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Supervised Learning

• Goal: design learning algorithm 𝒜 such that its output 𝑓 on 
   iid training data 𝑆 has low generalization error
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Dimensionality Reduction

Data often have a lot of redundant information…

Example A dataset consisting of a hand-drawn 3 at random 
locations and rotations in a 100x100 pixel image.

Data Dimension 100 x 100 = 10,000
Intrinsic Dimension 3 (X-position, Y-position, Rotation)

[ Source: Bishop, C. ]



Dimensionality Reduction : Manifold Hypothesis

…or data are high-dimensional and hard to visualize…

…in all cases finding lower intrinsic dimension is useful



Autoencoder



Learning

Mean squared error (MSE) reconstruction loss:



Denoising Autoencoder



Denoising Autoencoder

• Humans can easily recognize a scene even when some inputs are corrupted
• Conceptually, we “repair” the input in our brains
• For high-dimensional input the model depends on evidence from many input dims
• Prevents overfitting to any single data dimension (more robust)
• Noise is controlled by                     and can be adapted to any noise model



Sparse Autoencoder

• Common activation functions: sigmoid, tanh, relu, leaky relu, etc.
• Neuron is activated when activation function is near 1, and inactive otherwise
• Sparse Autoencoder encourages model to have a small number of neurons active
• Avoids overfitting, leads to more robust learning

•     : Neurons in l-th hidden layer
•       : Activation function for j-th neuron in l-th layer
• Fraction of active neurons expected to be small (e.g.                )



Sparse Autoencoder

Achieve sparsity constraint by adding penalty to loss function,



k-Sparse Autoencoder
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Variational Autoencoder

• Autoencoder 
• Learns single encoding
• Outputs single reconstruction
• Can be brittle

• Variational Autoencoder (VAE)
• Learn distribution over encoding and data—more robust learning
• Prior: 
• Likelihood (decoder):
• Posterior (encoder):



VAE Generative Process

Assuming we know the real parameters    generate a new data point      :     

1. First, sample a        from the prior distribution
2. Then generate data       from the decoder

Optimal parameter is the one that maximizes probability of the data:

Or equivalently the maximum log-likelihood:



VAE Learning

Marginal likelihood given by,

Typically lacks a closed-form solution...



VAE Inference



VAE Inference



VAE Inference

So we have:

Rearranging terms we have:

Marginal
Likelihood

Bound Gap Evidence Lower Bound (ELBO)

Formulate as minimizing loss function:



Reparameterization Trick

No straightforward Monte Carlo estimator of gradient…

…need to use reparameterization trick.



Gaussian Reparameterization

Suppose we want to sample a Gaussian RV,
z ∼ N (µ(x),σ2(x))

But we only know how to sample a standard Gaussian RV,
ε ∼ N (0, 1)

Gaussians are closed under linear transformations so,
z = µ(x) + σ(x)ε

z = g(φ, x, ε)

So we need a deterministic function s.t.                   .



Reparameterization Trick



Variational Autoencoder



MNIST Likelihood Lower Bound



Visualization of High-Dimensional Data



Visualization of High-Dimensional Data
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Entanglement
Entangled Representation

Code z learned by VAE is fully 
correlated in the posterior…

…this leads to a behavior known as 
entanglement…

…for interpretable codes we prefer 
them to control independent aspects 

of data generation, known as a 
disentangled representation



Beta-VAE

Consider the constrained optimization problem:

Independent Gaussian prior,

Constrains posterior (encoder)
to be closer to prior

encourages independent codes in the posterior (disentanglement)



Beta-VAE

So we have the Beta-VAE loss:

Formulate the Lagrangian as,

Controls degree of disentanglement

Identical to VAE loss, but with additional control on disentaglement








