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Final Exam

» Out by Monday morning
* Due 11:59pm Wednesday (6/11)
* 4 Questions (5 points each) + 1 Extra Credit

Topics
 PGM models, probability
* Gibbs sampling (compute complete conditionals)
« Expectation Maximization
* Mean Field (compute update, extra credit)



Learning from Structured Data
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Roadmap for ML Practice & Research
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What we covered...

Probability Message Parameter Monte Carlo Dynamical Variational
and Statistics Passing Learning Methods Systems Inference
Algorithms
Elimination, Maximum Reiection
Probability Junction tree, likelihood, sa rjn lin Linear and Mean field,
primer, Bayesian =~ Sum-product / Maximum a ping, switching state- Stochastic
e . Importance oy
statistics, PGMs, max-product, posteriori, : space models, variational,
. . ) sampling, .
Exponential Belief Expectation Metropolis- Kalman filter, Bethe energy
families propagation, Maximization P Particle filter methods

Viterbi decoding (EM) AEEITg, Elosk



There’s so much more to cover...

Models & Bayesian Representation Bayesian Advanced
Applications Deep Learning Nonparametrics MCMC

Learning

A class of
Course was Probabilistic Unsupervised probability Avoiding ranc}om

mostly focused : : models where walk dynamics

: uncertainty representation :
on algorithms, . model and allowing
- : models for deep learning from e
limited attention : complexity is parallel

learning structured data

to modelling inferred from the computatoin

data



Hidden Markov Models (HMMs)

----> Hidden states taking 1
“t 7 of K discrete values.
Observations taking
values In any space.
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Example: Sequence Labeling in NLP

6666 b

Part of speech (POS) tagging:

Z: DT JJ NN VBD NNP .
x . the bigcat bit Sam .

Named entity detection:
z: |[CO CO] _ [LOC] _ PER] _

x: XYZ Corp. of Boston announced Spade’s resignation

Speech recognition: The x are 100 msec. time slices of acoustic input,
and the 7 are the corresponding phonemes (i.e., Z; is the
phoneme being uttered in time slice x;) M. Johnson, 2009



HMM Localization for Mobile Robots

(a) Partially observable Markov decision process (POMDP)
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HMM Localization for Mobile Robots

Robot position (A)
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Simultaneous Localization & Mapping
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Pose Estimation & Tree-Structured Graphs

f B Ramanan &
Sminchisescu, 2006

Felzenszwalb &
Huttenlocher, 2005



Pose and Shape Estimation

@ p(z,y) < | [ s(zey) ] vulzs,z0)
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Complicated Non-Gaussian
Likelihood Prior




Spatial Markov Random Fields (MRFs)
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 Observed nodes: Features of 2D image (intensity, color, texture, ...)
« Hidden nodes: Property of 3D world (depth, motion, object category, ...)



MRFs for Stereo Vision
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 Observed nodes: Features of 2D image (intensity, color, texture, ...)
« Hidden nodes: Property of 3D world (depth, motion, object category, ...)



MRFs for Object Segmentation
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 Observed nodes: Features of 2D image (intensity, color, texture, ...)
« Hidden nodes: Property of 3D world (depth, motion, object category, ...)



Low Density Parity Check (LDPC) Codes




Protein Side-Chain Structure Prediction

» A protein is a sequence of amino acids, each with a side-chain

» Side-chain structure prediction is MAP in pairwise MRF: Pacheco et al.,
ICML 2015
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» Pairwise potentials describe
53 repulsive (Pauli exclusion) and attractive (van
e der Waals force) energetic interactions
| > Predicting structure lets biochemists
better understand and predict function




Protein Side-Chain Structure Prediction

N
L!_JC
-
{

Ground Truth

» Qualitative example of side-chain predictions for one protein. Pacheco et al
» Energy evaluated via state-of-the-art Rosetta package. ICML 2015



Latent Dirichlet Allocation (LDA)

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How many genes does an organism need to
survive! Last week at the genome meeting
here,® two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life.
One research team, using computer analy-
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 genes, and that the earliest life forms
required a mere 128 genes. The
other researcher mapped genes

rr——

in a simple parasite and esti o
mated that for this orcanism, /
800 genes are plenty to do the
job—Dbut that anything short
of 100 wouldn’t be enough.
Although the numbers don’t
match precisely, those predictions

. em nph:lus

* Genome Mapping and Sequenc-
ing, Cold Spring Harbor, New York,
May 8 to 12.

SCIENCE o VOL. 272 * 24 MAY 1996

Mycoplasma
_.genome
469 genes

Stripping down. Computer analysis yields an esti-
mate of the minimum modern and ancient genomes.

“are not all that far apart,” especially in
comparison to the 75,000 genes in the hu-
man genome, notes Siv Andersson of Uppsala
University in Sweden, who arrived at the
SOC number. But coming up with a consen-
sus answer may be more than j
numbers game, particularly as more and
more senomes are completely mapped and
“It may be a way of organizing
any newly sequenced genome,” explains
Arcady Mushegian, a computational mo
lecular biologist at the National Center
\ for Biotechnology Information (NCBI)
ﬁ in Bethesda, Maryland. Comparing an
.

ust a genetic

sequenced.

Redundant and Related and

o /I Genes parasite-specific modern genes
needed genes removed removed
for biochemical -4 genes -122 genes
pathways
2\ +22genes
; ose Mnmmat ‘ 7128\
] ‘ ; genes * gene set \enes,
. : \ 250 genes/
/ Ancestral
gene set

ADAPTED FROM NCBI

Every text document
discusses a mixture of
multiple topics.

D. Blei, 2008



LDA: Generative Model

Seeking Life’s Bare (Genetic) Necessities

COLD SPRING HARBOR, NEW YORK—
How mum‘ senes does anjorganism negd to
survive! Last week at the genome meeting
here,* two genome researchers with radically
different approaches presented complemen-
tary views of the basic genes needed for life:
One research team, using computer analy
ses to compare known genomes, concluded
that today’s organisms can be sustained with
just 250 venes, and that the earliest life forms
required a mere 128 genes. The o
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SCIENCE » VOL. 272 & 24 MAY 1996

» Each document is a random mixture of corpus-wide topics
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LDA as a Graphical Model

Given J documents, with N; words (observations) in document j:
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word I in document |

cluster (topic) for word i in document |

expected fraction of document j about topic k

word usage frequencies for topic k
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Community Models of Social Networks

Parametric mixed membership stochastic blockmodel, Airoldi et al. JIMLR 2008
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Community Models of

Top 200 degree nodes
Full network has N=18,831
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Social Networks

LittleSis* is a free database of
who-knows-who at the heights

of business and government.

* opposite of Big Brother
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Advanced Markov Chain Monte Carlo

Advanced MCMC techniques reduce sample complexity and
avoid getting stuck in local energy minima

[Source: Syed et al, 2019]
EOEOEOQOEOEOEQEOQEO posterior
' Nt distribution

distribution

Example: Parallel tempering exchange replicates across
multiple MCMC chains running in (embarrassingly) parallel



Neural Networks

 Feed-forward

« Transform input into
hidden, non-linear,
tunable feature

representation
RO AT : -
N - Use this hidden
e te® =

&

representation to
produce output

« Size of hidden layer
M and weights can all
be optimized.




Multiple Layers and Deep Networks
LeNet5: Convolutional Neural Net for Digit Classification (LeCun et al., 1998)

C3:f. maps 16@10x10
INPUT C1:feature maps S f m5p51ﬁ@5;.-_5

32x32 62828 S2: 1. maps rl_
i

o3 layer "6: layer  QUTPUT

DN

FuII EDHIJIBEtIﬂr'I | Gausslan connections
Convolutions Subsampling Convolutions EUbEEImPHI’Ig Full connection

B 14x1




Deep Learning for Object Recognition

i

ImageNet dataset: 15 million images
22,000 categorie |

Mate Herbivore |Creepy-

o |

b T

ip motor scooter
! Embryo Predator mite container ship motor scooter leapard
T il black widow || lifeboat go-kart jaguar
cockroach amphibian moped cheetah
1 3 8 m tick fireboat bumper car snow leopard
" S starfish drilling platform golfcart Egyptian cat
T I 1 3 . ‘ L=
AlexNet (Alex Krishevsky et al, NIPS 2012) P - '
Deep convolutional neural network, ‘\,-. '.&f £
trained via backprop on multiple GPUs. TR . ._
IEE >< grille mushroom cherry Madagascar cat
convertible agaric dalmatian squ_i_rp'el monkey
g 2 5o grille mushroom grape spider monkey
pickup jelly fungus elderberry titi
beach wagon gill fungus |ffordshire bullterrier indri
fire engine || dead-man's-fingers currant howler monkey




Bayesian Deep Learning

Neural networks are graphical models too...

input layer hidden layer 1 hidden layer 2 hidden layer 3

NZ77 0\ 7 el
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...but they are typically not probabilistic

Idea Combine representation flexibility of DNNs with uncertainty
modeling of PGMs



Bayesian Neural Network

Standard DNNs learn point estimate of weights from training...

Predictions can be brittle / sensitive to adversarial attack

Robustness requires training data include all possible realities
Bayesian approach treats weights as random quantities to be inferred
Assigns posterior probabilities to all network parameters / predictions



Variational Autoencoder

Input Output
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Encoder Decoder

Train by minimizing reconstruction loss and fit to marginal:

min L(x, %) + KL(q(z | x)||p(2))



Structured VAE

Combines VAEs with structured models (mixtures, dynamical systems, ...)
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GMM Structured
Variational Autoencoder

Gaussian Mixture Model
(GMM)



Gaussian Processes (GPs)

Distribution over random continuous functions...

~ Es - >
f. ~ N(0,K(X.,X.))
2 2f / f
AN A o £ Kernel function encodes
= O\ /\ = correlation between evaluation
Z 0. 20 points in the domain
3 \/ NI
\} GPs are generative models...
-2 =20\ . .
. = ‘ « Can sample function from prior
-5 ) 5 -5 0 5
input, x input, x

» Tractable posterior
(a), prior (b). posterior

» Posterior predictive

...equivalent to Bayesian linear regression in function space

[Source: C. Rassmussen]



Bayesian Optimization

Global optimization of random functions: min f(z)

[ |predvar == pred mean = = =tryth @  evaluations ?

[Source: Ryan Adams]



Bayesian Optimization

Iteratively updates distribution over function value (regression)

()

[Source: Ryan Adams]



Bayesian Optimization

The function is well-approximated around the minimizer

f(x)

s

' |

[Source: Ryan Adams]



Bayesian Nonparametrics

Amount and nature of data drive model complexity

Component .
assignment 3 i
o0 W)
Data <= Countably infinite - <
N component parameters 50 Data Points 1000 Data Points

Example: Dirichlet process mixture models a distribution over
an infinite number of mixture components




HDP-HMM
7 5 ¥ o

'oN flitar
o0 12 3 4 .
3 Wi]m
Hierarchical Dirichlet Process HMM L [ [ 14 1 s ¢ Z
Global transition distribution: T4 T T
1 2 3 4 :Z+

Mode-specific transition distributions:

7 ~DP(afB) j=1,2,3,...

sparsity of 3 is shared




Input: Speaker Diarization

Output: 4

Speaker A Speaker B || Speaker C Sp. A Speaker B

» Sticky HDP-HMM comparable to a state-of-the-art, heavily
engineered speaker diarization system (Berkeley ICSI)

Overall Best Worst
DER DER DER
Sticky HDP-HMM 17.84% 1.26% 34.29%

Non-Sticky HDP-HMM | 23.91% 6.26% 46.95%
ICSI 18.37% 4.39% 32.23%




Summary

We covered a lot of ground .but there is a lot more to cover!

Trevor Hastie
Robert Tibshirani

PROBABILISTIC GRAPHICAL MODELS

Jerome Friedman

Data Mining, Inference, and Prediction

Machine Learning
A Probabilistic Perspective

Kevin P. Murphy

DAPHNE KOLLER AND NIR FRIEDMAN

Important conferences to follow...

. I"éehlnllr_"’S . ICRA « |JCAI

« AAAI/ UAI + COLT
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