
CSC535: Probabilistic Graphical Models

Message Passing Inference

Prof. Jason Pacheco

Homework 3

• Loopy Belief Propagation

• Out today, due 2 weeks (Monday 2 / 27 @ 11:59pm)

• All coding, 2 problems
• Implement loopy sum-product for simple factor graph
• Apply to low density parity check coding problem

• Please submit report as PDF and a separate ZIP file of code!

Outline

Ø Sum-Product Belief Propagation

Ø Loopy Belief Propagation

Ø Variable Elimination

Ø Junction Tree Algorithm

Ø Max-Product Belief Propagation

Outline

Ø Sum-Product Belief Propagation

Ø Loopy Belief Propagation

Ø Variable Elimination

Ø Junction Tree Algorithm

Ø Max-Product Belief Propagation

Why Graphical Models?

Structure simplifies both representation and computation

Representation
Complex global phenomena arise by
simpler-to-specify local interactions

Computation
Inference / estimation depends only on
subgraphs (e.g. dynamic programming,

belief propagation, Gibbs sampling)

…and want to calculate the marginal on B

Example: Markov Chain

A B C D

Ø For K-valued variables this is
Ø For a Markov Chain on N variables calculating takes
Ø We can do better by reordering operations…

Suppose we have a chain graph…

Example: Markov Chain

A B C D

Suppose we just care about marginal on D:

(Distributive property)

Each message takes
O(K^2) time for total of

O(3K^2)

On a Markov Chain of N
RVs takes O((N-1)K^2)

Example: Markov Chain

A B C D

Convert Bayes net to MRF by ignoring local normalization:

Example: Markov Chain

A B C D

Convert Bayes net to MRF by ignoring local normalization:

Repeat same procedure on MRF (we do not assume normalization):

Markov Chain Revisited

Inference viewed as passing messages e.g. C à D:

Incoming Message
Compatibility

Potential

Ø Only showed calculation of marginal at rightmost node
Ø Backward pass of messages calculates all marginals
Ø General inference on Markov chains called forward-backward alg.
Ø Extension to other model structures called sum-product algorithm

A B C D

Forward-Backward Algorithm

…

Pass messages forward/backward along chain…

Forward message:

Forward message:

Marginal probability:

Forward-Backward Algorithm

…

Extends to HMM-style graphs with node observations…

Forward message:

Backward message:

Forward-Backward Algorithm

(Chain rule)

(Conditional Independence)

(Chain rule)

(Law of Total Probability)

(Chain rule + Conditional Independence)

Forward-Backward Algorithm

(Law of Total Probability)

(Chain rule)

(Conditional Independence)

(Chain rule)

Forward-Backward Algorithm

…

Forward message gives the filtered posterior:

Smoothed posterior incorporates all observations:

Sum-Product Belief Propagation

A

B C

D E F G

Forward-Backward extends to any
tree-structured pairwise MRF

Pass messages from leaves-
to-root, then root-to-leaves

A

C

F G

Marginal given by incoming
messages (e.g. node C):

Sum-Product Belief Propagation

Message

Marginal

Message updates depend only on Markov blanket…

Messages involve a sum over
products, hence the name “sum-

product algorithm”

Computational Complexity

For K-valued random variables Xs and Xt
intermediate factor is K-by-K matrix

Each message requires computation:

There are |E| edges so total computation is:

Non-Pairwise MRFs

A

B C

D E F G

A

B C

D E F G

Convert to tree-structured factor graph and redefine sum-
product messages

Three-way clique:

Notation Change

We will use slightly different notation for this section…

Previous Notation New Notation
: Factors
: Messages

: Factors
: Messages

Sum-Product Belief Propagation

x
A

B

C

A1

A2

Sum-product extends to tree-
structured factor graphs

Key Observation
Any variable node X with N factors

splits graph into N subgraphs with no
shared variables

Approach
Recursively decompose into

subtrees and marginalize them

Sum-Product Belief Propagation

Two kinds of computations
marginalize different subtrees

Marginalize a sub-graph with a variable
node at its root using the marginals of

the sub-graphs attached to it.

Marginalize a sub-graph with a factor
node at its root using the marginals of

the sub-graphs attached to it.

Each root node (variable or factor) “waits” for all messages from its
children before being marginalized out

Sum-Product Belief Propagation

To the root (x) From the root (x)

Factor-to-variable Variable-to-factor

x x

Factor-to-variable message

The message is the
marginal of the sub-

graph with respect to all
variables except x.

Variable-to-factor message

The message is the
marginal of the sub-

graph with respect to all
variables except x.

What a variable node computes

*This is what it computes, but not how it does it
efficiently (i.e., as in the sum-product algorithm).

General variable node computation

What the root variable node computes

Product contains all factors
in the graph with root x.

Sum-product on a slide

1

Marginal is product of incoming factor-to-variable messages:

The two products over messages look similar, but the first:

One point of confusion

is a product of vectors, each over the same variable, but the
second has the variable as the index in the product:

There are several ways to interpret the message product:

One point of confusion (continued)

N-dimensional analogue of the outer product creates a tensor:

E.g. For two messages each element
of the sum corresponding to

(𝑥, 𝑥!, 𝑥") is
𝑓(𝑥, 𝑥!, 𝑥") & 𝜇!(𝑥!) & 𝜇"(𝑥")

Computational Complexity

Intermediate factor

Assuming all variables are K-valued, intermediate factor with
M+1 variables has entries

Sum-product algorithm example

Declare x3
as root
node.

Sum-product algorithm example

The sum-product algorithm

First, pass messages from leaves to your chosen root node.
If you want more than one marginal or plan to do other
computation, store the results as you go.

Initialization: If leaf node is a variable node, then start with a
unity message. If leaf node is factor, then start with the factor.

Recall the general
case (using z instead
of x to avoid conflicts
with the variables in
our graph).

Recall the general case (don’t
confuse general variables with this

example)

✓ ✓

✓ ✓

✓

✓

✓ ✓

We now have the marginal at X3:

Next we want to set up
for additional
computations, we pass
messages from root to
leaves.

Candidate for the first
and second ones?

Candidate for
third and fourth?

Passing messages
from root to leaves.

✓ ✓

Lets go towards x1
first.

Note use of saved message
from going the other way.

✓ ✓

✓ ✓✓ ✓

We can now compute marginals at
any variable, e.g. X2:

We can now compute marginals at
any variable, e.g. X2:

We can now compute marginals at
any variable, e.g. X2:

We can now compute marginals at
any variable, e.g. X2:

We can now compute marginals at
any variable, e.g. X2:

Outline

Ø Sum-Product Belief Propagation

Ø Loopy Belief Propagation

Ø Variable Elimination

Ø Junction Tree Algorithm

Ø Max-Product Belief Propagation

Example: Low Density Parity Check (LDPC) Codes

Factor Graph Representation

Noisy
Channel

Transmitted Code Received Code

Decoder

[Source: David MacKay]

Problem Setup
• A code t is transmitted over a noisy
• Received code r is corrupted by noise
• Estimate the most probable code that

was sent t* (maximum a posteriori)

Example: Low Density Parity Check (LDPC) Codes

• Valid codes have zero parity:
• Chanel noise model arbitrary, e.g. flip bits w/ probability:

Sparse Parity Check MatrixFactor Graph Representation

n-th bit [Source: David MacKay]

Example: Low Density Parity Check (LDPC) Codes

0 5 15 \

Figure 3: Belief propagation decoding of a (3,6) regular LDPC code, given a binary input
message (top half) corrupted by noise with error probability ϵ = 0.08 (as set up in [5]). We
show the received codeword including parity bits (zero iterations, left), the bits that maximize
the posterior marginals after five and fifteen BP iterations, and the final, correctly decoded signal
after convergence to a loopy BP fixed point (the Stata center, home of the MIT Computer Science
& Artificial Intelligence Laboratory).

example systematic message encoding [5], in which the first half of the transmitted bits are the

uncoded message of interest. To aid visualization, we choose this message to be a simple binary

image, but the LDPC code does not model or exploit this spatial structure.

To decode a noise–corrupted message via loopy BP, we pass messages in a parallel fashion.

Each iteration begins by sending new messages from each variable node to all neighboring factor

nodes, and then updates the outgoing messages from each parity check. As illustrated in Fig. 3,

this allows information from un–violated parity checks to propagate throughout the message,

gradually correcting noisy bits. These BP message updates continue until the thresholded

marginal probabilities define a valid codeword, or until some maximum number of iterations

is reached. In practice, BP decoding typically fails due to oscillations in the message update

dynamics, rather than convergence to an incorrect codeword [5].

The outstanding empirical performance of message–passing decoders has inspired extensive

research on alternatives to regular LDPC codes [5]. One widely used trick removes all cycles of

length four from the factor graph, so that no two parity checks share a common pair of message

bits. This reduces over–counting that can otherwise hamper loopy BP. In applications where

transmitting million–bit blocks is feasible, extremely effective codes can be found by designing

random ensembles of sparse parity check matrices whose typical members are good. For more

moderate blocklengths, graphical code design is a topic of ongoing research.

4 Application: Dense Stereo Reconstruction

To further illustrate the practical behavior of loopy BP, we now consider an application in spatial

signal processing. Many low–level computer vision tasks have a common form: gather local

evidence, then propagate that evidence across space [8]. Belief propagation provides machinery

to solve such spatial inference problems in factor graphs. Binocular stereo reconstruction, in

which images captured at two offset locations are used to estimate scene depths, is typical of

7

Data
Bits

Parity
Bits

Loopy BP:

Ø Each variable node is
binary, so

Ø Parity check factors
equal 1 if the sum of the
connected bits is even,
0 if the sum is odd
(invalid codewords are
excluded)

Ø Unary evidence factors
equal probability that
each bit is a 0 or 1,
given data. Assumes
independent “noise” on
each bit.

xs 2 {0, 1}
Parity Check Factors

Evidence (observation) Factors

BP for Loopy Graphs

Suppose we have a graph with cycles…

X1

X4

X7

X3

X6

X9

X2

X5

X8

Sum-product BP for tree-structured
graphs relies on a leaf-to-root / root-
to-leaf sequential update schedule

Graphs with cycles are “loopy” and
have no obvious message ordering

Where do we even start? Every
node requires initial messages…

BP for Loopy Graphs

X1

X4

X7

X3

X6

X9

X2

X5

X8

Observe BP message update only
depends on Markov Blanket:

Where is the set of neighbors:

Idea Initialize all messages
(somehow) then iteratively update
each message until “convergence”.
What is convergence? Will this converge? If so, then to what?

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Parallel (Synchronous) Updates
At iteration i update all messages in parallel using
current messages mi-1 from previous iteration:

• Store, both, the previous messages (from iteration
i-1) and current messages (from iteration i)

• Many convergence results assume parallel
updates

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Notice that each row can
be computed in parallel

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Both directions are independent
just like in forward-backward algorithm

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Loopy Belief Propagation (sum-product)

X1

X4

X7

X3

X6

X9

X2

X5

X8

Initialize Messages
Constant:
Random:

Asynchronous (Sequential) Updates
Choose an ordering of nodes and update using the
latest available messages:

• Simplifies updates since only need to keep track
of one copy of messages

• Makes parallel processing trickier

Upwards / downwards directions can also
be done in parallel (holding rows fixed)

Pseudocode from Murphy’s Textbook

Loopy BP on Factor Graphs
Set of neighbors of node s: �(s) = {f 2 F | s 2 f}

xs

xv

xw

xt

xu

fxs

xv

xw

xt

xu

f

ps(xs) /
Y

f2�(s)

mfs(xs)

m̄sf (xs) =
Y

g2�(s)\f

mgs(xs) /
ps(xs)

mfs(xs)

Marginal Distribution of Each Variable:

mfs(xs) =
X

xf\s

 f (xf)
Y

t2f\s

m̄tf (xt)

Loopy BP:
Message updates can
be iteratively computed
on graphs with cycles.

But marginals not
guaranteed correct!

Marginal Distribution of Each Factor:
Clique of variables linked by factor.

pf (xf) / f (xf)
Y

s2f

m̄sf (xs)

[Source: Erik Sudderth]

Numerical Stability

xs

xv

xw

xt

xu

f
m̄sf (xs) =

Y

g2�(s)\f

mgs(xs) /
ps(xs)

mfs(xs)

Product over messages is numerically unstable…

Vector of small valuesProduct of small values
tends to underflow

1. Do the product as a summation in log-domain:

2. Subtract the maximum value (this makes new maximum zero):

3. Exponentiate (optionally normalize):

Loopy BP works well empirically, but there are no guarantees:
• Not guaranteed to converge in general graphs
• BP marginal beliefs are approximations
• Empirically, when LBP converges it does so quickly and with good

approximations

Loopy BP Convergence

Typical convergence measures are:

Max change:
Total change:

Convergence based on change in messages / marginal approximations:

or

Loopy BP Convergence

Loopy MRF Computation Tree
(4 Rounds of BP)

Computation tree visualizes sequence of messages as BP proceeds…

Key Insight T iterations of BP equivalent to exact calculation in
computation tree of height T+1. If edge strength sufficiently weak, then
leaves will have minimal impact on root and BP converges.

Source: Wainwright & Jordan, 2008Nodes 2 & 3 are over represented in computation
tree since they have more edges, thus more

impact on belief of node 1

Loopy BP Convergence

What can we do to improve convergence in a given model?

Message damping takes a partial update of messages each iteration,

for damping factor , e.g. is standard update

Message scheduling
Ø Asynchronous updates tend to converge faster than synchronous
Ø Well-known Gauss-Seidel method does this in round-robin fashion (Bertsekas 97)
Ø Message update ordering also impacts convergence (e.g. disproportionate impact

of nodes 2 & 3 in previous example)

Example: Loopy BP

Convergence depends largely on the existence of many small cycles

Example Ising model of
ferromagnetism via atomic spins:

X1

X4

X7

X3

X6

X9

X2

X5

X8

…

…

…

… … …

Binary spin variables:

Interaction strength:

Field strength:

Example: Loopy BP

11x11 Ising model with random parameters

Source: D. Koller

Using message damping

No Damping

Example: Loopy BP

Convergence of beliefs in 3 selected nodes

Source: D. Koller No Damping

Example: Loopy BP

Oscillation in limit cycles is a typical failure mode of BP convergence

Source: D. Koller No Damping

Loopy BP Summary

• BP updates only depend on tree-structured Markov blanket

• Approximate BP inference in loopy graphs by iterating
standard message updates until convergence (fixed point)

• No guarantees, but works well empirically in many instances

• Some techniques to improve convergence
• Message damping
• Asynchronous message update schedules

Outline

Ø Sum-Product Belief Propagation

Ø Loopy Belief Propagation

Ø Variable Elimination

Ø Junction Tree Algorithm

Ø Max-Product Belief Propagation

Bayes Net à MRF

Difficulty Effort

SATGrade

Letter

JobHappy

Drop local normalization

Difficulty Effort

SATGrade

Letter

JobHappy

Added edges marry
parents (moralization)

Variable Elimination Algorithm

Difficulty Effort

SATGrade

Letter

JobHappy

What is the probability of getting a job?

Iteratively eliminate nuisance variables…

Variable Elimination Algorithm

Difficulty Effort

SATGrade

Letter

JobHappy

Choose elimination ordering:

Variable Elimination Algorithm

Difficulty Effort

SATGrade

Letter

JobHappy

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Variable Elimination Algorithm

Effort

SATGrade

Letter

JobHappy

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Variable Elimination Algorithm

Effort

SATGrade

Letter

JobHappy

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Variable Elimination Algorithm

SATGrade

Letter

JobHappy

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Variable Elimination Algorithm

SATGrade

Letter

JobHappy

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Variable Elimination Algorithm

SATGrade

Letter

Job

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Variable Elimination Algorithm

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Eliminate G :

SATGrade

Letter

Job

Variable Elimination Algorithm

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Eliminate G :

SAT

Letter

Job

Variable Elimination Algorithm

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Eliminate G :

SAT

Letter

Job

Eliminate S :

Variable Elimination Algorithm

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Eliminate G :

Letter

Job

Eliminate S :
Eliminate L :

Variable Elimination Algorithm

Choose elimination ordering:

Eliminate D (compute message Dà(G,E)):

Eliminate E (compute message Eà(G,S)):

Eliminate H (compute message Hà(G,J)):

Eliminate G :

Job

Eliminate S :
Eliminate L :

Accounting for Evidence

Difficulty Effort

SATGrade

Letter

JobHappy

What if we observe a node (e.g. Letter=l)?

Step 2: Remove L from elimination ordering

Just treat these as new factors, since we don’t care about normalizer:
and

Step 1: Clamp in any factor with L:

Computational Complexity

Main Points:

Ø Worst-case complexity of variable elimination is exponential
in the number of latent variables

Ø Complexity is dependent on chosen elimination order

Computational Complexity

Effort

SATGrade

Letter

JobHappy

Consider eliminating E in the example…

Multiplication creates intermediate factor:

Assuming all variables are K-valued, new
factor has entries requiring

Complexity determined by size of the largest intermediate factor

Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Computational Complexity

Effort

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Computational Complexity

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Fill-in Edge

Computational Complexity

SATGrade

Letter

JobHappy

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Computational Complexity

SATGrade

Letter

Job

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Computational Complexity

SAT

Letter

Job

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Computational Complexity

Letter

Job

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

Computational Complexity

Job

Elimination order D, E, H, G, S, L

Worst-case
Complexity:

What if we choose a
different elimination order?

Computational Complexity

Difficulty Effort

SATGrade

Letter

JobHappy

Eliminate G first…

Worst-case
Complexity:

Complexity
depends on

elimination order…

For N variables
worst case is:

Optimal Ordering

Difficulty Effort

SATGrade

Letter

JobHappy

The induced graph is the union of all graphs
generated running variable elimination:

e.g. ordering D, E, H, G, S, L

Theorem (Informally) Given some
elimination ordering:
1. Scope of every factor generated during variable

elimination is a clique in the induced graph
2. Every maximal clique in the induced graph is a

scope of some intermediate factor (of var. elim.)

Fill-in
Edge

Induced graph cliques Intermediate factors

Induced graph (and complexity) depend strongly on elimination order

Optimal Ordering

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G

Optimal Ordering

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S
E,G

Optimal Ordering

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S G,S,L,J
E,G G,S

Optimal Ordering

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S G,S,L,J H,G,J
E,G G,S G,J

Optimal Ordering

Difficulty Effort

SATGrade

Letter

JobHappy

Clique Tree

D,E,G E,G,S G,S,L,J H,G,J
E,G G,S G,J

Elimination order induces graph with
maximal cliques and width:

Ø Complexity of variable elimination is
Ø Lowest complexity given by the treewidth:

It is NP-hard to compute treewidth,
and therefore an optimal

elimination order (of course…)

Variable Elimination Summary

Ø Variable elimination allows computation of marginals / conditionals

Ø Algorithm is valid for any graphical model

Ø Suffices to show variable elimination for MRFs, since Bayes nets à
MRFs by moralization

Ø Worst-case complexity is dependent on elimination order, and is
exponential in number of variables

Ø Optimal ordering = treewidth, is NP-hard to compute

Outline

Ø Sum-Product Belief Propagation

Ø Loopy Belief Propagation

Ø Variable Elimination

Ø Junction Tree Algorithm

Ø Max-Product Belief Propagation

Variable Elimination

Difficulty Effort

SATGrade

Letter

JobHappy

Effort

SATGrade

Letter

JobHappy

SATGrade

Letter

JobHappy

SATGrade

Letter

Job

Grade

Letter

Job

Letter

Job

Job

Recall variable elimination sequentially marginalizes out variables…

P(Job)

Variable Elimination

Two major limitations of variable elimination:

1. Computation exponential in size of the largest intermediate factor
(equivalently, largest clique in clique tree)

2. Computation is not reused for computing a series of marginals

E.g. Suppose we use variable elimination to compute a
marginal on an HMM with T nodes, each being K-valued

• It takes time to compute a single marginal
• It takes time to compute all marginals
• We know forward-backward computes all marginals in

Marginal Inference Algorithms
One Marginal All Marginals

Tr
ee

G
ra

ph

Elimination applied
to leaves of tree

Variable
Elimination

Belief Propagation (BP)
or sum-product

algorithm

Junction Tree Algorithm

BP on a junction tree
(special clique tree)

Marginal Inference Algorithms
One Marginal All Marginals

Tr
ee

G
ra

ph

Elimination applied
to leaves of tree

Variable
Elimination

Belief Propagation (BP)
or sum-product

algorithm

Junction Tree Algorithm

BP on a junction tree
(special clique tree)

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

X2

X3

X4

X5

X6

Clique Tree

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

X2

X3

X4

X5

X6

Clique Tree

X2X5X6

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

X2

X3

X4

X5

Clique Tree

X2X3X5

X2X5X6

X2X5

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

X2

X3

X4Clique Tree

X2X4

X2X3X5

X2X5X6X2

X2X5

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

X2

X3

Clique Tree

X1X2X3

X2X4

X2X3X5

X2X5X6X2

X2X3
X2X5

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

X2

Clique Tree

X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1X2 X2

X2X3
X2X5

Clique Tree

Elimination order: 6,5,4,3,2,1

X1

Clique Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Junction Tree

A junction tree is a clique tree with the running intersection property

Definition (Running intersection) For any pair of clique nodes V,W all
cliques on the unique path between V and W contain shared variables

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Junction Tree Not A Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3

X2

Not all clique trees are
junction trees

Junction Tree

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Theorem A clique tree resulting from variable elimination satisfies the
running intersection property and is thus a junction tree

X1

X2

X3

X4

X5

X6

Clique tree edges are separator sets in original MRF…so clique tree
encodes conditional independencies

Junction Trees and Triangulation

• A chord is an edge connecting two non-adjacent nodes in some cycle
• A cycle is chordless if it contains no chords
• A graph is triangulated (chordal) if it contains no chordless cycles of length 4 or more

A B

C D

A,B

A,C

B,D

C,D D

A

C

B

Theorem: The maximal cliques of a graph have a corresponding
junction tree if and only if that undirected graph is triangulated

Ø Key induction argument in constructing junction tree from triangulation
Ø Implies existence of elimination ordering which introduces no new edges

Lemma: For a non-complete triangulated graph with at least 3 nodes, there is a decomposition of
the nodes into disjoint sets A, B, S such that S separates A from B, and S is complete.

Markov Net ! Clique Graph

p(a, b, c, d) =
�(a, b, c)�(b, c, d)

Z

d

b

c

a

(a)

a, b, c b, c b, c, d

(b)

Figure : (a) Markov network �(a, b, c)�(b, c, d). (b) Clique graph representation of (a).

Clique potential assignments

The separator potential may be set to the normalisation constant Z.

Cliques have potentials �(a, b, c) and �(b, c, d).

Induced Graph

X1

X2

X3

X4

X5

X6

Recall the induced graph is the union over intermediate graphs from
running variable elimination

Intermediate
Factor Edges

The induced graph is chordal thus:
• Maximal cliques of the induced graph

form a junction tree

• It admits an elimination ordering that
introduces no new edges

Logic of junction tree algorithm:
1. Triangulate the graph

a. Implies a junction tree
b. Induces an elimination order

2. Run sum-product BP on junction tree
to compute all clique marginals

Reminder: Pairwise Sum-Product BP

xs xt

mst(xt)

Set of neighbors of node t: �(t) = {s 2 V | (s, t) 2 F}

pt(xt) /
Y

s2�(t)

mst(xt)

number of discrete states for random variable xt

message from node s to node t, a vector of Kt non-negative numbersmst(xt)

message from node t to node s, a vector of Ks non-negative numbersmts(xs)

pt(xt) marginal distribution of the Kt discrete states of random variable xt
Kt

xs xt

mts(xs)

mts(xs) =
X

xt

 st(xs, xt)
Y

u2�(t)\s

mut(xt)

Sum-Product for Junction Trees (Shafer-Shenoy)
§ Express algorithm via original variables
§ Messages depend on clique intersection (separators)
§ Efficient schedules compute each message once

xs

X1 X1X2 X1X2X3

X2X4

X2X3X5

X2X5X6
X1 X1X2 X2

X2X3
X2X5

Sum-Product for Junction Trees (Shafer-Shenoy)
§ Let be variables in clique node
§ Let be variables in separator such that:

§ Let residual variables be:
C1 C2 C3

C5

C4

C6
S12 S23 S45

S34
S46

Sum-Product for Junction Trees (Shafer-Shenoy)
§ Let be variables in clique node
§ Let be variables in separator such that:

§ Let residual variables be:

§ Pass sum-product messages
between clique nodes

Ci Cj
Sij

Message:

Marginal:

Sum-Product for Junction Trees (Shafer-Shenoy)
§ Express algorithm via original variables
§ Messages depend on clique intersection (separators)
§ Efficient schedules compute each message once

xs

Storage & Computational Cost

O

⇣P
j

Q
s2Cj

Ks

⌘
, where xs 2 {1, . . . ,Ks}

Exponential in sizes of maximal cliques.

Message:

Marginal:

C1 C2 C3

C5

C4

C6
S12 S23 S45

S34
S46

Summary: Junction Tree AlgorithmJunction trees

a f

c

b

e

d

{b, e, f}{b, c, e}

{b, d}

{a, b, c}

{b}

{b
,

c}

{b
,

e}

G T

A cluster graph T is a junction tree for G if it has these three properties:

1. singly connected: there is exactly one path between each pair of clusters.

2. covering: for each clique A of G there is some cluster C such that A ⊆ C.

3. running intersection: for each pair of clusters B and C that contain i,

each cluster on the unique path between B and C also contains i.

12

Junction trees

a f

c

b

e

d

{b, e, f}{b, c, e}

{b, d}

{a, b, c}

{b}

{b
,

c}

{b
,

e}

G T

A cluster graph T is a junction tree for G if it has these three properties:

1. singly connected: there is exactly one path between each pair of clusters.

2. covering: for each clique A of G there is some cluster C such that A ⊆ C.

3. running intersection: for each pair of clusters B and C that contain i,

each cluster on the unique path between B and C also contains i.

12

The message passing protocol

The junction tree algorithms obey the message passing protocol:

Cluster B is allowed to send a message to a neighbor C only after it

has received messages from all neighbors except C.

One admissible schedule is obtained by choosing one cluster R to be the root, so

the junction tree is directed. Execute Collect(R) and then Distribute(R):

1. Collect(C): For each child B of

C, recursively call Collect(B) and

then pass a message from B to C.

2. Distribute(C): For each child B

of C, pass a message to B and then

recursively call Distribute(B).

root

1

3 4

4

12

COLLECT messages

DISTRIBUTE messages

17Junction Tree Algorithms for General-Purpose Inference
1. If necessary, convert graphical model to undirected form (linear in graph size)
2. Triangulate the target undirected graph
Ø Any elimination ordering generates a valid triangulation (linear in graph size)
Ø Finding an optimal triangulation, with minimal cliques, is NP-hard
3. Arrange triangulated cliques into a junction tree (at worst quadratic in graph size)
4. Execute sum-product algorithm on junction tree (exponential in clique size)

Sij = Sji = Ci \ Cj

Outline

Ø Sum-Product Belief Propagation

Ø Loopy Belief Propagation

Ø Variable Elimination

Ø Junction Tree Algorithm

Ø Max-Product Belief Propagation

Maximum A Posteriori (MAP) Inference

Rather than marginalize sometimes we want to maximize, e.g.

The max-marginal distribution is analogous to the standard

…

Maximizing the log-joint is equivalent and numerically more stable:

Forward-Backward Algorithm

…

Recall the Forward-Backward algorithm messages…

Forward message:

Sum over state xn-1

Viterbi Algorithm

…

Maximize instead of marginalize…

Forward message:

Maximize over state xn-1 (in log-domain)

Viterbi Algorithm

…

Forward message:

We also store the argmax values:

Maximize instead of marginalize…

Viterbi Algorithm

…

Final node gives maximum (up to const.) and maximizer of posterior:

Maximize instead of marginalize…

Viterbi Algorithm

…

Joint maximizing sequence obtained at the end of backwards pass:

Backwards pass reads off joint maximizer…

Backward Pass:

Max-Product (Max-Sum) Algorithm

Recall our decomposition of factor graph sub-trees…

Maximize sub-
tree rooted at
variable node

Maximize sub-
tree rooted at
factor node

Max-product on a slide

1

Factor fs gathers incoming messages and sends:Variable xm gathers incoming messages and sends:

Max-sum on a slide

1

More numerically stable to work in log-domain (max-sum)…

Factor fs gathers incoming messages and sends:Variable xm gathers incoming messages and sends:

Max-sum Example

.03

.01

.01

.03

.0003

.0003 Now we know that
x5 can either be 0 or

1 (it is a tie)

• At the root we can record the argmax for its variable, but we
do not know which variable choices produced it

• Ties have the potential to make this particularly complicated

• We can “backtrack” to find this out provided that we stored
what we need in the forward pass.

• If there are ties, they need to be handled consistently
• In our example, we need to choose either 𝑥! = 0 or 𝑥! = 1 for both

backtracking branches.

Max-sum Example

.03

.01

.01

.03 If we choose x5=0, then we need a
maximal configuration for x5=0 for
both pieces for a consistent joint

maximizing configuration

The factor nodes must store
enough information to evaluate any

choice

.0003

.0003

.03

.01

.01

.03

The configuration that we get
backtracking pretending 𝑥! = 0, even

though 𝑥! = 1cannot compute to more
than 0.1, and could be less, as the
settings for the other variables are

making the value as big as possible
when 𝑥! = 0.

WRONG

.01

.03

For x5=0

This factor must
provide x3 and x4

for x5=0 contribution
0.3

This factor must
provide x1 and x2 for
x5=0 contribution 0.1

.03

.01

.0003

.0003

.03

.01

.01

.03

For x5=1

This factor must provide
x3 and x4 for x5=1
contribution 0.1

This factor must
provide x1 and x2 for
x5=1 contribution 0.3

.0003

.0003

.03

.01

.01

.03

Hence this factor must
provide x3 and x4 for

either choice

Hence this factor
must be able to

provide x1 and x2 for
either choice

.03

.01

.01

.03

Message Passing Inference Summary

• Brute-force enumeration exponential regardless of graph
• Sum-Product BP

• Exact inference in tree-structure graphs in O(TK2) time for T nodes,
each taking K states

• Reduces to Forward-Backward in HMMs
• Same for Max-Product BP (reduces to Viterbi in HMMs)

• Variable elimination
• Exact marginals in general graphs
• Worst-case complexity exponential in size of largest clique
• Need to rerun from scratch for each marginal
• Complexity dependent on elimination order (NP-hard to optimize)

Message Passing Inference Summary

• Junction Tree Algorithm
• Exact marginals in general graphs
• Caches messages to compute all marginals
• Worst-case complexity exponential in size of largest clique
• Optimizing Jtree is NP-hard (corresponds to finding treewidth)

• Loopy BP: Just did this, did you forget already?

Message Passing Inference Summary

…Forward-backward algorithm yields efficient
marginal inference on HMM graph

A

B C

D E F G

Sum-product belief propagation generalizes
marginal inference to tree-structured MRFs

A

B C

D E F G

And factor graphs

Max-product / max-sum yields maximum a
posteriori (MAP) inference in any tree-

structured model

Viterbi decoder is special case for HMM

