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Motivation for Monte Carlo Methods

 Real problems are typically complex and high dimensional.

 Suppose that we could generate samples from a distribution 
that is proportional to one we are interested in. 

 Typically we want posterior samples,

Don’t know marginal 
likelihood / normalizer

Unnormalized
posterior

 Typically,        is easier to evaluate (though not always)



Motivation for Monte Carlo Methods

• Generally, Z lives in a very high dimensional space.

• Generally, regions of high is very little of that space. 

• IE, the probability mass is very localized.

• Watching samples from         should provide a good maximum 
(one of our inference problems)



Motivation for Monte Carlo Methods

• Now consider computing the expectation of a function           
over       . 

• Recall that this looks like 

• How can we approximate or estimate E[f]?  

A bad plan…

Scales poorly with dimension of Z

A better plan…



Challenges for Monte Carlo Methods

• In real problems sampling        is very difficult

• Typically don’t know normalization, so need to use         instead

• Even if we can sample       , it can be hard to know if/when they are 
“good” and if we have enough (e.g. to approximate E[f] well)

• Sometimes evaluating        can also be hard



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:
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Basic Sampling (so far…)

• Uniform sampling (everything builds on this)

• Sampling from simple discrete distributions

• Multinomial / categorical

• Binomial / Bernoulli

• Etc.
• Sampling for selected continuous distributions (e.g., Gaussian)

• At least, Matlab and Numpy / Scipy know how to do it. 

• Ancestral sampling



Sampling Continuous RVs

Recall that the CDF is the integral of the PDF and (left) tail probability,

Question Given samples                          what is 
the probability distribution of the CDF values, 

Observation 1 Equally spaced intervals of CDF 
correspond to regions of equal event probability

Observation 2 The same events have unequal 
regions under PDF 



Sampling Continuous RVs

Answer The CDF of iid samples has a 
standard uniform distribution!

Question How can we use this fact to 
sample any RV?

Answer Apply this relationship in reverse:
1. Sample iid standard uniform RVs
2. Compute inverse CDF
3. Result are samples from the target

This property is called the 
probability integral transform



Inverse Transform Sampling

 We can use these to exactly sample from any continuous 
distribution using the cumulative distribution function: 

 Assuming continuous CDF is invertible:

 Input:  Independent standard uniform variables

This function transforms uniform variables to our target distribution!

Requires us to have
access to inverse CDF



Inverse Transform Sampling

 Very nice trick that applies to all continuous RVs (in theory)

 Yay, we know how to sample any RV right?  Wrong…

 Don’t always have the inverse CDF (or cannot calculated it)

 Doesn’t extend easily to multivariate RVs (that’s why I only 
showed 1-dimensional)



Rejection Sampling

Assume
• Access to easy-to-sample distribution
• Constant k such that  

Proposal Distribution
Where we can use one of

methods on previous slides
to sample efficiently

Algorithm

Example Uses Gaussian 
proposal q to draw samples 
from multimodal distribution p



Rejection Sampling

• Rejection sampling is hopeless in high dimensions, but 
is useful for sampling low dimensional “building block” 
functions.

• For example, the Box-Muller method for generating 
samples from a Gaussian uses rejection sampling.

A second example where a 
gamma distribution is 
approximated by a Cauchy 
proposal distribution.



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:



Monte Carlo Integration

One reason to sample a distribution is to approximate 
expected values under that distribution…

Expected value of function         w.r.t. distribution         given by,

 Doesn’t always have a closed-form for arbitrary functions
 Suppose we have iid samples:
 Monte Carlo estimate of expected value, 



Monte Carlo Integration

• Expectation estimated from empirical distribution of L samples:

• For any N this estimator, a random variable, is unbiased:

• The Dirac delta is loosely defined as a piecewise function:
Caveat This is technically incorrect.  Dirac is only well-
defined within integrals,                                    but it 
gets the intuition across.



Monte Carlo Asymptotics

• Estimator variance reduces at rate 1/N:

• If the true variance is finite have central limit theorem: 

Independent of dimensionality
of random variable X

• Even if true variance is infinite have laws of large numbers: 

Weak 
Law

Strong
Law



Importance Sampling

Can we estimate          without sampling p(z)?

Monte Carlo estimate over samples                     from proposal q(z):

Key: We can sample from an “easy” distribution q(z) instead!

q(z) is an easy-to-sample
proposal distribution



Importance Sampling

IS weights are the ratio of target / proposal distributions:

where

But we often do not know the normalizer of the target distribution,

where

Can only evaluate unnormalized target

Can we evaluate IS estimate in terms of unnormalized weights?

Yes!  Let’s see how…



Importance Sampling (Normalized)

Recall, the importance sampling estimate is given by,

With normalized target and proposal distributions, respectively:

Substitute and pull out ratio of normalizers,

Easy to computeNeed to compute this…



Importance Sampling (Normalized)

Idea Compute importance sampling estimate of target normalizer:

Typically we have normalized proposal q(z) so Zq=1 and,

Where      are our unnormalized importance weights,

We can compute this!



Given samples                   we can write the IS estimate as, 

Importance Sampling (normalized)

where

The ratio of normalizers is approximated by normalized weights,

Substituting the normalized weights yields,



1. Simulate from tractable distribution

Importance Sampling On-A-Slide

[ Source: Bishop ]

2. Compute importance weights & normalize

3. Compute importance-weighted expectation

Note There is no 1/N term since it is
part of the normalized IS weights



Selecting Proposal Distributions

Target Distribution Good Proposal Poor Proposal

Kernel or Parzen window estimators
interpolate to predict density:



Q: What is a good proposal distribution?

A: Minimize estimator variance

Importance Sampling

e.g. for N-dim. X and Gaussian q(x):

Minimum variance obtained when,

Estimator variance scales catastrophically with dimension:

E.g. can do better
than q=p [ Source: Bishop ]



Selecting Proposal Distributions
• For a toy one-dimensional, heavy-tailed target distribution:

Gaussian Proposal Cauchy (Student’s-t) Proposal
Empirical variance of weights may not predict estimator variance!
• Always (asymptotically) unbiased, but variance of estimator can 

be enormous unless weight function bounded above: 

Samples (L) Samples (L)



Monte Carlo Methods Summary

Importance Sampling

Rejection sampling
• Choose q such that:
• Sample q(z) and keep with probability:

Pro: Efficient, easy to implement
Con: Acceptance rate evaporates as dimension increases

Pro: Efficient, easy to implement
Con: Variance grows exponentially in dimension
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Non-linear State Space Models

• State dynamics and measurements given by 
potentially complex nonlinear functions

• Noise sampled from non-Gaussian distributions
• Usually no closed form for messages or marginals



Sequential Importance Sampling (SIS)

• Suppose interested in some complex, global function of state:

• Construct efficient proposal using Markov structure

Computing the weights is easy with this type of proposal!



Recursive Weight Updating

Recall the importance weights are given by,

Plugging in the factorization of p and q weights at time t are:

Therefore, by recursion we have that weights at time t+1 are:



Sequential Importance Sampling (SIS)
For    = 1,…,N 

Sample initial N particles from proposal prior:
Compute initial importance weights:

For t=1,…T
For   =1,…N

Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:



Particle Filters:  The Movie

(M. Isard, 1996)






Weight Degeneration

Sequential importance sampling does not work!

• In time, unnormalized weights approach zero with high probability,

• Normalized weights approach one-hot vector,

• Sample trajectories        are high-dimensional and become unlikely



Particle Resampling

Resample with replacement produces random discrete 
distribution with same mean as original distribution

While remaining unbiased, 
resampling avoids degeneracies in 

which most weights go to zero

where



Sequential IS with Resampling : Particle Filter
Initialize: N samples               and weights

For t=1,…T

For   =1,…N
Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

If Resampling:
Resample        from        according to normalized weights         (with replacement)

Else: Set
Set uniform weights



“Bootstrap” Proposal

Recall that the full proposal distribution factorizes as,

A convenient choice is to sample from the prior distribution,

This is easy to sample, and weight updates simplify,

“Correct” weights with data likelihood



Bootstrap Particle Filter
Initialize: N samples               and weights

For t=1,…T

For   =1,…N
Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

If Resampling:
Resample        from        according to normalized weights         (with replacement)

Else: Set
Set uniform weights

Changes for
Bootstrap



Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 
using a set of samples

• Propagate over time using 
sequential importance
sampling with resampling



BP for State-Space Models

Inference (Product step of BP):

where

Prediction (Integral/Sum step of BP):



Particle Filter:  Measurement Update

Variance of importance weights increases with each update

Incoming message: A set of L weighted particles

Bayes’ Rule:  Posterior at particles proportional to prior times likelihood 



Particle Filter:  Sample Propagation

State Posterior Estimate: A set of L weighted particles

Prediction:  Sample next state conditioned on current particles

Assumption for now:  Can exactly simulate temporal dynamics



Particle Filter:  Resampling

State Posterior Estimate:

Prediction:  Sample next state conditioned on randomly chosen particles

Resampling with replacement preserves 
expectations, but increases the variance of 

subsequent estimators



Particle Filter:  Resampling

State Posterior Estimate:

Resampling with replacement preserves 
expectations, but increases the variance of 

subsequent estimators

Effective Sample Size:

Prediction:  Sample next state conditioned on randomly chosen particles



Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 
using a set of samples

• Propagate over time using 
sequential importance
sampling with resampling



Bootstrap Particle Filter Summary

Assume sample-based approximation of incoming message:

Account for observation via importance weights:

Sample from forward dynamics distribution of next state:

• Represent state estimates 
using a set of samples

• Propagate over time using 
sequential importance
sampling with resampling



Bootstrap Particle Filter Summary

1. Propagation

2. Weighting

3. Resampling

[ Source: Cappe ]



Gaussian noise model,

Toy Nonlinear Model
x t y t

Nonlinear dynamics and observation model…

…filter equations lack closed form.

Measurement

and

Dynamics



Toy Nonlinear Model

What is the probability that a state sequence, sampled 
from the prior model, is consistent with all observations?

Particle Filter Marginal KDEs Full Sequence Importance Sampling

x t y t

MeasurementDynamics



A More General Particle Filter
• Assume sample-based approximation 

of previous state’s marginal:

• Account for observation and proposal via importance weights:

• Sample from a proposal distribution q:

• Resample to avoid particle degeneracy:



Switching State-Space Model

…

…

Discrete switching state:
With stochastic 
transition matrix

Switching state selects dynamics:
[ Video: Isard & Blake, ICCV 1998. ]

(e.g. Nonlinear Gaussian )

Colors indicate 3 writing modes






Example:  Particle Filters for SLAM
Simultaneous Localization & Mapping (FastSLAM, Montemerlo 2003)

Raw odometry (controls)
True trajectory (GPS)
Inferred trajectory & landmarks

Control inputs from time 1 to t



Dynamical System Inference

Smoothing
Define shorthand notation: 

Compute              at each time t

Filtering

Compute full posterior marginal
at each time t



Dynamical System Inference

Smoothing
Define shorthand notation: 

Filtering

If estimates at time t are not needed immediately, then better smoothed
estimates are possible by incorporating future observations



A Note On Smoothing

 Each resampling step discards states and they cannot subsequently restored
 Resampling introduces dependence across trajectories (common ancestors)
 Smoothed marginal estimates are generally poor
 Backwards simulation improves estimates of smoothed trajectories



Particle Filter Smoothing
Smoothing distribution factorizes as,

Markov property removes
dependence on yt+1 … yTFilter distribution at time T

Suggests an algorithm to sample from              :

1. Compute and store filter marginals,                 for t=1,…,T

2. Sample final state from full posterior marginal, 

3. Sample in reverse for t=(T-1),(T-2),…,2,1 from, 

Use resampling idea to sample from current particle trajectories in reverse



Particle Filter Smoothing
Reverse conditional given by def’n of conditional prob.:

Forward pass sample-based filter marginal estimates:

Thus particle estimate of reverse prediction is:

where



Particle Filter Smoothing



Particle Smoothing Example

Smoothing trajectories for T=100.  
True states (*).

Kernel density estimates based on 
smoothed trajectories.True states (*).



Additional Particle Filter Topics

 Auxiliary particle filter – bias samples towards those more likely to “survive”

 Rao-Blackwell PF – analytically marginalize tractable sub-components of the 
state (e.g. linear Gaussian terms)

 MCMC PF – apply MC kernel with correct target             to sample trajectory prior 
to the resampling step

 Other smoothing topics:
 Generalized two-filter smoothing
 MC approximation of posterior marginals

 Maximum a posteriori (MAP) particle filter

 Maximum likelihood parameter estimation using PF



Sequential Monte Carlo Summary

 Importance sampling for inference in nonlinear dynamical systems

 Using model dynamics as proposal allows recursive weight updates

 All but one weight go to zero as prior/posterior diverge (degeneracy)

 Periodic resampling (with replacement) avoids weight degeneracy

 Each resampling step increases estimator variance (use sparingly)

 In practice, resample when effective sample size (ESS) below thresh
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See separate MCMC slides…



Monte Carlo Methods Summary

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:

Rejection sampling, MCMC

Importance sampling or 
any simulation method

Simulated annealing

Reverse importance sampling (Did not cover)



Monte Carlo Methods Summary

• In complex models we often have no other choice than to simulate 
realizations

• Rejection sampler choose proposal/constant s.t.

• Monte carlo estimate via independent samples                      ,
• Unbiased
• Consistent
• Law of large numbers
• Central limit theorem (if f is finite variance)



Monte Carlo Methods Summary

• Importance sampling estimate over samples                      ,

• Avoids simulation of p(z) but variance scales exponentially with dim.
• Sequential importance sampling extends IS for sequence models, with 

proposal given by dynamics,

• Resampling step necessary to avoid weight degeneracy

Importance Weights

Proposal

Recursively update weights“Bootstrap” Particle Filter



Monte Carlo Methods Summary

• Lots of other methods to explore…
• Hamiltonian Monte Carlo
• Slice Sampling
• Reversible Jump MCMC (and other transdimensional samplers)
• Parallel Tempering

• Some good resources if you are interested…
Neal, R. “Probabilistic Inference Using Markov Chain Monte Carlo Methods”, U. Toronto, 1993
MacKay, D. J. “Introduction to Monte Carlo Methods”, Cambridge U., 1998
Andrieu, C., et al., “Introduction to MCMC for Machine Learning”, 2001
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