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* Artificial Neural Network (ANN) : A Review



Basis Functions

Basis functions transform linear models into nonlinear ones...

Classification

Linear Regression ( Logistic Regression )
Y = wTQj Y — O'(’lUTZU)
y =w' ¢(z) y = o(w ¢(z))

...but it is often difficult to find a good basis transformation



Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well...

Data Space Warped Space
Neural Net : oL
.
o) e
o
Wl

Ignore the circled points...|
reused these from the SVM slides

...this is essentially what standard neural networks do...



Neural Networks

* Flexible nonlinear transformations of data
* Resulting transformation is easily fit with a linear model
* Relatively efficient learning procedure scales to massive data

* Apply to many Machine Learning / Data Science problems
* Regression
» Classification
* Dimensionality reduction
* Function approximation
* Many application-specific problems



Neural Networks

Forms of NNs are used all over the place nowadays...

ChatGPT Wi |
j vi Tt
Large Language Models Self-Driving Cars
S JY— Machine Translation
Hello world! X jHola Mundo! 2. w
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Send feedback



Rosenblatt's Perceptron

Despite recent attention, In 1957 Frank Rosenblatt constructed

neural networks are fairly old the first (single layer) neural network
known as a “perceptron”

perceptron

A 0B

g, " A '

He demonstrated that it is capable of
recognizing characters projected onto a
20x20 “pixel” array of photosensors




FIG. 1 — Organization of a biological brain.

Rosenblatt's Perceptron
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FIG. 2 — Organization of a perceptron.

* In Rosenblatt’s perceptron, the inputs are tied directly to output

o O

Perceptron

o o(whz +b)

output

* “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)
 Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions



Multilayer Perceptron

Hidden layer
perceptrons
Input layer . .
perceptrons ﬁ l Adding hidden layers
allows NN to learn

arbitrary functions

PN
SR

Vel
XX output

This is the quintessential Neural Network...
...also called Feed Forward Neural Net or Artificial Neural Net

[ Source: http://neuralnetworksanddeeplearning.com ]



http://neuralnetworksanddeeplearning.com/

“Deep” Neural Networks

Modern Deep Neural networks add many hidden layers

[ Source: Krizhevsky et al. (NIPS 2012) ]

...and have many millions of parameters to learn
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Handwritten Digit Classification

Classifying handwritten digits is the "Hello World” of NNs

O Hl /7] g AN 3 1] 4 [3] Each character is centered
1 3] (@] [1] [7] [H [#] [6] [§] M in a 28x28=784 pixel
O 71/ A2 [¥] B R (7] grayscale image
L [C] (720 516 [0 = [6] []
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ZI 1] [&l 3] 18] @ [/] 2] [Z] [
gl 8l &7 21 g 0 e
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Modified National Institute of
Standards and Technology

(MNIST) database contains 60k
training and 10k test images




[ Source : 3Blue1Brown : hitps://www.youtube.com/waich?v=aircAruvniKk ]
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https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes
at the previous layer...

W1T1 + Woko + ...+ WhTh

Then applies a nonlinear
function to the result

OC ~I O O = W I

,0/0/6/0/8/0,8/0)0

<O

o(wix1 + wexs + ... + wpxy, + 0)

Often, we also introduce /

a constant bias parameter
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Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

a(wlxl Wax9 + ...+ WnTn

An early choice was the logistic function,
1

b) = o(w! z +b)

1

<

T J— 0-5
o(w”x+b) = 1 + e—(wTz+b) )/
Later found to lead to slow learning and ridge T e 2 0 1w s
functions like the rectified linear unit (ReLU), T

o(w!z +b) = max(0,w! z + b)

Or the smooth Gaussian error linear unit (GeLU),

V= wTJJ + b O'(U) — U(I)(U) ¢ Gaussian CDF

2.0 1

1.5 4

1.0 4

0.5 4
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Multilayer Perceptron

Final layer is typically a linear
model...for classification this is
a Logistic Regression

1
U(’U}Tﬂf —+ b) — 1 T 6_(,wT$_|_b)

\ Vector of activations from

previous layer

OC ~I O O = W I

Recall that for multiclass
logistic regression with K
classes,
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[ Source : 3Blue1Brown :

T84 x16+16x16 + 16x10

weights

16 +16 + 10
biases

13,002

Each parameter has some impact
on the output...need to tweak
(learn) all parameters
simultaneously to improve
prediction accuracy

(84



https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

For each training example,
predict label and adjust
weights
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« How to score final layer output?

« How to adjust weights?




Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class...
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[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk ]



https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

Our cost function for it" input is error in terms of weights / biases...

Costi(wl, c o ,wn,bl, .. ,bn)

\ J
Y

13,002 Parameters
in this network

..minimize cost over all training data...
min £(w, b) ZCost (W1, ..., Wn,b1,...,b,)

w,b

This is a super hlgh-dlmensmnal optimization (13,002
dimensions in this example)...how do we solve it?

Gradient descent!



Training Multilayer Perceptron

Need to find zero derivative (gradient) solution...

Convex Cost Function Non-convex Cost Function High-Dimensional Non-convex

\ f(z) =z sin (2*) + 1
4 ! \ /
\ A= (-2,251)

A /

- - 0 T T T T T
! ? f ! o\ 0 1 v 3
'(-2) = —5.99

-2

YAY! Super Boo!

Actually, the situation is much worse, since the cost is super
(13,002) high dimensional...but we proceed as if...



the Multilayer Perceptron
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Example

Play with a small multilayer perceptron on a
binary classification task...

https://playground.tensorflow.org/



https://playground.tensorflow.org/

Computing the Derivative

So we need to compute derivatives of a super complicated
function...

d d
_ E . D d bias term
dwﬁ(w) Z, dw Costi(w) r01E)opresimElliscitf/r )

Recall the derivative chain rule

d d
T Halw) = = Flg(w) (egtw))
\ v J —

Derivative of f at its Differentiate g with

argument g(w) respect tow
e.g. treat g(w) as a variable




Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk ]
Activation at final layer involves
weighted combination of
activations at previous layer...

o(w! x)

Which involves a weighted
combination of the layer before
it...

o (wy, 0 (wy,_17))

;
1
d
6
7
8

<O

And so on...

T

n0(Wn_y0(wy_50(...)))

o(w


https://www.youtube.com/watch?v=aircAruvnKk

Backpropagation

Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative

Example

d d
—-0(0(2)) = 0(0(2))(1 = 0(0(2)) 70 (2)

This is simply the derivative chain rule applied through the
entire network, from the output to the input



Backpropagation

* Implementation-wise all we need is a function that computes
the derivative of each nonlinear activation

* We can repeatedly call this function, starting at the end of the
network and moving backwards

* In practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

» Can do this efficiently on graphical processing units (GPUS)
on extremely large training datasets



Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer
perceptron that approximates f(x) with arbitrary accuracy.

» Specific cases for arbitrary depth (number of hidden layers) and
arbitrary width (number of nodes in a layer)

* Not a constructive proof (doesn’'t guarantee you can learn parameters)
» Corollary : The multilayer perceptron is a universal turing machine

* Also means it can easily overfit training data (regularization is critical)



Outline

* Shortcomings of Standard Deep Learning



Some Drawbacks of Standard Deep Learning

 Predictions can be “brittle” (i.e. very discontinuous w.r.t. input)

* Fail to generalize outsize training data (regularization important)
« Difficult to tune learning procedure

« Unable to accurately quantify uncertainty over predictions

* Lack privacy (memorize training data)

 Lack interpretability (models are “black box™)

» Pose safety issues in critical applications



How many r’s are in the word “strawberry”?

{There are 2 r's in the word "strawberry".

/Iapologize for the error in my previous response. You\

are correct to point out that | was mistaken. Let me
correct that:

There is actually only 1 'r' in the word "strawberry".
Thank you for bringing this to my attention. | always

aim for accuracy, and | appreciate the opportunity to
Qovide the correct information.

/

¥ Claude

3.5 Sonnet



ﬁologize again for the confusion. You're right to\
point out that I'm still incorrect. Let me take a

moment to carefully count the letters:

s-t-r-a-w-b-e-r-r-y

After a careful recount, | can now state with certainty:
There are 2 'r's in the word "strawberry".

This is the correct answer. The first 'r' appears after

the 't', and the second 'r' is the second-to-last letter of

the word. Thank you for your patience as we arrived
at the accurate answer. If you have any more

questions or need clarification on anything else,
Wse don't hesitate to ask. /

2¢Claude

3.5 Sonnet



Brittleness : Discontinuities in Predictions
Nearly imperceptible changes to input change prediction

All images in right column predicted as “ostrich”

Szeqedy et al. “Intriquing properties of neural networks.” ICLR 2014



https://arxiv.org/pdf/1312.6199.pdf

Deep Learning Has No Common Sense

They often fail to generalize to novel instances

school bus 1.0 snowplow O 92

Alcorn et al. “Strike (with) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects.” CVPR 2019



https://www.usenix.org/system/files/sec21-carlini-extracting.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Alcorn_Strike_With_a_Pose_Neural_Networks_Are_Easily_Fooled_by_CVPR_2019_paper.pdf
https://www.usenix.org/system/files/sec21-carlini-extracting.pdf

Safety Concerns

Variety of black-box

physical attacks left-to-
right:

* Artistic graffiti
« Subtle graffiti
» Poster

Can reliably cause ANN
to misclassify as
intended target (e.g.
speed limit 45mph)

Does not require
knowledge of network
internals

Evtimov et al. “Robust Physical-World Attacks on ML Models.” 2017



https://s3.observador.pt/wp-content/uploads/2017/08/08133934/1707-08945.pdf

Deep Learning is Opaque

It is often unclear what a DL system has learned

* This can be dangerous!
» Biases and bugs may exist
* Only discovered when it's too late!

 Important real-world applications must account for this
* Diagnosing medical patients
 Self-driving cars
« Safety-critical systems
* Etc.



Privacy Concerns

Large DNNs capable of memorizing training data...

Prefix
East Stroudsburg Stroudsburg... J

!

[ GPT-2 ]

( Memorized text ] l

Corporation Seabank Centre
Marine Parade Southport

Peter

.com

7 SH 20l
75

+
Fax: +
.

olijo

Figure 1: Our extraction attack. Given query access to a

neural network language model, we extract an individual per-

son’s name, email address, phone number, fax number, and

physical address. The example in this figure shows informa-

tion that is all accurate so we redact it to protect privacy.

Carlini et al. demonstrate that training
data can be recovered from GPT-2, a
large language model...

..this can be done in a black-box manner

(i.e. without knowledge of network
internals)

** Carlini et al. “Extracting training data from large lanquage models.” USENIX 2021



https://www.usenix.org/system/files/sec21-carlini-extracting.pdf

* Artificial Neural Network (ANN) : A Review
* Shortcomings of Standard Deep Learning
« Bayesian Deep Learning

« Bayesian Neural Network (BNN) Inference



Uncertainty Quantification

* Many of the shortcomings of DL can be
addressed by quantifying uncertainty

Uncal. - CIFAR-100 Iso. Reg. - CIFAR-100
ResNet-110 (SD) ResNet-110 (SD)

* Uncertainty comes in a variety of forms: /= oupu | G
. a ap
* Uncertainty that can be eliminated with more .
training data (epistemic) g0
» Uncertainty that is inherent in the stochastic < "
process (aleotoric) 0.2
Prel.m.nar ork a'ms tO Cal.b t 0.00-0 02 04 06 08 1.0 0.0 02 04 06 0.8 1.0
. iminary w | ibrate
uncertainty in the prediction layer (e.g. O ot oo CIEAR Ao 2
softmax) via “network uncertainty classification task

calibration”

Guo et al. “On Calibration of Modern Neural Networks.” NeurlPS. 2017



http://proceedings.mlr.press/v70/guo17a/guo17a.pdf

Probabilistic Perspectives on Deep learning

DNNs typically provide a deterministic mapping of inputs-to-predictions:

Prediction = y — f@ (ZC;— Input

t Network Parameters: Weights,
architecture, activation funcs

Can extend this to discriminative probability model relatively easily:

p(y | x,0)
* E.g. use 2nd-to-last softmax layer as PMF (bad idea)
» Use networks to parameterize parametric density

p(y | z,0) =N(y uve\(w),ge(w))

ANN outputs



Bayesian Perspective on Deep Learning

Idea Treat parameters as random variables with prior 8 ~ p(6) to define

generative model. 1
p(0,y | v)
Think of this
Benefits as a prior

over models

« Can compute posterior over all networks p(6 | x)

» Or marginalize over network parameters p(y | ) = [ p(0,y | =) df

* Natural approach to quantify uncertainty over network and/or prediction
* Distinguish between epistemic and aleotoric uncertainty”

* There is always a prior...Bayesian methods just make it explicit

* Der Kiureghian and Ditlevsen. "Aleatory or epistemic? Does it matter?." Structural safety (2009)

* Kendall and Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurlPS. (2017)



https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

Point Estimate vs. Bayesian DL Correspondence

Point Estimate Neural Network

Architecture

)

Supervision (§I1V-D)

)7

(
(
(

Loss (§lI)

)_

Bayesian Neural Network

Functional model

[
Stochastic model (§1V)

- Likelihood (§IV-A) p(y|x,0)

-

Regularization

Penalization in Loss (§IV-C3)

Dropout

\

\.

Training

Gradient Descent Algorithms
(e.g. SGD, Adam, ...)

Backpropagation

Prior (§IV-C) p(6)

Inference (§V-A)

MCMC (§V-A)

)

Variational Inference

MC-Dropout (§V-E1)

Stochastic Variational
Inference (§V-B)

Bayes-by-backprop (§V-C)

J

.

J

The learning process of
Bayesian DL fundamentally
differs from point estimate
ANNs

Instead of minimizing a loss
function, Bayesian DL does
inference via MCMC,
Variational, etc.

Online prediction often
requires inference (unless
amortized inference is done)

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



Bayesian Neural Network

Bayesian Neural Network Stochastic Weights Stochastic Nodes
—( Functional model ]
Stochastic model (§1V) ) U\H//<|l>ﬂ/ﬂ m e
Stocn: NN
j( Likelihood (§IV-A) p(y|x, @) \\ /\\// \\//\// g R ol Q 10
([ Prior§ive) p(6) L\Y‘mﬁf\x&ﬂ] D W v) /
/ it |P

» Both standard ANN and BNN require functional model

 BNN additionally requires stochastic model (likelihoods, priors)

» Stochastic model depends on whether weights or nodes are random
* Either choice determines structure of the underlying PGM



Bayesian Neural Network

Many different constructions, but all essentially a stochastic ANN

An ANN construction with parameters 6 = (W, ) :

lo =, ]

l; =s;(Wil;_1 + b;) Vie[l,n] o /‘ NN

Yy =ln. NN T T NAYZANAY
i '""""\'"//\\ YX\""/"/&\/ \///\\\||/7<{|///\&H\//1|
Two main types of BNNs

» Add stochastic activations at
Fig. 3: (a) Point estimate neural network, (b) stochastic neural

nodes
e Make para meters random (a dd network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution

priors) over the weights.

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial
for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



\

(" Stochastic model
Prior Variational posterio
p(0) (if needed)
p(ylz, ) q¢(0)
\

)

Functional model
y = Po(x)

,

Training data
{(x1,9y), -

(z,, yn)}J

(a)

Bayesian Neural Network

Inference (training) \
(" MCMC "\ ( Variational inference
N
: : SVI,
Gibbs sa_mplmg_, Bayes by backprop,
Metropolis hasting, babilisti
HMC, NUTS, ... provabiiistic
’ ’ backpropagation ...
MC-Dropout,
%ESCLZRST Deep ensembles,
T KFAC, SWAG ...
\\ /} L\

f/DL-Speciﬁc\ Generic )

_J

(b)

Posterior
p(0|D)

" Marginal
- p(yle, D) |

[

Input
I

(c)

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (¢).

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)
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Inference in a BNN

Given training data D={Dx,Dy} compute posterior over network params,

p(Dy|Dgz,0)p(0) «
[y p(Dy|Dz, 0 )p(0")d6’

p(0|D) = P(Dy|Da, 0)p(0).

* Represents distribution over all possible networks based on training
data

* In general restricted to a subclass, i.e. fixed architecture / activations
» Parameters are typically network weights

* Inference is intractable in general, need look at algorithms we've
learned



Prediction in a BNN

When predicting we often marginalize over network parameters,
p(vl2. D) = [ p(ule.6)p(6'|D)d6"
Marginal p(y | z, D) characterizes predictive uncertainty of the network.

Given samples from

posterior Algorithm 1 Inference procedure for a BNN.

oD, 0)p(6
6; ~ p(0]|D); Detine p(6]D) = 0 0 0

Can sample predictions in for 1 =0 to IV do \\ Training Data

feedforward process, Draw 8; ~ p(6|D);
Y; = P, (x);

| end for
yi — (I)HZ- (w)a return Y = {y,;[¢ € [0,N)}, © ={6;]i € [0,N)};

Training Labels




Prediction in a BNN

Approach generates a set of predictions from an ensemble of networks,
Y ={y;li €[0,N)}, © ={6:[i € [0,N)};

Can use model averaging for a single prediction,

. 1
U = 0] Z Py, ().

0,c0
Sample covariance can be used to quantify predictive uncertainty,
1 . .
2’.‘J|213,D — |6)|——1 Z ((I)GZ (ZB) o y) (q)ez (CE‘) o y)T ‘

0,c0

Better uncertainty estimates are possible (e.g. predictive entropy)



Prediction in a BNN

One can also consider the empirical distribution over predictions,

R 1
= @ Z g, ().

0,cO

The maximum a posteriori (MAP) prediction is then,

Yy = argmaxp; € p.

2

» Uncertainty given via the empirical entropy
 Straightforward for classification tasks
« Continuous (i.e. regression) predictions require density estimation



Generalizing Beyond Supervised Learning

Bayesian DL can effectively use unlabeled data and uncertain labels...

£) D@

@ @ ©) :
(o)

. 0/ 0 l,v\/

O @) g (1) @
D
1_) D 9 T @
(a) Noisy labels (b) Semi-supervised learning (c) Data augmentation (d) Meta-learning (e) Self-supervised learning

* Noisy Labels Annotations can be imprecise

* Semi-Supervised Use, both, labeled and unlabeled training data
« Augmentation Transformations of inputs that do not change label
* Meta-Learning Learn how to learn

» Self-Supervised Labels are directly obtained from inputs, but do not
relate to the task...need to learn a proxy task



Active Learning in a BNN

< ‘ machine learning | > Algorithm 2 Active learning loop with a BNN.
/» \ while U £ @ and X _.p < threshold and " < MaxC

y]m,71.a
do

3 Draw © = {8, ~ p(8|D)|i € [0.N)}:
for x € U do |

labeled
training set
>

-

Zy|a:,1) — |(_})|_1 ZOZ-EG) ((I)Oi. (I) - g) ( 0. () — g) :

if Zy|:r,,1) > Zy[a:ma.r,l) then

) select

oracle (e.g., human annotator

Lmar = L.
Data annotation is end if
expensive... end for
Dy =Dy U {wmzv(}:
...uncertainty over prediction f’yj( Iiy{g {O;~f1cle<a:.1lax>}:
allows us to be smart about C_Cal
what data we need to label end while

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Source: Settles et al. “Active Learning Literature Survey.” Univ. of Wisc. Madison TR. (2010)



Conclusions

Standard Deep Learning
* Works great much of the time if we only care about predictive accuracy

* Point estimate-based learning can be brittle, yield poor uncertainty
calibration

Bayesian Deep Learning

« Combines DL models with Bayesian concepts and inference

* Directly represents uncertainty over network and predictions

* More robust predictive models than point estimates

* Significantly increases computational burden

« Some simple “approximately Bayesian® methods perform decently



Outline

« Bayesian Neural Network (BNN) Inference



Maximum Likelihood Estimation

Neural network can be viewed as probabilistic model with
weights learned by maximum likelihood

wMtE — arg max P(D|w)

— atgIllax H P(yi|zi, w)

W_J

Distribution over predictions

Frequentist : Weights are fixed. Data are random variables.



MAP Estimation

Bayesian : WWeights are random variables with prior P(w)

wMAY — arg max P(w|D)

= arg max P(D|w)P(w)
= arg max log P(D|w) + log P(w)

H_J

Log-prior over weights

Most frequentist approaches include regularizer in learning,
which implicitly plays the role of a prior belief



Inferring the Predictive Distribution

We can substitute our best estimate of weights,
P(9|#) = P(g|z, wMAT)

Or marginalize over the network weights via the posterior,

P(y|z) = L P(w|D) P(y|z,w)]

= /P(Q\i,w)P(wﬂ))dw

Second approach performs inference; accounts for
weight uncertainty



Inferring Network Welights

/Q\ Need to compute posterior
uncertainty over weights, given
®< @ \@ training data...
X

' ...but how to compute the
> posterior?

_ P(Dw)P(w) (_  P(D|w)P(w)
P(w|D) = =5y (— fP(D|w)P(w)dw>




Bayesian DL Inference

Benefits r

Limitations
Requires to store a very

\ ( Use cases \

Small and average

MCMC (V.A) Directly samples the posterior large number of samples models
Classic methods State of the art samplers limit Do not scale well Small and critical &?
(HMC, NUTS)(§V-A) autocorrelation between samples to large models models :_
: . o
SGLD and derivates Provide a well behaved Focus on a single mode Models with larger 0
(§V-E2a) Markov Chain with minibatches of the posterior datasets S
] Help a MCMC method explore Requires a new burn-in Combined with 2.
Warm restarts (§V-E2a) different modes of the posterior sequence for each restart a MCMC sampler §_
e . The variational distribution is o Large scale )
Variational inference (V.B) easy to sample Is an approximation models
Bayes by backprop (§V-C) Fit any parametric distribution Noisy gradient descent Large scale
as posterior models %
=)
Monte Carlo-Dropout Can transform a model , Dropout based o
(§V-E1) using dropout into a BNN Lack expressive power models o
Laplace approximation By analyzing standard SGD Focus on a single mode Unimodals 5
(§V-E2b) get a BNN from a MAP of the posterior large scale models g‘.
. o
Deep ensembles Help focusing on different Cannot detect local Mulélmodgl_s n;od%I‘s =
(§V-E2b) modes of the posterior uncertainty if used alone and combined wi
\ other VI methods W,

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



Monte Carlo Dropout

Dropout
* Typically used as regularizer in training
« Each grad update randomly remove nodes

* Ensures network not overly sensitive to
small subset of edges

(a) Standard Neural Net (b) After applying dropout.

Monte Carlo Dropout

* Do dropout at prediction...generate ensemble of predictions by
dropping a subset of edges for each

« Equivalent to VI with variational distribution for each weight as,
zi j ~ Bernoulli(p;).
W, =DM, - diag(z;).



Monte Carlo Dropout

Distribution of outputs quantifies uncertainty

\‘\

p(f(x,8))

O

Source: https://medium.com/@ ciaranbench/monte-carlo-dropout-a-practical-quide-4b4dc18014b5



https://medium.com/@ciaranbench/monte-carlo-dropout-a-practical-guide-4b4dc18014b5
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Gal and Ghahramani. ICML. 2016
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Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of
the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).
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(§V-E2a) Markov Chain with minibatches of the posterior datasets S
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Variational Approximation
p(w | D)

»

KL(q(w | 0)]lp(w | D))

Minimize KL between g(w | ) and posteriop(w | D) .

[ Source: David Blei ]



Variational Inference

Recall the Kullback-Leibler divergence given as,

KLlo(a)| P(@)] = [ a(o)log 5

Our variational parameters are given by,
(w]0)
(w|D)

. qg(w|0)
= argm@m/q(ww) log P(DIw)P(w) dw

dw

: q
* = 0)1
0 argmem/q(w| ) g —




Variational Loss

So our loss function is given by,

F(D,) = / ¢(w|0) log q]g‘g;[f;

= KLg(w|0) | P(W)] ~ Eq(uo)log P(D|w)]

q(w|0)log P(D|w)dw

Just differentiate the loss function and optimize, right?

VoF(D,0) = VoKL[q(W|0)||P(W)] — VoE (w|e)log P(D|w)]



Gradient-Based Optimization

No. We don't get a straightforward Monte Carlo estimator...

S Eawin fw.0) = [ Zatw] 6)f(w,6)du

— /q’(w 1 0)f(w,0) dw+/q(w 16) ' (w, 6) dw

...Tirst term is not an expected value!



Reparameterization Trick

Proposition 1. Let € be a random variable having a prob-
ability density given by q(€) and let w = t(60,¢€) where
t(0,€) is a deterministic function. Suppose further that
the marginal probability density of w, q(w|@), is such that
q(€)de = q(w|@)dw. Then for a function f with deriva-
tives in w:

9 Of(w.0)dw  Of(w,0)
6—91Eq(w|9)[f(W,9)] = Eq4(¢) T T .




Proof of Reparameterization Trick

Bl F(0,0)) = 2 [ F(w.8)q(wl)aw

0 o
= %/ﬂWﬁ)Q(G)df

: Of(w.0)ow  Of(w,0)
SO aw a0 T o0




Variational Loss

So our loss function is given by,

F(D,0) = KLlg(w|0)[| P(W)] = Eq(w|e)[log P(D|w)]

Given samples {w®1”_ . ~ q(w | #) approximate loss as,

F(D,0) ~ Z log g(w'?]0) — log P(w'?) — log P(D|w'V)
i=1

Use reparameterization trick to calculate gradient.



Gaussian Reparameterization

So we need a deterministic function s.t. w = ¢(0, ¢) .

Suppose we want to sample a Gaussian RV,
w ~ N(p,07)
But we only know how to sample a standard Gaussian RV,
e ~N(0,1)
Gaussians are closed under linear transformations so,
w=p+toe~N(po)
——

w =1(60,¢)



Done by
backpropagtation

ol A

s

Sample € ~ N (0, 7).

Let w = pu + log(1 + exp(p)) o €.

Let 0 = (p, p).

Let f(w,0) = logq(w|f) — log P(w)P(D|w).
Calculate the gradient with respect to the mean

_9f(w,0) | 9f(w.0)

B ow ou

(3)

Calculate the gradient with respect to the standard de-
viation parameter p

_ of(w,0) € +(9f(w,9)

A . (4
P ow 1+ exp(—p) dp “)

. Update the variational parameters:
p— p—al\, ()

p—p—al, (6)



Noisy Regression
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Figure 5. Regression of noisy data with interquatile ranges. Black
crosses are training samples. Red lines are median predictions.
Blue/purple region is interquartile range. Left: Bayes by Back-
prop neural network, Right: standard neural network.

Blundell et al., ICML. 2015



Fashion MNIST
70k images, 28x28, 10 classes of clothing objects

0 20 40 &0 80 100 120 140

Count Count Count Count Count

Top Trouser  Pullover Dress Coat Sandal Shirt Sheaker Bag  Ankle Boot
_ Categories
Source: https://www.nitarshan.com/bayes-by-backprop/



https://www.nitarshan.com/bayes-by-backprop/

MNIST Out-of-Sample Prediction

rained on FMNIST, tested on MNIST
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Source: https://www.nitarshan.com/bayes-by-backprop/



https://www.nitarshan.com/bayes-by-backprop/

In-Sample MNIST Prediction

Table 1. Classification Error Rates on MNIST. x indicates result

used an ensemble of 5 networks.

S

e

z | &

.E -é—)
Method = | & Test

Error

SGD,. no regularisation (Simard etal., 2003)| 800 | 1.3m 1.6%
SGD, dropout Hintonet al., 2012) ~ 1.3%
SGD. dropconnect (Wan et al., 2013) 800 | 1.3m| 1.2%*
SGD 400 | 500k| 1.83%

800 | 1.3m| 1.84%

1200| 2.4m| 1.88%
SGD, dropout 400 | 500k| 1.51%

800 | 1.3m| 1.33%

1200 2.4m| 1.36%
Bayes by Backprop, Gaussian 400 | 500k| 1.82%

800 | 1.3m| 1.99%

1200 2.4m| 2.04%
Bayes by Backprop, Scale mixture 400 | 500k| 1.36%

800 | 1.3m| 1.34%

1200 2.4m| 1.32%

Blundell et al., ICML. 2015
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Figure 2. Test error on MNIST as training progresses.
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Figure 3. Histogram of the trained weights of the neural network,

for Dropout, plain SGD, and samples from Bayes by Backprop.
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Weight Pruning (MNIST)

Remove weights by their signal-to-noise ratio...

Proportion removed | # Weights | Test Error
0% 2.4m 1.24%
50% 1.2m 1.24%
73% 600k 1.24%
95% 120k 1.29%
98% 48k 1.39%

...95% weights removed with minimal affect on accuracy.

Blundell et al., ICML. 2015



