

CSC535: Probabilistic Graphical Models

Probability and Statistics

Prof. Jason Pacheco

Administrative Items

Office Hours

- Fridays @ 3-5pm
- Need to shift hours earlier this Friday will announce on Piazza
- Held via Zoom
- Zoom meetings on D2L and link in Piazza

HW1

- Assignment on D2L
- Due by 11:59pm Monday January 30
- 10 points, 4 questions, discrete and continuous probability

Outline

- Random Variables and Discrete Probability
- Fundamental Rules of Probability
- Expected Value and Moments
- Useful Discrete Distributions
- Continuous Probability

Outline

Random Variables and Discrete Probability

- Fundamental Rules of Probability
- Expected Value and Moments
- Useful Discrete Distributions
- Continuous Probability

Suppose we roll two fair dice...

- > What are the possible outcomes?
- > What is the *probability* of rolling **even** numbers?
- > What is the *probability* of rolling **odd** numbers?

...probability theory gives a mathematical formalism to addressing such questions...

Definition An **experiment** or **trial** is any process that can be repeated with well-defined outcomes. It is *random* if more than one outcome is possible.

Dutcome

Definition An **outcome** is a possible result of an experiment or trial, and the collection of all possible outcomes is the **sample space** of the experiment,

Definition An **event** is a *set* of outcomes (a subset of the sample space),

Sample Space

Example Event Roll at least a single 1 {(1,1), (1,2), (1,3), ..., (1,6), ..., (6,1)}

Assume each outcome is equally likely, and sample space is <u>finite</u>, then the probability of event is:

This is the uniform probability distribution

Example Probability that we roll only even numbers,

$$E^{\text{even}} = \{(2, 2), (2, 4), \dots, (6, 4), (6, 6)\}$$
$$P(E^{\text{even}}) = \frac{|E^{\text{even}}|}{|\Omega|} = \frac{9}{36}$$

Example Probability that the sum of both dice is even,

$$E^{\text{sum even}} = \{(1,1), (1,3), (1,5), \dots, (2,2), (2,4), \dots\}$$
$$P(E^{\text{sum even}}) = \frac{|E^{\text{sum even}}|}{|\Omega|} = \frac{18}{36} = \frac{1}{2}$$

Example Probability that the sum of both dice is greater than 12,

$$E^{>12} = \emptyset$$

$$P(E^{>12}) = \frac{|E^{\text{sum even}}|}{|\Omega|} = 0$$

i.e. we can reason about the probability of <i>impossible outcomes

Random Variables

Suppose we are interested in a distribution over the <u>sum of dice</u>...

<u>Option 1</u> Let E_i be event that the sum equals *i*

Two dice example:

 $E_2 = \{(1,1)\}$ $E_3 = \{(1,2), (2,1)\}$ $E_4 = \{(1,3), (2,2), (3,1)\}$

 $E_5 = \{(1,4), (2,3), (3,2), (4,1)\}$ $E_6 = \{(1,5), (2,4), (3,3), (4,2), (5,1)\}$

Enumerate all possible means of obtaining desired sum. Gets cumbersome for N>2 dice...

Random Variables

Option 2 Use a function of sample space...

(Informally) A random variable is an unknown quantity that maps events to numeric values.

Example X is the sum of two dice with values,

 $X \in \{2, 3, 4, \dots, 12\}$

Example Flip a coin and let random variable Y represent the outcome,

 $Y \in \{\text{Heads}, \text{Tails}\}$

Discrete vs. Continuous Probability

Discrete RVs take on a finite or countably infinite set of values **Continuous** RVs take an uncountably infinite set of values

- Representing / interpreting / computing probabilities becomes more complicated in the continuous setting
- We will focus on discrete RVs for now...

Random Variables and Probability

X = x is the **event** that X takes the value x

Example Let X be the random variable (RV) representing the sum of two dice with values,

$$X \in \{2, 3, 4, \dots, 12\}$$

X=5 is the *event* that the dice sum to 5.

Probability Mass Function

A function p(X) is a **probability mass function (PMF)** of a discrete random variable if the following conditions hold:

(a) It is nonnegative for all values in the support,

$$p(X=x) \ge 0$$

(b) The sum over all values in the support is 1,

$$\sum_{x} p(X = x) = 1$$

Intuition Probability mass is conserved, just as in physical mass. Reducing probability mass of one event must increase probability mass of other events so that the definition holds...

Probability Mass Function

Example Let X be the outcome of a single fair die. It has the PMF,

$$p(X = x) = \frac{1}{6}$$
 for $x = 1, \dots, 6$ Uniform Distribution

Example We can often represent the PMF as a vector. Let S be an RV that is the *sum of two fair dice*. The PMF is then,

es
m
$$p(S) = \begin{pmatrix} p(S=2) \\ p(S=3) \\ p(S=4) \\ \vdots \\ p(S=12) \end{pmatrix} = \begin{pmatrix} 1/36 \\ 1/18 \\ 1/2 \\ \vdots \\ 1/36 \end{pmatrix}$$

Observe that S does <u>not</u> follow a uniform distribution **Functions of Random Variables**

<u>Any</u> function f(X) of a random variable X is also a random variable and it has a probability distribution

Example Let X_1 be an RV that represents the result of a fair die, and let X_2 be the result of another fair die. Then,

$$S = X_1 + X_2$$

Is an RV that is the sum of two fair dice with PMF p(S).

NOTE Even if we know the PMF p(X) and we know that the PMF p(f(X)) exists, it is not always easy to calculate!

PMF Notation

- We use *p*(*X*) to refer to the probability mass *function* (i.e. a function of the RV *X*)
- We use *p*(*X*=*x*) to refer to the probability of the *outcome X*=*x* (also called an "event")
- We will often use p(x) as shorthand for p(X=x)

Definition Two (discrete) RVs X and Y have a *joint PMF* denoted by p(X, Y) and the probability of the event X=x and Y=y denoted by p(X = x, Y = y) where,

(a) It is nonnegative for all values in the support,

$$p(X = x, Y = y) \ge 0$$

(b) The sum over all values in the support is 1,

$$\sum_{x} \sum_{y} p(X = x, Y = y) = 1$$

Let X and Y be *binary RVs.* We can represent the joint PMF p(X,Y) as a 2x2 array (table):

All values are nonnegative

Let X and Y be *binary RVs.* We can represent the joint PMF p(X,Y) as a 2x2 array (table):

Let X and Y be *binary RVs.* We can represent the joint PMF p(X,Y) as a 2x2 array (table):

P(X=1, Y=0) = 0.30

Outline

Random Variables and Discrete Probability

Fundamental Rules of Probability

Expected Value and Moments

Useful Discrete Distributions

Continuous Probability

Fundamental Rules of Probability

Given two RVs *X* and *Y* the **conditional distribution** is:

$$p(X \mid Y) = \frac{p(X,Y)}{p(Y)} = \frac{p(X,Y)}{\sum_{x} p(X=x,Y)}$$

Multiply both sides by p(Y) to obtain the **probability chain rule**:

$$p(X,Y) = p(Y)p(X \mid Y)$$

The probability chain rule extends to $N \text{ RVs } X_1, X_2, \ldots, X_N$:

$$p(X_1, X_2, \dots, X_N) = p(X_1)p(X_2 \mid X_1) \dots p(X_N \mid X_{N-1}, \dots, X_1)$$

Chain rule valid
for any ordering
$$= p(X_1) \prod_{i=2}^N p(X_i \mid X_{i-1}, \dots, X_1)$$

Fundamental Rules of Probability

Law of total probability

$$p(Y) = \sum_{x} p(Y, X = x)$$
 · P(y) is a marginal distribution
 This is called marginalization

$$\begin{array}{ll} \textbf{Proof} & \sum_{x} p(Y,X=x) = \sum_{x} p(Y) p(X=x \mid Y) & (\text{ chain rule }) \\ & = p(Y) \sum_{x} p(X=x \mid Y) & (\text{ distributive property }) \\ & = p(Y) & (\text{ PMF sums to 1 }) \end{array}$$

Generalization for conditionals:

$$p(Y \mid Z) = \sum_{x} p(Y, X = x \mid Z)$$

Tabular Method

Let X, Y be binary RVs with the joint probability table

Tabular Method

Tabular Method

Intuition Check

<u>Question:</u> Roll two dice and let their outcomes be $X_1, X_2 \in \{1, ..., 6\}$ for die 1 and die 2, respectively. Recall the definition of conditional probability,

$$p(X_1 \mid X_2) = \frac{p(X_1, X_2)}{p(X_2)}$$

Which of the following are true?

a)
$$p(X_1 = 1 | X_2 = 1) > p(X_1 = 1)$$

b)
$$p(X_1 = 1 | X_2 = 1) = p(X_1 = 1)$$

Outcome of die 2 doesn't affect die 1

c)
$$p(X_1 = 1 | X_2 = 1) < p(X_1 = 1)$$

Intuition Check

<u>Question:</u> Let $X_1 \in \{1, ..., 6\}$ be outcome of die 1, as before. Now let $X_3 \in \{2, 3, ..., 12\}$ be the sum of both dice. Which of the following are true?

a)
$$p(X_1 = 1 | X_3 = 3) > p(X_1 = 1)$$

b) $p(X_1 = 1 | X_3 = 3) = p(X_1 = 1)$
c) $p(X_1 = 1 | X_3 = 3) < p(X_1 = 1)$

Only 2 ways to get $X_3 = 3$, each with equal probability:

$$(X_1 = 1, X_2 = 2)$$
 or $(X_1 = 2, X_2 = 1)$

SO

$$p(X_1 = 1 \mid X_3 = 3) = \frac{1}{2} > \frac{1}{6} = p(X_1 = 1)$$

Dependence of RVs

Intuition...

Consider P(B|A) where you want to bet on *B* Should you pay to know A?

In general you would pay something for A if it changed your belief about B. In other words if,

 $P(B|A) \neq P(B)$

Independence of RVs

Definition Two random variables X and Y are <u>independent</u> if and only if,

$$p(X = x, Y = y) = p(X = x)p(Y = y)$$

for all values x and y, and we say $X \perp Y$.

Definition RVs X_1, X_2, \ldots, X_N are <u>mutually independent</u> if and only if,

$$p(X_1 = x_1, \dots, X_N = x_N) = \prod_{i=1}^N p(X_i = x_i)$$

- > Independence is symmetric: $X \perp Y \Leftrightarrow Y \perp X$
- > Equivalent definition of independence: p(X | Y) = p(X)

Independence of RVs

Definition Two random variables X and Y are <u>conditionally independent</u> given Z if and only if,

$$p(X = x, Y = y \mid Z = z) = p(X = x \mid Z = z)p(Y = y \mid Z = z)$$

for all values x, y, and z, and we say that $X \perp Y \mid Z$.

> N RVs conditionally independent, given Z, if and only if:

$$p(X_1, \dots, X_N \mid Z) = \prod_{i=1}^N p(X_i \mid Z)$$
 Shorthand notation Implies for all *x*, *y*, *z*

Equivalent def'n of conditional independence: $p(X \mid Y, Z) = p(X \mid Z)$ Symmetric: $X \perp Y \mid Z \Leftrightarrow Y \perp X \mid Z$

Outline

Random Variables and Discrete Probability

Fundamental Rules of Probability

Expected Value and Moments

Useful Discrete Distributions

Continuous Probability

Definition The <u>expectation</u> of a discrete RV X, denoted by $\mathbf{E}[X]$, is:

$$\mathbf{E}[X] = \sum_x x \, p(X=x)$$
 Su value

Summation over all values in domain of X

Example Let *X* be the sum of two fair dice, then:

$$\mathbf{E}[X] = \frac{1}{36} \cdot 2 + \frac{1}{18} \cdot 3 + \dots + \frac{1}{36} \cdot 12 = 7$$

Theorem (Linearity of Expectations) For any finite collection of discrete $RVs X_1, X_2, \ldots, X_N$ with finite expectations,

Corollary For any constant c $\mathbf{E}[cX] = c\mathbf{E}[X]$

$$\mathbf{E}\left[\sum_{i=1}^{N} X_i\right] = \sum_{i=1}^{N} \mathbf{E}[X_i]$$

Theorem: If $X \perp Y$ then $\mathbf{E}[XY] = \mathbf{E}[X]\mathbf{E}[Y]$. Proof: $\mathbf{E}[XY] = \sum_{x} \sum_{y} (x \cdot y)p(X = x, Y = y)$ $= \sum_{x} \sum_{y} (x \cdot y)p(X = x)p(Y = y)$ (Independence) $= \left(\sum_{x} x \cdot p(X = x)\right) \left(\sum_{y} y \cdot p(Y = y)\right) = \mathbf{E}[X]\mathbf{E}[Y]$ (Linearity of Expectation)

Example Let $X_1, X_2 \in \{1, ..., 6\}$ be RVs representing the result of rolling two fair standard die. What is the mean of their product?

$$\mathbf{E}[X_1X_2] = \mathbf{E}[X_1]\mathbf{E}[X_2] = 3.5^2$$

Definition The <u>conditional expectation</u> of a discrete RV X, given Y is:

$$\mathbf{E}[X \mid Y = y] = \sum_{x} x \, p(X = x \mid Y = y)$$

Example Roll two standard six-sided dice and let X be the result of the first die and let Y be the sum of both dice, then:

$$\mathbf{E}[X_1 \mid Y = 5] = \sum_{x=1}^{4} x \, p(X_1 = x \mid Y = 5)$$
$$= \sum_{x=1}^{4} x \frac{p(X_1 = x, Y = 5)}{p(Y = 5)} = \sum_{x=1}^{4} x \frac{1/36}{4/36} = \frac{5}{2}$$

Conditional expectation follows properties of expectation (linearity, etc.)

Law of Total Expectation *Let X and Y be discrete RVs with finite expectations, then:*

$$\mathbf{E}[X] = \mathbf{E}_{Y}[\mathbf{E}_{X}[X \mid Y]]$$
Proof
$$\mathbf{E}_{Y}[\mathbf{E}_{X}[X \mid Y]] = \mathbf{E}_{Y}\left[\sum_{x} x \cdot p(x \mid Y)\right]$$

$$= \sum_{y}\left[\sum_{x} x \cdot p(x \mid y)\right] \cdot p(y) \quad (\text{ Definition of expectation })$$

$$= \sum_{y}\sum_{x} x \cdot p(x, y) \quad (\text{ Probability chain rule })$$

$$= \sum_{x} x \sum_{y} \cdot p(x, y) \quad (\text{ Linearity of expectations })$$

$$= \sum_{x} x \cdot p(x) = \mathbf{E}[X] \quad (\text{ Law of total probability })$$

Definition The variance of a RV X is defined as,

$$\mathbf{Var}[X] = \mathbf{E}[(X - \mathbf{E}[X])^2]$$
 (X-units)²

The standard deviation is
$$\sigma[X] = \sqrt{\operatorname{Var}[X]}$$
. (X-units)

Lemma An equivalent form of variance is:

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2$$

Proof Keep in mind that E[X] is a constant,

 $\mathbf{E}[(X - \mathbf{E}[X])^2] = \mathbf{E}[X^2 - 2X\mathbf{E}[X] + \mathbf{E}[X]^2]$

 $= \mathbf{E}[X^2] - 2\mathbf{E}[X]\mathbf{E}[X] + \mathbf{E}[X]^2$

 $= \mathbf{E}[X^2] - \mathbf{E}[X]^2$

(Distributive property)

(Linearity of expectations)

(Algebra)

Definition The <u>covariance</u> of two RVsX and Y is defined as,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])]$$

Lemma For any two RVs X and Y,

$$\mathbf{Var}[X+Y] = \mathbf{Var}[X] + \mathbf{Var}[Y] + 2\mathbf{Cov}(X,Y)$$

e.g. variance is not a linear operator.

Proof $Var[X + Y] = E[(X + Y - E[X + Y])^2]$

 $\begin{array}{ll} \text{(Linearity of expectation)} & = \mathbf{E}[(X+Y-\mathbf{E}[X]-\mathbf{E}[Y])^2] \\ \text{(Distributive property)} & = \mathbf{E}[(X-\mathbf{E}[X])^2+(Y-\mathbf{E}[Y])^2+2(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Linearity of expectation)} & = \mathbf{E}[(X-\mathbf{E}[X])^2]+\mathbf{E}[(Y-\mathbf{E}[Y])^2]+2\mathbf{E}[(X-\mathbf{E}[X])(Y-\mathbf{E}[Y])] \\ \text{(Definition of Var / Cov)} & = \mathbf{Var}[X]+\mathbf{Var}[Y]+2\mathbf{Cov}(X,Y) \end{array}$

Question: What is the variance of the sum of independent RVs $Var[X_1 + X_2] = Var[X_1] + Var[X_2] + 2Cov(X_1, X_2)$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])(X_2 - \mathbf{E}[X_2])]$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2\mathbf{E}[(X_1 - \mathbf{E}[X_1])]\mathbf{E}[(X_2 - \mathbf{E}[X_2])]$ $= \mathbf{Var}[X_1] + \mathbf{Var}[X_2] + 2 \left(\mathbf{E}[X_1] - \mathbf{E}[X_1] \right) \left(\mathbf{E}[X_2] - \mathbf{E}[X_2] \right)$ = Var $[X_1]$ + Var $[X_2]$ E.g. variance is a *linear*

operator for independent RVs

Theorem: If $X \perp Y$ then $\operatorname{Var}[X + Y] = \operatorname{Var}[X] + \operatorname{Var}[Y]$

Corollary: If $X \perp Y$ then $\mathbf{Cov}(X, Y) = 0$

Outline

Random Variables and Discrete Probability

- Fundamental Rules of Probability
- Expected Value and Moments
- Useful Discrete Distributions
- Continuous Probability

Bernoulli *A.k.a.* the coinflip distribution on binary RVs $X \in \{0, 1\}$ $p(X) = \pi^X (1 - \pi)^{(1-X)}$

Where π is the probability of **success** (e.g. heads), and also the mean

 $\mathbf{E}[X] = \pi \cdot 1 + (1 - \pi) \cdot 0 = \pi$

Suppose we flip N independent coins X_1, X_2, \ldots, X_N , what is the distribution over their sum $Y = \sum_{i=1}^N X_i$

Num. "successes" out of N trials

Binomial Dist. p(Y =

Num. ways to obtain k successes out of N

$$k) = \binom{N}{k} \pi^k (1-\pi)^{N-k}$$

Binomial Mean: $\mathbf{E}[Y] = N \cdot \pi$ Sum of means for N indep. Bernoulli RVs

Question: How many flips until we observe a success?

Geometric *Distribution on number of independent draws of* $X \sim \text{Bernoulli}(\pi)$ *until success:*

$$p(Y=n)=(1-\pi)^{n-1}\pi$$
 $\mathbf{E}[Y]=rac{1}{\pi}$ $\left[egin{array}{c} \pi=1/2 \ \mathrm{takes} \ \mathrm{two \ flips \ on \ avg.} \end{array}
ight]$

E.g. for fair coin

e.g. there must be n-1 failures (tails) before a success (heads).

Question: How many more flips of we have already seen k failures?

$$p(Y = n + k \mid Y > k) = \frac{p(Y = n + k, Y > k)}{p(Y > k)} = \frac{p(Y = n + k)}{p(Y > k)}$$
$$= \frac{(1 - \pi)^{n + k - 1} \pi}{\sum_{i=k}^{\infty} (1 - \pi)^{i} \pi} = \frac{(1 - \pi)^{n + k - 1} \pi}{(1 - \pi)^{k}} = (1 - \pi)^{n - 1} \pi = p(Y = n)$$
For $0 < x < 1, \sum_{i=k}^{\infty} x^{i} = \frac{x^{k}}{(1 - x)}$ Corollary: $p(Y > k) = (1 - \pi)^{k - 1}$

Categorical *Distribution on integer-valued* $RVX \in \{1, ..., K\}$

$$p(X) = \prod_{k=1}^{K} \pi_k^{\mathbf{I}(X=k)}$$
 or $p(X) = \sum_{k=1}^{K} \mathbf{I}(X=k) \cdot \pi_k$

with parameter $p(X = k) = \pi_k$ and Kroenecker delta:

$$\mathbf{I}(X=k) = \left\{ \begin{array}{ll} 1, & \text{If } X=k \\ 0, & \text{Otherwise} \end{array} \right.$$

Can also represent X as *one-hot* binary vector,

 $X \in \{0,1\}^K$ where $\sum_{k=1}^K X_k = 1$ then $p(X) = \prod_{k=1}^K \pi_k^{X_k}$

This representation is special case of the multinomial distribution

What if we count outcomes of *N* independent categorical RVs?

Multinomial Distribution on K-vector $X \in \{0, N\}^K$ of counts of N repeated trials $\sum_{k=1}^{K} X_k = N$ with PMF:

$$p(x_1, \dots, x_K) = \binom{n}{x_1 x_2 \dots x_K} \prod_{k=1}^K \pi_k^{x_k}$$

Number of ways to partition N objects into K groups:

$$\binom{n}{x_1 x_2 \dots x_K} = \frac{n!}{x_1! x_2! \dots x_K}$$

Leading term ensures PMF is properly normalized:

$$\sum_{x_1} \sum_{x_2} \dots \sum_{x_K} p(x_1, x_2, \dots, x_K) = 1$$

A Poisson RV X with <u>rate</u> parameter λ has the following distribution: $p(X = k) = \frac{e^{-\lambda}\lambda^k}{k!}$ Mean and variance both scale with parameter $\mathbf{E}[X] = \mathbf{Var}[X] = \lambda$

Represents number of times an *event* occurs in an interval of time or space.

Ex. Probability of overflow floods in 100 years,

 $p(\text{koverflow floods in 100 yrs}) = \frac{e^{-1}1^k}{k!}$

Lemma (additive closure) The sum of a finite number of Poisson RVs is a Poisson RV.

 $X \sim \text{Poisson}(\lambda_1), \quad Y \sim \text{Poisson}(\lambda_2), \quad X + Y \sim \text{Poisson}(\lambda_1 + \lambda_2)$

Avg. 1 overflow flood every 100 years,

makes setting rate parameter easy.

Outline

Random Variables and Discrete Probability

- Fundamental Rules of Probability
- Expected Value and Moments
- Useful Discrete Distributions
- Continuous Probability

Experiment Spin continuous wheel and measure X displacement from 0

Question Assuming uniform probability, what is p(X = x)?

 \blacktriangleright Let $p(X = x) = \pi$ be the probability of any single outcome

► Let S(k) be set of any k *distinct* points in [0, 1) then, $P(x \in S(k)) = k\pi$

Since $0 < P(x \in S(k)) < 1$ we have that $k\pi < 1$ for any k

For the refore: $\pi = 0$ and $P(x \in S(k)) = p(X = x) = 0$

- \succ We have a well-defined event that x takes a value in set $x \in S(k)$
- > Clearly this event can happen... i.e. it is possible
- > But we have shown it has zero probability of occurring, $P(x \in S(k)) = 0$
- > The probability that it **doesn't happen** is,

$$P(x \notin S(k)) = 1 - P(x \in S(k)) = 1$$
 We seem to have
a paradox!

Solution Rethink how we interpret probability in continuous setting

- Define events as intervals instead of discrete values
- Assign probability to those intervals

Height represents *probability per unit* in the x-direction

We call this a **probability density** (as opposed to probability mass)

- > We denote the **probability density function** (PDF) as, p(X)
- > An event E corresponds to an *interval* $a \le X < b$

> The probability of an interval is given by the area under the PDF,

$$P(a \le X < b) = \int_{a}^{b} p(X = x) \, dx$$

▷ Specific outcomes have zero probability $P(X = 0) = P(x \le X < x) = 0$

> But may have nonzero *probability density* p(X = x)

Continuous Probability Measures

Definition The cumulative distribution function (CDF) of a real-valued continuous RV X is the function given by,

$$P(x) = P(X \le x)$$

Different ways to represent probability of interval, CDF is just a convention.

 \succ Can easily measure probability of closed intervals, $P(a \le X \le b) = P(b) - P(a)$

 \succ If X is absolutely continuous (i.e. differentiable) then,

Fundamental Theorem of Calculus $p(x) = \frac{dP(x)}{dx}$ and $P(t) = \int_{-\infty}^{t} p(x) dx$

Where p(x) is the probability density function (PDF)

Most definitions for discrete RVs hold, replacing PMF with PDF/CDF...

Two RVs X & Y are **independent** if and only if,

p(x,y) = p(x)p(y) or $P(X \le x, Y \le y) = P(X \le x)P(Y \le y)$

Conditionally independent given Z iff, $p(x, y \mid z) = p(x \mid z)p(y \mid z)$ or $P(x, y \mid z) = P(x \mid z)P(y \mid z)$

Probability chain rule,

 $p(x,y) = p(x)p(y \mid x)$ and $P(x,y) = P(x)P(y \mid x)$

...and by replacing summation with integration...

Law of Total Probability for continuous distributions,

$$p(x) = \int_{\mathcal{Y}} p(x, y) \, dy$$

Expectation of a continuous random variable,

$$\mathbf{E}[X] = \int_{\mathcal{X}} x \cdot p(x) \, dx$$

Covariance of two continuous random variables X & Y,

$$\mathbf{Cov}(X,Y) = \mathbf{E}[(X - \mathbf{E}[X])(Y - \mathbf{E}[Y])] = \int_{\mathcal{X}} \int_{\mathcal{Y}} (x - \mathbf{E}[X])(y - \mathbf{E}[Y])p(x,y) \, dx dy$$

Caution Some technical subtleties arise in continuous spaces...

For **discrete** RVs X & Y, the conditional

P(Y=y)=0 means impossible

$$P(X = x \mid Y = y) = \frac{P(X = x, Y = y)}{P(Y = y)}$$

is **undefined** when $P(Y=y) = 0 \dots$ no problem.

For continuous RVs we have, $P(X \leq x \mid Y = y) = \frac{P(X \leq x, Y = y)}{P(Y = y)}$

but numerator and denominator are 0/0.

P(Y=y)=0 means improbable, but not impossible

Defining the conditional distribution as a limit fixes this...

$$\begin{split} P(X \leq x \mid Y = y) &= \lim_{\delta \to 0} P(X \leq x \mid y \leq Y \leq y + \delta) \\ &= \lim_{\delta \to 0} \frac{P(X \leq x, y \leq Y \leq y + \delta)}{P(y \leq Y \leq y + \delta)} \\ &= \lim_{\delta \to 0} \frac{P(X \leq x, Y \leq y + \delta) - P(X \leq x, Y \leq y)}{P(Y \leq y + \delta) - P(Y \leq y)} \\ &= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)}{P(y + \delta) - P(y)} \, du \\ &= \int_{-\infty}^{x} \lim_{\delta \to 0} \frac{\left(\frac{\partial}{\partial x} P(u, y + \delta) - \frac{\partial}{\partial x} P(u, y)\right) / \delta}{(P(y + \delta) - P(y)) / \delta} \, du \\ &= \int_{-\infty}^{x} \frac{\frac{\partial^{2}}{\partial x \partial y} P(u, y)}{\frac{\partial}{\partial y} P(y)} \, du \quad = \int_{-\infty}^{x} \frac{p(u, y)}{p(y)} \, du \end{split}$$

Definition The conditional PDF is given by, $p(x \mid y) = \frac{p(x,y)}{p(y)}$

(Fundamental theorem of calculus) (Assume interchange limit / integral)

(Multiply by $rac{\delta}{\delta}=1$)

(Definition of partial derivative) (Definition PDF)

Uniform distribution on interval [a, b], $p(x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{1}{b-a} & \text{if } a \le x \le b, \\ 0 & \text{if } b \le x \end{cases} \quad P(X \le x) = \begin{cases} 0 & \text{if } x \le a, \\ \frac{x-a}{b-a} & \text{if } a \le x \le b, \\ 1 & \text{if } b \le x \end{cases} \quad \frac{1}{b-a}$ Say that $X \sim U(a, b)$ whose moments are, $\mathbf{E}[X] = \frac{b+a}{2}$ $\mathbf{Var}[X] = \frac{(b-a)^2}{12}$ Suppose $X \sim U(0,1)$ and we are told $X \leq \frac{1}{2}$ what is the conditional distribution? $P(X \le x \mid X \le \frac{1}{2}) = U(0, \frac{1}{2})$

Holds generally: Uniform closed under conditioning

Exponential distribution with scale λ ,

$$p(x) = \lambda e^{-\lambda x}$$
 $P(x) = 1 - e^{-\lambda x}$

for X>0. Moments given by,

$$\mathbf{E}[X] = \frac{1}{\lambda} \qquad \qquad \mathbf{Var}[X] = \frac{2}{\lambda^2}$$

Useful properties

• Closed under conditioning If $X \sim \text{Exponential}(\lambda)$ then,

$$P(X \ge s + t \mid X \ge s) = P(X \ge s) = e^{-\lambda s}$$

• Minimum Let X_1, X_2, \ldots, X_N be i.i.d. exponentially distributed with scale parameters $\lambda_1, \lambda_2, \ldots, \lambda_N$ then,

 $P(\min(X_1, X_2, \dots, X_N)) = \text{Exponential}(\sum_i \lambda_i)$

Gaussian (a.k.a. Normal) distribution with mean (location) μ and variance (scale) σ^2 parameters,

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp{-\frac{1}{2}(x-\mu)^2/\sigma^2}$$

We say $X \sim \mathcal{N}(\mu, \sigma^2)$.

Useful Properties

• Closed under additivity:

 $X \sim \mathcal{N}(\mu_x, \sigma_x^2) \qquad Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$ $X + Y \sim \mathcal{N}(\mu_x + \mu_y, \sigma_x^2 + \sigma_y^2)$

- Closed under linear functions (a and b constant): $aX+b\sim \mathcal{N}(a\mu_x+b,a^2\sigma_x^2)$

Multivariate Gaussian On RV $X \in \mathcal{R}^d$ with mean $\mu \in \mathcal{R}^d$ and positive semidefinite covariance matrix $\Sigma \in \mathcal{R}^{d \times d}$,

$$p(x) = |2\pi\Sigma|^{-1/2} \exp{-\frac{1}{2}(x-\mu)^T \Sigma^{-1}(x-\mu)}$$

Moments given by parameters directly.

Useful Properties

- Closed under additivity (same as univariate case)
- Closed under linear functions,

 $AX + b \sim \mathcal{N}(A\mu_x + b, A\Sigma A^T)$

Where $A \in \mathcal{R}^{m \times d}$ and $b \in \mathcal{R}^m$ (output dimensions may change)

• Closed under conditioning and marginalization

Covariance

Captures correlation between random variables...can be viewed as set of ellipses...

Covariance Matrix

$$\Sigma = \operatorname{Cov}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \rho \sigma_{X_1} \sigma_{X_2} \\ \rho \sigma_{X_1} \sigma_{X_2} & \operatorname{Var}(X_2) \end{pmatrix}$$

Covariance Matrix

Marginal variance of just the RV X₁

$$\Sigma = \operatorname{Cov}(X) = \begin{pmatrix} \operatorname{Var}(X_1) & \rho \\ \rho \sigma_{X_1} \sigma_{X_2} & \nabla \end{pmatrix}$$

i.e. How "spread out" is the distribution in the X₁ dimension...

Covariance Matrix

Covariance

Captures correlation between random variables...can be viewed as set of ellipses...

