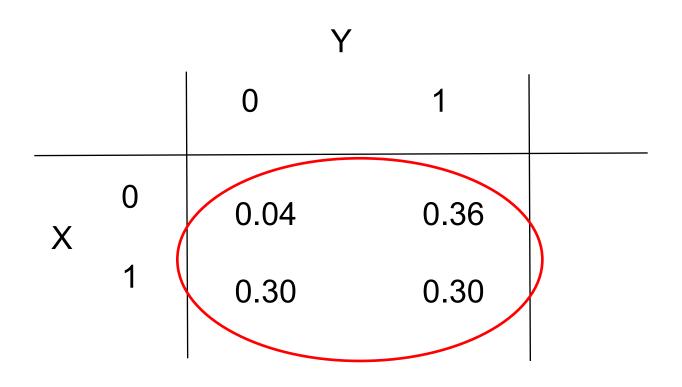
(a) It is nonnegative for all values in the support,

$$p(X = x, Y = y) \ge 0$$

(b) The sum over all values in the support is 1,

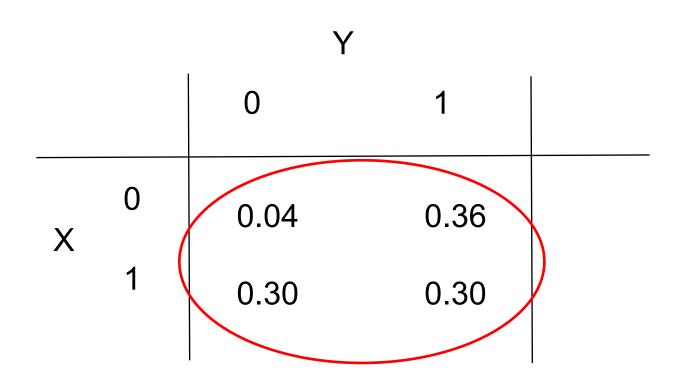
$$\sum_{x} \sum_{y} p(X = x, Y = y) = 1$$

Let X and Y be binary RVs. We can represent the joint PMF p(X,Y) as a 2x2 array (table):



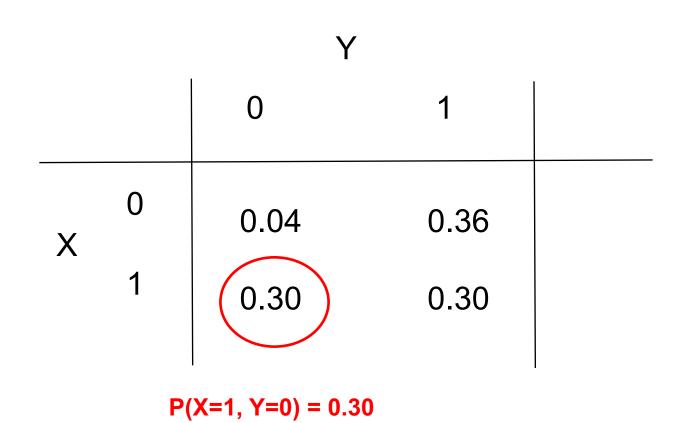
All values are nonnegative

Let X and Y be binary RVs. We can represent the joint PMF p(X,Y) as a 2x2 array (table):



The sum over all values is 1: 0.04 + 0.36 + 0.30 + 0.30 = 1

Let X and Y be binary RVs. We can represent the joint PMF p(X,Y) as a 2x2 array (table):



Outline

- > Random Variables and Discrete Probability
- > Fundamental Rules of Probability
- Expected Value and Moments
- > Useful Discrete Distributions
- Continuous Probability

Fundamental Rules of Probability

Given two RVs X and Y the conditional distribution is:

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\sum_{x} p(X=x,Y)}$$

Multiply both sides by p(Y) to obtain the **probability chain rule**:

$$p(X,Y) = p(Y)p(X \mid Y)$$

The probability chain rule extends to N RVs X_1, X_2, \ldots, X_N :

$$p(X_1, X_2, \dots, X_N) = p(X_1)p(X_2 \mid X_1) \dots p(X_N \mid X_{N-1}, \dots, X_1)$$

$$= p(X_1) \prod_{i=2}^{N} p(X_i \mid X_{i-1}, \dots, X_1)$$

Fundamental Rules of Probability

Law of total probability

$$p(Y) = \sum_{x} p(Y, X = x) \quad \text{P(y) is a marginal distribution}$$
 This is called marginalization

Proof
$$\sum_x p(Y,X=x) = \sum_x p(Y) p(X=x\mid Y) \quad \text{(chain rule)}$$

$$= p(Y) \sum_x p(X=x\mid Y) \quad \text{(distributive property)}$$

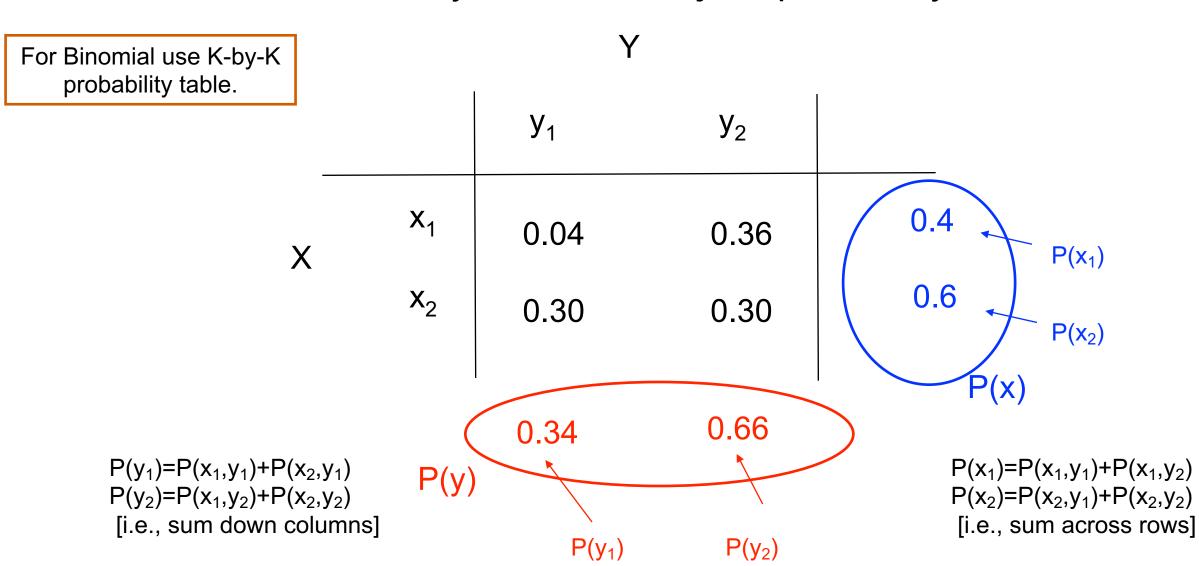
$$= p(Y) \qquad \qquad = p(Y) \qquad \qquad \text{(PMF sums to 1)}$$

Generalization for conditionals:

$$p(Y \mid Z) = \sum_{x} p(Y, X = x \mid Z)$$

Tabular Method

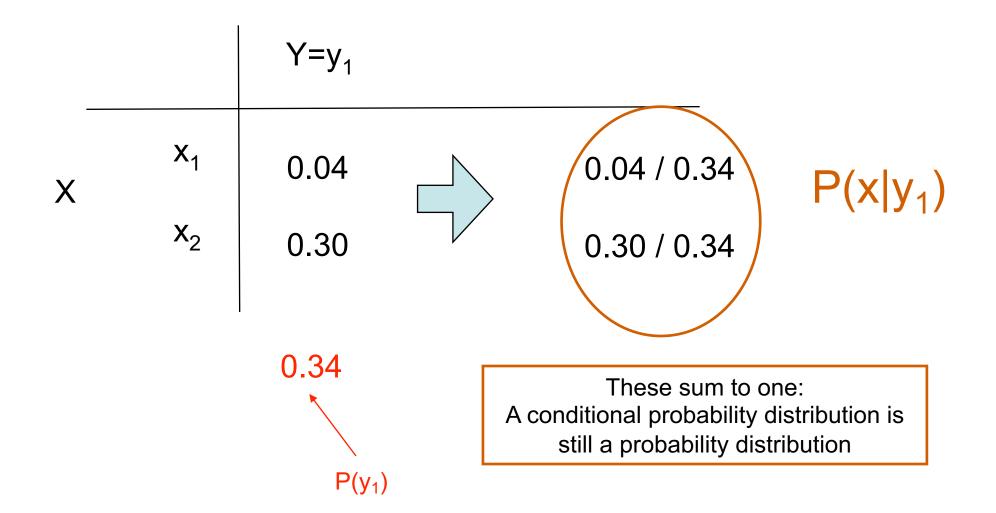
Let X, Y be binary RVs with the joint probability table



Tabular Method



Tabular Method



Intuition Check

<u>Question:</u> Roll two dice and let their outcomes be $X_1, X_2 \in \{1, ..., 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$p(X_1 \mid X_2) = \frac{p(X_1, X_2)}{p(X_2)}$$

Which of the following are true?

a)
$$p(X_1 = 1 | X_2 = 1) > p(X_1 = 1)$$

b)
$$p(X_1 = 1 | X_2 = 1) = p(X_1 = 1)$$

Outcome of die 2 doesn't affect die 1

c)
$$p(X_1 = 1 | X_2 = 1) < p(X_1 = 1)$$

Intuition Check

Question: Let $X_1 \in \{1, ..., 6\}$ be outcome of die 1, as before. Now let $X_3 \in \{2, 3, ..., 12\}$ be the sum of both dice. Which of the following are true?

a)
$$p(X_1 = 1 | X_3 = 3) > p(X_1 = 1)$$

b)
$$p(X_1 = 1 | X_3 = 3) = p(X_1 = 1)$$

c)
$$p(X_1 = 1 | X_3 = 3) < p(X_1 = 1)$$

Only 2 ways to get $X_3=3$, each with equal probability:

$$(X_1 = 1, X_2 = 2)$$
 or $(X_1 = 2, X_2 = 1)$

SO

$$p(X_1 = 1 \mid X_3 = 3) = \frac{1}{2} > \frac{1}{6} = p(X_1 = 1)$$

Dependence of RVs

Intuition...

Consider P(B|A) where you want to bet on B

Should you pay to know A?

In general you would pay something for A if it changed your belief about B. In other words if,

$$P(B|A) \neq P(B)$$

Independence of RVs

Definition Two random variables X and Y are independent if and only if,

$$p(X = x, Y = y) = p(X = x)p(Y = y)$$

for all values x and y, and we say $X \perp Y$.

Definition RVs X_1, X_2, \ldots, X_N are mutually independent if and only if,

$$p(X_1 = x_1, \dots, X_N = x_N) = \prod_{i=1}^N p(X_i = x_i)$$

- \blacktriangleright Independence is *symmetric*: $X \perp Y \Leftrightarrow Y \perp X$
- ightharpoonup Equivalent definition of independence: $p(X \mid Y) = p(X)$

Independence of RVs

Definition Two random variables X and Y are conditionally independent given Z if and only if,

$$p(X = x, Y = y \mid Z = z) = p(X = x \mid Z = z)p(Y = y \mid Z = z)$$

for all values x, y, and z, and we say that $X \perp Y \mid Z$.

> N RVs conditionally independent, given Z, if and only if:

$$p(X_1, \dots, X_N \mid Z) = \prod_{i=1}^N p(X_i \mid Z)$$
 Shorthand notation Implies for all x, y, z

- \triangleright Equivalent defin of conditional independence: $p(X \mid Y, Z) = p(X \mid Z)$
- ightharpoonup Symmetric: $X \perp Y \mid Z \Leftrightarrow Y \perp X \mid Z$

Outline

- > Random Variables and Discrete Probability
- > Fundamental Rules of Probability
- Expected Value and Moments
- > Useful Discrete Distributions
- Continuous Probability

Definition The <u>expectation</u> of a discrete RV X, denoted by $\mathbf{E}[X]$, is:

$$\mathbf{E}[X] = \sum_{x} x \, p(X = x) \qquad \text{Summation over all values in domain of X}$$

Example Let X be the sum of two fair dice, then:

$$\mathbf{E}[X] = \frac{1}{36} \cdot 2 + \frac{1}{18} \cdot 3 + \dots + \frac{1}{36} \cdot 12 = 7$$

Theorem (Linearity of Expectations) For any finite collection of discrete RVs X_1, X_2, \ldots, X_N with finite expectations,

Corollary For any constant c
$$\mathbf{E}[cX] = c\mathbf{E}[X]$$

$$\mathbf{E}\left[\sum_{i=1}^{N}X_i
ight] = \sum_{i=1}^{N}\mathbf{E}[X_i]$$
 E.g. for two RVs X and Y $\mathbf{E}[X+Y] = \mathbf{E}[X] + \mathbf{E}[Y]$

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$.

Proof:
$$\mathbf{E}[XY] = \sum_{x} \sum_{y} (x \cdot y) p(X = x, Y = y)$$

$$= \sum_{x} \sum_{y} (x \cdot y) p(X = x) p(Y = y) \qquad \text{(Independence)}$$

$$= \left(\sum_{x} x \cdot p(X = x)\right) \left(\sum_{y} y \cdot p(Y = y)\right) = \mathbf{E}[X] \mathbf{E}[Y] \text{ (Linearity of Expectation)}$$

Example Let $X_1, X_2 \in \{1, ..., 6\}$ be RVs representing the result of rolling two fair standard die. What is the mean of their product?

$$\mathbf{E}[X_1 X_2] = \mathbf{E}[X_1] \mathbf{E}[X_2] = 3.5^2$$

Definition The <u>conditional expectation</u> of a discrete RV X, given Y is:

$$\mathbf{E}[X \mid Y = y] = \sum_{x} x \, p(X = x \mid Y = y)$$

Example Roll two standard six-sided dice and let X be the result of the first die and let Y be the sum of both dice, then:

$$\mathbf{E}[X_1 \mid Y = 5] = \sum_{x=1}^{4} x \, p(X_1 = x \mid Y = 5)$$

$$= \sum_{x=1}^{4} x \frac{p(X_1 = x, Y = 5)}{p(Y = 5)} = \sum_{x=1}^{4} x \frac{1/36}{4/36} = \frac{5}{2}$$

Conditional expectation follows properties of expectation (linearity, etc.)

Law of Total Expectation *Let X* and *Y* be discrete *RVs* with finite expectations, then:

$$\mathbf{E}[X] = \mathbf{E}_Y[\mathbf{E}_X[X \mid Y]]$$

Proof
$$\mathbf{E}_Y[\mathbf{E}_X[X\mid Y]] = \mathbf{E}_Y\left[\sum_x x\cdot p(x\mid Y)\right]$$

$$= \sum_y \left[\sum_x x\cdot p(x\mid y)\right]\cdot p(y) \qquad \text{(Definition of expectation)}$$

$$= \sum_y \sum_x x\cdot p(x,y) \qquad \text{(Probability chain rule)}$$

$$= \sum_x x\sum_y \cdot p(x,y) \qquad \text{(Linearity of expectations)}$$

$$= \sum_x x\cdot p(x) = \mathbf{E}[X] \qquad \text{(Law of total probability)}$$

Moments of RVs

Definition The <u>variance</u> of a RV X is defined as,

$$\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$$
 (X-units)²

The standard deviation is
$$\sigma[X] = \sqrt{\mathbf{Var}[X]}$$
 . (X-units)

Lemma An equivalent form of variance is:

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2$$

Proof Keep in mind that E[X] is a constant,

$$\mathbf{E}[(X-\mathbf{E}[X])^2] = \mathbf{E}[X^2-2X\mathbf{E}[X]+\mathbf{E}[X]^2] \qquad \text{(Distributive property)}$$

$$=\mathbf{E}[X^2]-2\mathbf{E}[X]\mathbf{E}[X]+\mathbf{E}[X]^2 \qquad \text{(Linearity of expectations)}$$

$$=\mathbf{E}[X^2]-\mathbf{E}[X]^2 \qquad \text{(Algebra)}$$

Moments of RVs

Definition The <u>covariance</u> of two RVsX and Y is defined as,

$$Cov(X, Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$$

Lemma For any two RVsX and Y,

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X,Y)$$

e.g. variance is not a linear operator.

(Definition of Var / Cov)

Proof
$$\begin{aligned} \mathbf{Var}[X+Y] &= \mathbf{E}[(X+Y-\mathbf{E}[X+Y])^2] \\ \text{(Linearity of expectation)} &= \mathbf{E}[(X+Y-\mathbf{E}[X]-\mathbf{E}[Y])^2] \\ \text{(Distributive property)} &= \mathbf{E}[(X-\mathbf{E}[X])^2+(Y-\mathbf{E}[Y])^2+2(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Linearity of expectation)} &= \mathbf{E}[(X-\mathbf{E}[X])^2]+\mathbf{E}[(Y-\mathbf{E}[Y])^2]+2\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \end{aligned}$$

 $= \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X, Y)$

Moments of RVs

Question: What is the variance of the sum of independent RVs

$$\begin{aligned} \mathbf{Var}[X_1 + X_2] &= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{Cov}(X_1, X_2) \\ &= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])(X_2 - \mathbf{E}[X_2])] \\ &= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])]\mathbf{E}[(X_2 - \mathbf{E}[X_2])] \\ &= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\left(\mathbf{E}[X_1] - \mathbf{E}[X_1]\right)\left(\mathbf{E}[X_2] - \mathbf{E}[X_2]\right) \\ &= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] \end{aligned}$$
 E.g. variance is a linear operator for independent RVs

Theorem: If $X \perp Y$ then Var[X + Y] = Var[X] + Var[Y]

Corollary: If $X \perp Y$ then Cov(X, Y) = 0

Outline

- > Random Variables and Discrete Probability
- > Fundamental Rules of Probability
- Expected Value and Moments
- Useful Discrete Distributions
- > Continuous Probability

Bernoulli A.k.a. the **coinflip** distribution on <u>binary</u> RVs $X \in \{0, 1\}$

$$p(X) = \pi^X (1 - \pi)^{(1 - X)}$$

Where π is the probability of **success** (e.g. heads), and also the mean

$$\mathbf{E}[X] = \pi \cdot 1 + (1 - \pi) \cdot 0 = \pi$$

Suppose we flip N independent coins X_1, X_2, \dots, X_N , what is the distribution over their sum $Y = \sum_{i=1}^{N} X_i$

Num. "successes" out of N trials
$$p(Y=k) = \binom{N}{k} \pi^k (1-\pi)^{N-k}$$
 Binomial Dist.
$$p(Y=k) = \binom{N}{k} \pi^k (1-\pi)^{N-k}$$

Binomial Mean: $\mathbf{E}[Y] = N \cdot \pi$ Sum of means for N indep. Bernoulli RVs

Question: How many flips until we observe a success?

Geometric Distribution on number of independent draws of $X \sim \mathrm{Bernoulli}(\pi)$ until success:

$$p(Y=n)=(1-\pi)^{n-1}\pi \qquad \qquad \mathbf{E}[Y]=\frac{1}{\pi} \quad \begin{array}{l} \text{E.g. for fair coin} \\ \pi=1/2 \text{ takes} \\ \text{two flips on avg.} \end{array}$$

e.g. there must be n-1 failures (tails) before a success (heads).

Question: How many more flips of we have already seen k failures?

$$p(Y = n + k \mid Y > k) = \frac{p(Y = n + k, Y > k)}{p(Y > k)} = \frac{p(Y = n + k)}{p(Y > k)}$$
$$= \frac{(1 - \pi)^{n + k - 1} \pi}{\sum_{i = k}^{\infty} (1 - \pi)^{i} \pi} = \frac{(1 - \pi)^{n + k - 1} \pi}{(1 - \pi)^{k}} = (1 - \pi)^{n - 1} \pi = p(Y = n)$$

For $0 < x < 1, \sum_{i=k}^{\infty} x^i = x^k/(1-x)$

Corollary: $p(Y > k) = (1 - \pi)^{k-1}$

Categorical Distribution on integer-valued RV $X \in \{1, \dots, K\}$ (

$$p(X) = \prod_{k=1}^K \pi_k^{\mathbf{I}(X=k)} \quad \text{or} \quad p(X) = \sum_{k=1}^K \mathbf{I}(X=k) \cdot \pi_k$$

with parameter $p(X = k) = \pi_k$ and Kroenecker delta:

$$\mathbf{I}(X=k) = \left\{ \begin{array}{ll} 1, & \text{If } X=k \\ 0, & \text{Otherwise} \end{array} \right.$$

Can also represent X as one-hot binary vector,

$$X \in \{0,1\}^K$$
 where $\sum_{k=1}^K X_k = 1$ then $p(X) = \prod_{k=1}^K \pi_k^{X_k}$

This representation is special case of the multinomial distribution

What if we count outcomes of N independent categorical RVs?

Multinomial Distribution on K-vector $X \in \{0, N\}^K$ of counts of N repeated trials $\sum_{k=1}^K X_k = N$ with PMF:

$$p(x_1, \dots, x_K) = \binom{n}{x_1 x_2 \dots x_K} \prod_{k=1}^K \pi_k^{x_k}$$

Number of ways to partition N objects into K groups:

$$\binom{n}{x_1 x_2 \dots x_K} = \frac{n!}{x_1! x_2! \dots x_K!}$$

Leading term ensures PMF is properly normalized:

$$\sum_{x_1} \sum_{x_2} \dots \sum_{x_K} p(x_1, x_2, \dots, x_K) = 1$$

A **Poisson** RV X with <u>rate</u> parameter λ has

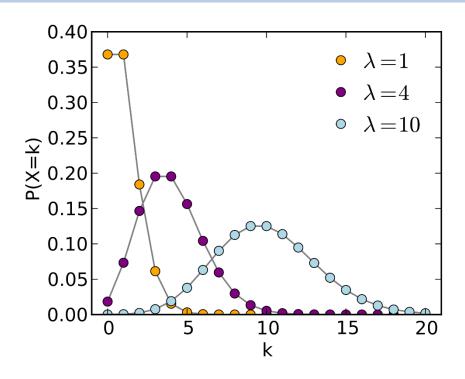
the following distribution:

$$p(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

Mean and variance both scale with parameter

$$\mathbf{E}[X] = \mathbf{Var}[X] = \lambda$$

Represents number of times an *event* occurs in an interval of time or space.



Ex. Probability of overflow floods in 100 years,

$$p(k \text{ overflow floods in } 100 \text{ yrs}) = \frac{e^{-1}1^k}{k!}$$

Avg. 1 overflow flood every 100 years, makes setting rate parameter easy.

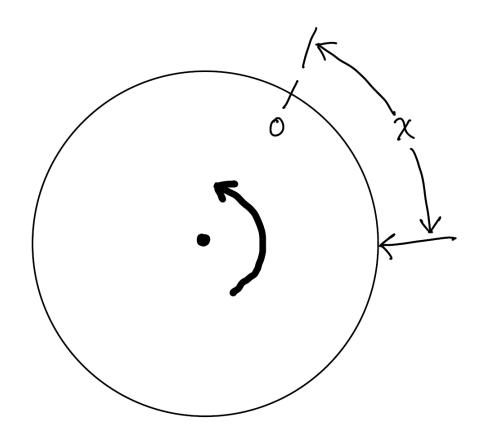
Lemma (additive closure) The sum of a finite number of Poisson RVs is a Poisson RV.

$$X \sim \text{Poisson}(\lambda_1), \quad Y \sim \text{Poisson}(\lambda_2), \quad X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$$

Outline

- > Random Variables and Discrete Probability
- > Fundamental Rules of Probability
- Expected Value and Moments
- > Useful Discrete Distributions
- Continuous Probability

Experiment Spin continuous wheel and measure X displacement from 0



Question Assuming uniform probability, what is p(X = x)?

 \blacktriangleright Let $p(X=x)=\pi$ be the probability of any single outcome

 \triangleright Let S(k) be set of any k *distinct* points in [0,1) then,

$$P(x \in S(k)) = k\pi$$

► Since $0 < P(x \in S(k)) < 1$ we have that $k\pi < 1$ for any k

 \triangleright Therefore: $\pi = 0$ and $P(x \in S(k)) = p(X = x) = 0$

- \triangleright We have a well-defined event that x takes a value in set $x \in S(k)$
- > Clearly this event can happen... i.e. it is possible
- > But we have shown it has zero probability of occurring,

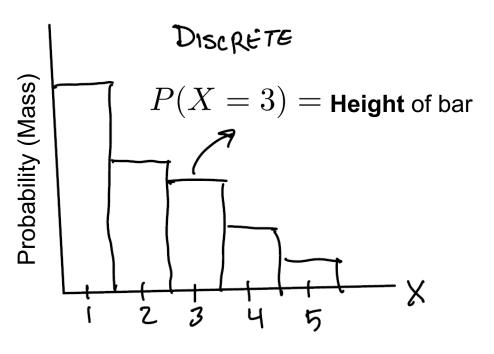
$$P(x \in S(k)) = 0$$

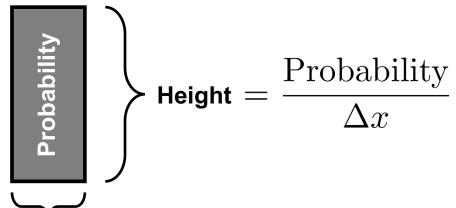
> The probability that it doesn't happen is,

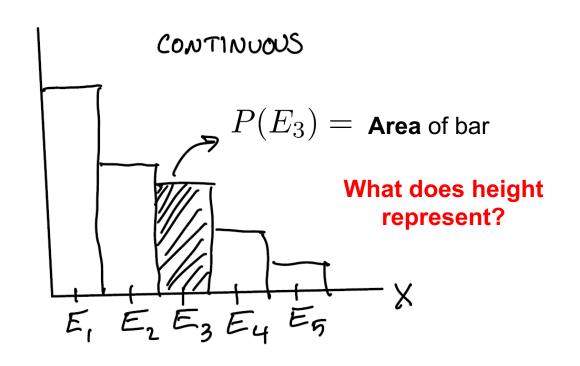
$$P(x \notin S(k)) = 1 - P(x \in S(k)) = 1$$
 We seem to have a paradox!

Solution Rethink how we interpret probability in continuous setting

- > Define events as *intervals* instead of discrete values
- Assign probability to those intervals







Height represents *probability per unit* in the x-direction

We call this a **probability density** (as opposed to probability mass)

- \blacktriangleright We denote the **probability density function** (PDF) as, p(X)
- \blacktriangleright An event E corresponds to an *interval* $a \le X < b$
- > The probability of an interval is given by the area under the PDF,

$$P(a \le X < b) = \int_a^b p(X = x) \, dx$$

- ightharpoonup Specific outcomes have zero probability $P(X=0)=P(x\leq X< x)=0$
- \triangleright But may have nonzero *probability density* p(X=x)

Continuous Probability Measures

Definition The <u>cumulative distribution function</u> (CDF) of a real-valued continuous RV X is the function given by,

$$P(x) = P(X \le x)$$

Different ways to represent probability of interval, CDF is just a convention.

Can easily measure probability of closed intervals,

$$P(a \le X < b) = P(b) - P(a)$$

➤ If X is absolutely continuous (i.e. differentiable) then,

Fundamental Theorem of Calculus

$$p(x) = \frac{dP(x)}{dx}$$
 and $P(t) = \int_{-\infty}^{t} p(x) dx$

Where p(x) is the *probability density function* (PDF)

Most definitions for discrete RVs hold, replacing PMF with PDF/CDF...

Two RVs X & Y are **independent** if and only if,

$$p(x,y) = p(x)p(y)$$

$$p(x,y) = p(x)p(y)$$
 or $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$

Conditionally independent given Z iff,

Shorthand: $P(x) = P(X \le x)$

$$p(x, y \mid z) = p(x \mid z)p(y \mid z)$$

$$p(x,y\mid z)=p(x\mid z)p(y\mid z)$$
 or $P(x,y\mid z)=P(x\mid z)P(y\mid z)$

Probability chain rule,

$$p(x,y) = p(x)p(y \mid x)$$

and

$$P(x,y) = P(x)P(y \mid x)$$

...and by replacing summation with integration...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{Y}} p(x, y) \, dy$$

Expectation of a continuous random variable,

$$\mathbf{E}[X] = \int_{\mathcal{X}} x \cdot p(x) \, dx$$

Covariance of two continuous random variables X & Y,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])] = \int_{\mathcal{X}} \int_{\mathcal{Y}} (x - \mathbf{E}[X])(y - \mathbf{E}[Y])p(x,y) \, dx dy$$

Caution Some technical subtleties arise in continuous spaces...

For discrete RVs X & Y, the conditional

P(Y=y)=0 means impossible

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

is **undefined** when $P(Y=y) = 0 \dots$ no problem.

For continuous RVs we have,

$$P(X \le x \mid Y = y) = \frac{P(X \le x, Y = y)}{P(Y = y)}$$

but numerator and denominator are 0/0.

P(Y=y)=0 means improbable, but not impossible

Defining the conditional distribution as a limit fixes this...

$$P(X \le x \mid Y = y) = \lim_{\delta \to 0} P(X \le x \mid y \le Y \le y + \delta)$$

$$= \lim_{\delta \to 0} \frac{P(X \le x, y \le Y \le y + \delta)}{P(y \le Y \le y + \delta)}$$

$$= \lim_{\delta \to 0} \frac{P(X \le x, Y \le y + \delta) - P(X \le x, Y \le y)}{P(Y \le y + \delta) - P(Y \le y)}$$

$$= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)}{P(y + \delta) - P(y)} du$$

$$= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\left(\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)\right) / \delta}{\left(P(y + \delta) - P(y)\right) / \delta} du$$

$$= \int_{-\infty}^{x} \frac{\frac{\partial^{2}}{\partial x \partial y} P(u, y)}{\frac{\partial}{\partial x} P(y)} du = \int_{-\infty}^{x} \frac{p(u, y)}{p(y)} du$$

Definition The <u>conditional PDF</u> is given by,

$$p(x \mid y) = \frac{p(x, y)}{p(y)}$$

(Fundamental theorem of calculus)

(Assume interchange limit / integral)

(Multiply by $\frac{\delta}{\delta}=1$)

(Definition of partial derivative) (Definition PDF)

Uniform distribution on interval [a, b],

$$p(x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{if } b \le x \end{cases} \qquad P(X \le x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{x-a}{b-a} & \text{if } a \le x \le b, \\ 1 & \text{if } b \le x \end{cases}$$

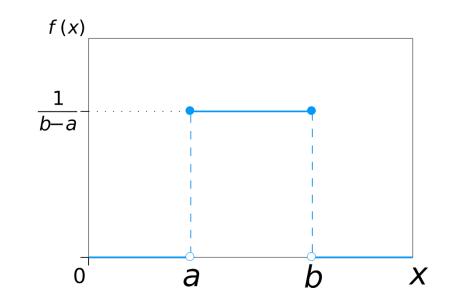
Say that $X \sim U(a, b)$ whose moments are,

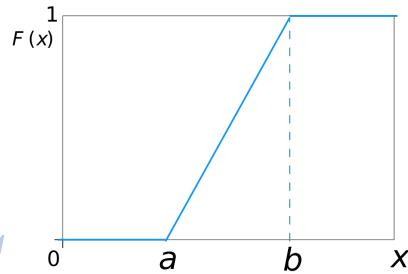
$$\mathbf{E}[X] = \frac{b+a}{2}$$
 $\mathbf{Var}[X] = \frac{(b-a)^2}{12}$

Suppose $X \sim U(0,1)$ and we are told $X \leq \frac{1}{2}$ what is the conditional distribution?

$$P(X \le x \mid X \le \frac{1}{2}) = U(0, \frac{1}{2})$$

Holds generally: Uniform closed under conditioning





Exponential distribution with scale λ ,

$$p(x) = \lambda e^{-\lambda x}$$

$$p(x) = \lambda e^{-\lambda x} \qquad P(x) = 1 - e^{-\lambda x}$$

for X>0. Moments given by,

$$\mathbf{E}[X] = \frac{1}{\lambda}$$

$$\mathbf{Var}[X] = \frac{2}{\lambda^2}$$

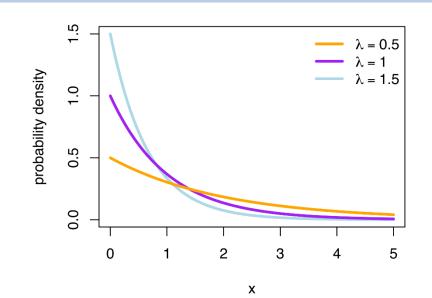
Useful properties

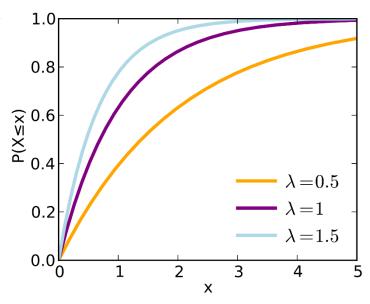
• Closed under conditioning If $X \sim \text{Exponential}(\lambda)$ then,

$$P(X \ge s + t \mid X \ge s) = P(X \ge s) = e^{-\lambda s}$$

• Minimum Let X_1, X_2, \ldots, X_N be i.i.d. exponentially distributed with scale parameters $\lambda_1, \lambda_2, \dots, \lambda_N$ then,

$$P(\min(X_1, X_2, \dots, X_N)) = \text{Exponential}(\sum_i \lambda_i)$$





Gaussian (a.k.a. Normal) distribution with mean (location) μ and variance (scale) σ^2 parameters,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{1}{2}(x-\mu)^2/\sigma^2}$$

We say $X \sim \mathcal{N}(\mu, \sigma^2)$.

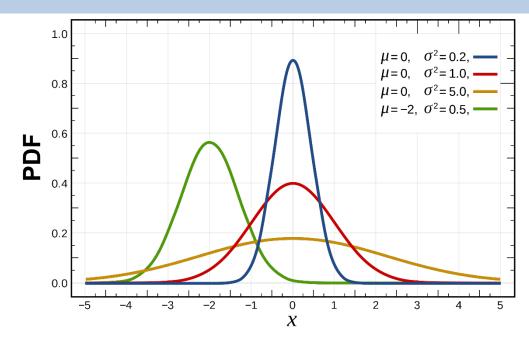
Useful Properties

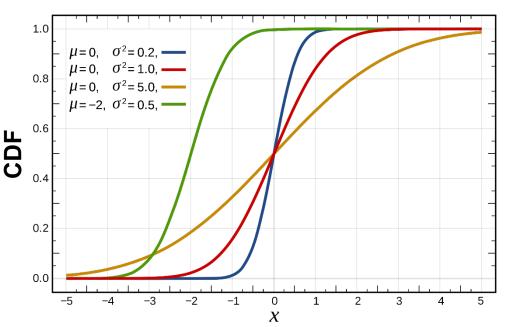
Closed under additivity:

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$
 $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

Closed under linear functions (a and b constant):

$$aX + b \sim \mathcal{N}(a\mu_x + b, a^2\sigma_x^2)$$





Multivariate Gaussian On RV $X \in \mathcal{R}^d$ with mean $\mu \in \mathcal{R}^d$ and positive semidefinite covariance matrix $\Sigma \in \mathcal{R}^{d \times d}$,

$$p(x) = |2\pi\Sigma|^{-1/2} \exp{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

Moments given by parameters directly.

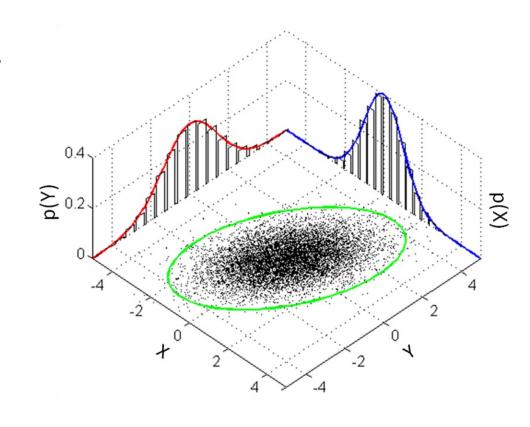
Useful Properties

- Closed under additivity (same as univariate case)
- Closed under linear functions,

$$AX + b \sim \mathcal{N}(A\mu_x + b, A\Sigma A^T)$$

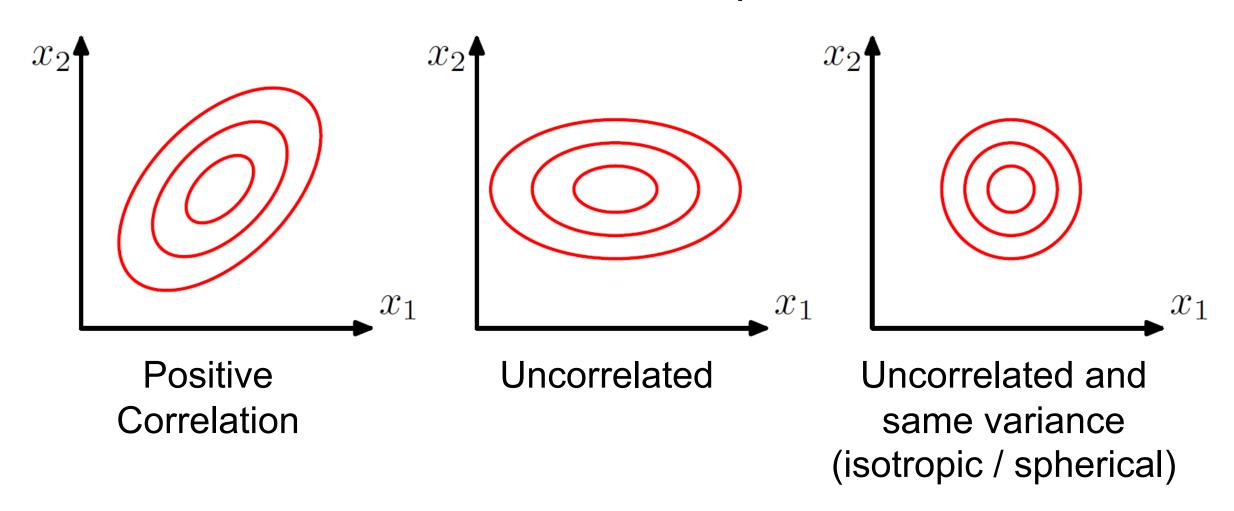
Where $A \in \mathcal{R}^{m \times d}$ and $b \in \mathcal{R}^m$ (output dimensions may change)

Closed under conditioning and marginalization



Covariance

Captures correlation between random variables...can be viewed as set of ellipses...



Covariance Matrix

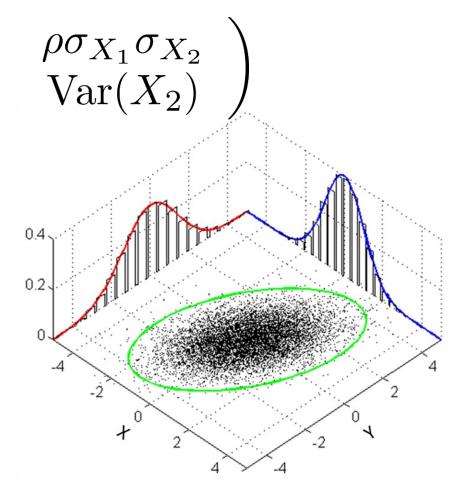
$$\Sigma = \operatorname{Cov}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \rho \sigma_{X_1} \sigma_{X_2} \\ \rho \sigma_{X_1} \sigma_{X_2} & \operatorname{Var}(X_2) \end{pmatrix}$$

Covariance Matrix

Marginal variance of just the RV X₁

$$\Sigma = \operatorname{Cov}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \rho \sigma_{X_1} \sigma_{X_2} \\ \rho \sigma_{X_1} \sigma_{X_2} & \operatorname{Var}(X_2) \end{pmatrix}$$

i.e. How "spread out" is the distribution in the X₁ dimension...



Covariance Matrix

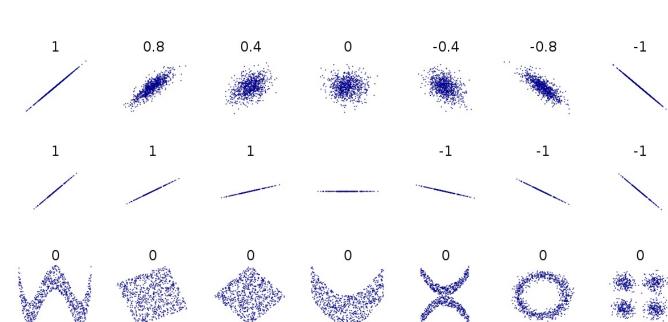
Correlation between X₁ and X₂

$$\Sigma = \operatorname{Cov}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \rho \sigma_{X_1} \sigma_{X_2} \\ \rho \sigma_{X_1} \sigma_{X_2} & \operatorname{Var}(X_2) \end{pmatrix}$$

Recall, correlation is given by:

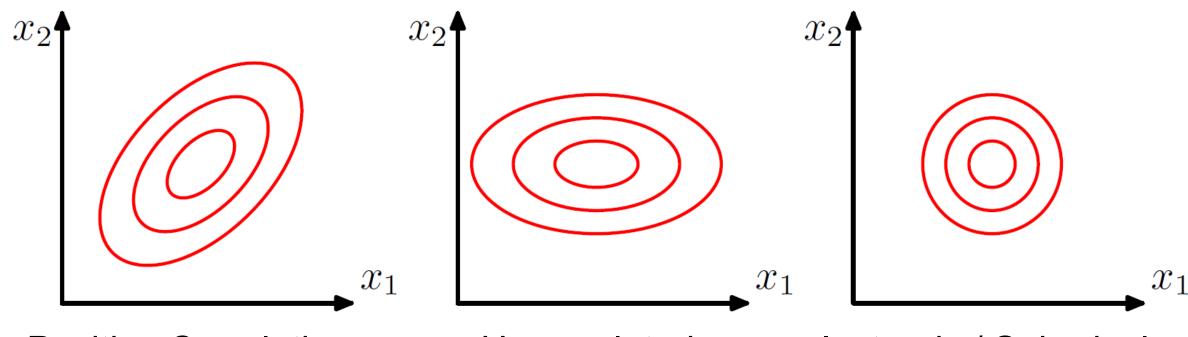
$$\rho = \frac{\mathbf{Cov}(X_1, X_2)}{\sigma_{X_1} \sigma_{X_2}}$$

Captures linear dependence of RVs



Covariance

Captures correlation between random variables...can be viewed as set of ellipses...



Positive Correlation

$$\rho > 0$$

Full matrix Σ

$$\Sigma = \left(\begin{array}{cc} \sigma_{X_1}^2 & 0 \\ 0 & \sigma_{X_2}^2 \end{array} \right)$$

$$\Sigma = \begin{pmatrix} \sigma_{X_1}^2 & 0 \\ 0 & \sigma_{X_2}^2 \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \sigma^2 & 0 \\ 0 & \sigma^2 \end{pmatrix} = \sigma^2 I$$