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Posterior Inference Review

Posterior on latent variable z given data ) by Bayes' rule:

p(z)p(YV | z)

Pz | V)= p(Y)

Marginal likelihood given by,
p) = [ p@)p(y | 2)da

» Posterior: belief over unknowns, given observed data (knowns)

» Marginal Likelihood: quality of model fit to the observed data



Posterior Inference Review

» Tree-structured discrete / Gaussian models can use sum-product BP
» Posterior & marginal likelihood intractable in many practical cases

Monte Carlo methods and MCMC

« PROs Asymptotic guarantees, easy to implement for most models, more
computation = higher accuracy

« CONSs Difficult to diagnose convergence, few non-asymptotic guarantees, slow

Loopy (sum-product) BP
« PROs Often yields good solutions quickly, easy to diagnose convergence

« CONs No computation/accuracy tradeoff, restricted to discrete/Gaussian
models

Loopy BP is an instance of a wider class of variational methods



Variational Inference Preview

» Formulate statistical inference as an optimization problem
» Maximize variational lower bound on marginal likelihood

logp(Y) > max L(q)

» Solution to RHS yields posterior approximation

q" = argmax (@) =p(x|Y)

» Constraint set O defines tractable family of approximating distributions
» Very often Q is an exponential family



Expectation Maximization (EM) Lower Bound

Recall EM lower bound of marginal likelihood

log p(Y) = log / p(x)p(Y | x)dx

( Multiply by q(x)/q(x)=1) — 1ogfp(x)p(y | x) (ﬁ) dx

( Definition of Expected Value) — log Eq [

2)p(Y | )

( Jensen’s Inequality ) > Eq [log p(



A Little Information Theory

The entropy is a natural measure of the inherent uncertainty:
H(p) = — / p(z)logp(r) dx

Interpretation Difficulty of compression of some random variable

The relative entropy or Kullback-Leibler (KL) divergence is a non-negative, but
asymmetric, “distance” between a given pair of probability distributions:

X

K L(pllq) = flog& dx K L(pllg) = 0
q()

The KL divergence equals zero if and only if p(x) = q(z) for all x.

Interpretation The cost of compressing data from distribution p(x) with a code

optimized for distribution g(x)



EM Lower Bound

= logp(Y) — KL(q()lp(z [ Y))

Bound gap is the Kullback-Leibler divergence KL(q||p),

q(x)
z|Y)

KL(q(z)[lp(z | ¥)) = / o(x) log

Solution to E-step is,
¢" = argmin KL(q(z)|[p(z | ) = p(z | V)

( Multiply by 1)

( Definition of KL )

This doesn’t help us if

p(z|Y)
is intractable




Variational Lower Bound

Idea Restrict optimization to a set O of analytic distributions

p(x)p(Y | aﬁ)}
q(x)

logp(Y) > max L(q) = E, {log
qeQ

> If posterioris in set p(x | V) € Q then exact inference ¢(z) = p(z | Y)

> Otherwise, if p(x | V) ¢ Q posterior is closest approximation in KL

¢" = argmin KL(g(x)|lp(z | V)

... and we recover strict lower bound on marginal likelihood with gap

log p(Y) — L(¢*) = KL(¢*(2)||p(z | ¥))



Variational Lower Bound

Two competing terms in variational bound...

Average (negative) Energy Entropy

Encourages q(x) to “agree” Encourages q(x) to have
with model p(x,y) large uncertainty (good for
generalization)



Relation to EM

» EM is means for approximate /learning, but we are using it to
motivate approximate inference

» EM lower bound takes same form as VI lower bound, but with
different constraint sets

» Connection with variational inference (V1) is in E-step, which
performs inference with fixed parameters



Variational Inference

logp(Y) > max L(q) = Eg4llogp(x,Y)] + H(q)

Different sets Q yield different VI algorithms to optimize bound:

» Mean Field Ignore posterior dependencies among variables

» Loopy BP Locally consistent marginals (exact for tree-
structured models)

» Expectation Propagation (EP) Locally consistent moments
(equivalent to Loopy BP for tree-structure exponential families)



Why is it called “variational™?

Differential Calculus

» Typically, we optimize a function max, f(x) w.r.t. a variable X
> Use standard derivatives/gradients V.. f(z)

» Extrema given by zero-gradient conditions V. f(z) =0

Calculus of Variations
> Optimize a functional (function of a function): max, ) f(q(z))
» Functional derivative characterizes change w.r.t. function q(x)

» Extrema given by Euler-Lagrange equation; analogous to zero-
gradient condition

In practice, we typically parameterize q,,(z) and take standard gradients
w.r.t. parameters 1



Summary: Variational Inference

1) Begin with intractable model posterior:
p(z)p(Y | x)
plz|Y) = |
p(Y) ~— leg?hzzld
2) Choose a family of approximating distributions O that is tractable

3) Maximize variational lower bound on marginal likelihood:

logp(Y) > max L(q) = Eg4llog p(x,Y)] + H(q)

4) Maximizer is posterior approximation (in KL divergence)

*: E p— 1 KL
q" = argmax (q) arg i (q(z)|p(z | V)

Still need to show...
a) How to define approximating variational family O

b) How to optimize lower bound
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Mean Field Variational Methods

G F

Mean field assumes Markov with respect to sub-graph F of original graph G:
« Sub-graph picked so that entropy is “simple”, and thus optimization tractable

« Optimize over smaller set where true objective can be evaluated

« Constraint set of distributions Markov w.r.t. subgraph F is non-convex



Nalve Mean Field

Assume discrete pairwise MRF model in exponential family form:

Absorbed observations p(gg | y) X exp Z qﬁst(xs, Ll?t) + Z ¢3 ($s)

into potential functions
(s,t)e& seV

A naive mean field method approximates distribution as fully factorized:

Free parameters to be optimized:
K
Q(CE) - H qs(xs) QS(CBS — k) — Hsk > 07 Zk:l Hsk — 1.

O OO0O0
O OO0O0
O OO0O0
O OO0O0



Why “Mean Field™?

Originates from the many body problem in statistical mechanics...

?Cé\ .fz — "Microstates” e.g. spin, velocity, position, ...
HEAT PATH
\/Qi . C}.(?:’ c}z.(;z) | ‘};;})
s . Ro &
Y 7 o S
e O.n) - 51
eMy = P

Hamiltonian

Gibbs’ distribution: /
L _sH(e) L snie)
p(§) = € ~ H 7 qu‘(fi)



Mean Field Lower Bound

Write optimization in terms of parameters .
max L(p) = Eyllogp(z, V)| + H(p)

w>0

K
subject to Zusk =1 VseV
k=1

For discrete pairwise MRF terms expand to:

H(:LL) — = >:>:,usk log:usk
seV k

Z Zﬂskﬂt€¢st —|_> >1M3k¢3 )

(s,t)EE kL secV k




Mean Field Algorithm : Pairwise MRF

1: Initialize parameters 119 | set i=0
2: While NOT converged

3:
4.
5:

1€ 1+l
For eachnode s € V and value £k =1, ..., K

Update parameter usx holding all others fixed

p o Go(k)exp{ D B on ek, x)

tel'(s)
Check 1f converged

Where we define: v¥s = exp(¢s)



Mean Field Updates : Pairwise MRF

K, K
L(p) = Epulp(x)] + = > > > perpued(k,0) =) Z sk 108 g
(s,t)eE k=1 (=1 seV k=1

Updates via coordinate ascent on each parameter,

oL
aUsk

0=

Ky
= > > ppd(k,0) + ¢s(k) — log sk — 1
tel'(s) £=1

K
log frer = > Y purecp(k, 0) + ps(k) — 1

tel'(s) £=1

4 3 . .
Normalization enforced

via Lagrange multiplier
fsk B ws(k) eXP te;()E“t [CbSt(k’ mt)] > (I glossed over this)
\ S

/



Pairwise MRF Mean Field as Message Passing

p(x) = % H Vst (T, Tt) H Vs (Ts) @375 (3337 ajt) — log wst (3387 ajt)

(s,t)eE seV
OO
Ly

q; ('CUZ) X wz (xz) H iz (xz) mﬂ(iliz) X exp { ﬂqj [¢U (377;, ZUJ)]}
jel(4)
« Compared to belief propagation, has identical formula for estimating marginals

from messages, but a different message update equation
* |f neighboring marginals degenerate to single state, recover Gibbs sampling message



General Mean Field Updates

1: Initialize mean field distributions ¢, (x)
2: While NOT converged

3:| Foreachnode s € V
4: Update marginal ¢,(z,) holding all others fixed

ds (378) X €XP {Eq\s [logp(x, y)]}

5:] Check if converged

> Here E,, [] is expectation w.r.t. all marginals besides ¢,(z)
» Expectation only depends on variables in Markov blanket



Derivation of General Mean Field Updates

Mean field variational lower bound,

log p(¥) > L(q) = Eq[log plz)] + »  H(q:)

where we use shorthand p(x) = p(z,))

Notice joint entropy decomposes to sum of marginal entropies

H(q) = — ZH%(%) Zlog%(ﬂ?k) = ZH(%)

To update ¢; view bound as function of ¢; and do coordinate ascent...



Derivation of General Mean Field Updates

L(g;) = ZHQ x;) [log p(x ZlOth X)
= ZZ% X Hq@ x;) |logp(x Zloqu Xk)

X—j 1#£]




Derivation of General Mean Field Updates

L(g;) = ZHQ x;) [log p(x ZlOth X)
= ZZ% X Hq@ x;) |logp(x Zloqu Xk)

X—j 1]
Linearity of expectation — Z q; X] Z H q@ X; 10gp
X_j 1#]

> (%)Y ] aixi) Zlong(Xk)+Qj(Xj)

X_j i#] | k]




Derivation of General Mean Field Updates

L(g;) = ZHQ x;) [log p(x Zloqu X)
= ZZ% X Hq@ x;) |logp(x Zloqu Xk)

X—j 1]
Linearity of expectation — Z qd; X] Z H q@ X; 10gp
X_j 1#]
- Z (x> Ja(x) | D logar(xk) + q;(x;))
X—j i7#] | k#] |
G t t
InvorI(\)/:ang ::rtr:)scr::lst. - Z qj(x;) log f;(x;) Z qj(x;)10og q;(x;) + const

Where, logfi(x;) £ > []a(xi)logp(x)=E_y, [logp(x)]

X_j 1#£]



Derivation of General Mean Field Updates

Thus we have,

qu x;) log f;(x;) qu x;) log q;(x;) + const

Xj

Where,
log fj Xj ZHQ@ X 10%10 E—qj [10g}5(x)]

X_j i#]
Observing that by definition of the Kullback-Leibler divergence we have,

L _KIL, * Recall:
(QJ) ( ‘f]) KL(qu) [log ?((wg]
Which we maximize by setting ¢;=/; as,
1 N
qj(%j) = ——exp (E—qj UOgP(X)])

Z;



Conditionally Conjugate Models

The coordinate update does not have a closed form for all models...

1 §
1j(xj) = ——exp (E—qg, [logp(x)])
J
One case where things work out nice is models

P d e

p(z) = pj(xj)p—j(x—; | x5) x pj(z; | x—5)

» In conditionally conjugate modelsp;(z;)is the as the
complete conditional p;(z; | v—;)

» Similar, but stronger, condition to Gibbs sampler

» In Gibbs sampler the complete conditionals must be easy to sample, not
necessarily conjugate



Example: Image Denoising

Noisy Image 3 Iterations of MF 15 Iterations of MF

e |, 0.8 0.8
. ‘l"'.‘" B 0.6 0.6 0.6
S AF [ (0.4 £10.4 0.4
PR (0.2 £40.2 0.2

0 0 0
0.2 -0.2 -0.2
-0.4 -0.4 -0.4
0.6 -0.6 0.6
-0.8 -0.8 -0.8

Model is pairwise MRF on binary variables x; € {0, 1} (a.k.a. “Ising” model)

p(x) = Zioexp(—Eo(x)) p(y[x) = pr?:r:? ZeXp(—

Where, r,x) = —Z > Wiz,

1=1 jEnbr; Source: K. Murphy



Example: Image Denoising

Naive mean field assumption—fully factorized variational approximation,
> MF probability param for node i

a(x) = ] [ aCei, pa)
Write out unnormalized log-joint probabillity,

logp(x) = x; Wisxs + Li(x;) + const
5 PLX, gLy ;
jEnbr;

Expectation w.r.t. neighbors of x; (e.g. Markov blanket),

E,_, [logp(z)] = z; Z Wijpj + Li(x;)

jEnbr?;

Update for ¢; is exponentiated expectation w.r.t. Markov blanket,

!

) Average of
qi(ws) ocexp | wif Y Wiz Li(ws) | peighboring states
jEnbr;

Source: K. Murphy
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A Generic Class of Directed Models

Global variables R /B

X
Local variables . !

p(B.z.x) =p(B)| [pCz.x:1B)
i=1

» Bayesian mixture models » Multilevel regression
(linear, probit, Poisson)

» Time series & sequence models
(HMMs, Linear dynamical systems) » Stochastic block models

» Matrix factorization » Mixed-membership models
(factor analysis, PCA, CCA) (Linear discriminant analysis)

[ Source: David Blei ]



Variational Approximation

p(z|x) .

7 KL(g(z:v*) || p(z|x))

Minimize KL between ¢(3, z; v) and posterior p(3,z | x) .

[ Source: David Blei ]



Variational Lower Bound — ELBO

L(v)=E, [logp(B8,z,x)| —E, [logq(5,z;v)]

» KL is intractable; VI optimizes evidence lower bound (ELBO)
» Lower bounds log p(x) — marginal likelihood, or evidence
» Maximizing ELBO is equivalent to minimizing KL w.r.t. posterior

» The ELBO trades off two terms

» The first term prefers ((.) to place mass on the MAP estimate
» Second term encourages q(.) to be diffuse (maximize entropy)

» The ELBO is

[ Source: David Blei ]



Mean Field for Generic Directed Model

Qﬂ p () B

ELBO

¥ 4
@ b -+ 2

n n

PGM of Mean Field Approximation

Recall: mean field family is fully factorized

q(8,2; A, 9) —qﬁ,

’:]:

q Zzagbz

fc:l T

Conditional conjugacy: Each factor is the same expfam as complete conditional

Variational Parameters

p(B12,%) = h(B)exp{n,(z,x)" B —a(n,(z,x))}
q(B; A)=h(p)exp{L'p —a(1)}.

[ Source: David Blei ]



Mean Field for Generic Directed Model

Qﬂ p () B

ELBO

@ b -+ 2

PGM of Mean Field Approximation

n

Recall: mean field family is

08,27, 6) = q(8; ) | | a(zi5 9)
1=1

Global parameter ensure conjugacy to (z,x):

ng(Z;‘ X) =+ Z:E:l t(zij XI'):J

where « is prior hyperparameter and {(.) are sufficient stats for [z, x/]
[ Source: David Blei ]



Mean Field for Generic Directed Model

Qﬂ p () B

ELBO

@ b -+ 2

PGM of Mean Field Approximation

n

Optimize ELBO,
L(A, ¢) = E,llog p(8,2,x)| — E4llog q(5, z)]

By gradient ascent,

2+ _Efﬁ [ng(z X):I (;b =K, [?7{(/3' x;)]

lteratively update each parameter, holding others fixed
« Obvious relationship with Gibbs sampling

« Remember, ELBO is not convex
[ Source: David Blei ]



Coordinate Ascent Mean Field for Generic Model

Input: data x, model p(f3, z, X).

[nitialize A randomly:.
Need to visit every

repeat / data pOint

for each data point i do
| Set local parameter ¢; < E, [1,(,x;)].

end
Need to sum every

Set global parameter / data point

A—a+d  E, [t(Z,x)].

until the ELBO has converged

[ Source: David Blei ]



Stochastic (Mean Field) Variational Inference

GLOBAL HIDDEN STRUCTURE
MASSIVE

L.
1 ’
= l'

w.
.
~

| ¢
¥ y

Subsample \ :[ Infer local \ /Update global
j o O
QO

data \ structure //: structure
® O
\ -

Classical mean field VI is inefficient for large data
* Do some local computation for each data point
« Aggregate computations to re-estimate global structure
* Repeat

Idea visit of data to estimate gradient updates on full dataset

[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

A STOCHASTIC APPROXIMATION METHOD'

By HemrBert Romeing anp SurtoN Monro
University of North Corolina

1. Summary. Let M (x) denote the expected value at level x of the response
to a certain experiment. A (x) is assumed to be a monotone function of = but is
unknown to the experimenter, and it i3 desired to find the solution z = @ of the
equation M (x) = &, where a 15 a given constant. We give a method for malking
successive experiments at levels vy, 20, - - - in siich 2 way that z, will tend to ¢ in
probability.

» Use cheaper noisy gradient estimates [Robbins and Monro, 1951]
» Guaranteed to converge to local optimum [Bottou, 1996]

» Popular in modern machine learning (e.g. DNN learning)

[ Source: David Blei ]



Stochastic Gradient Ascent/Descent

» Stochastic gradients update:

Vit1 = UVt —I_ptﬁyﬁ(l/t) i s N S N
» Gradient estimator must be \
E[@U ﬁ(V)] — vy ,C(V) —05 \\ — o

» Sequence of step sizes p+ must follow

O o0
D_pr=00, ) pi<
t=0 t=0

[ Source: David Blei ]



Stochastic Variational Inference

= The natural gradient of the ELBO [Amari, 1998; Sato, 2001]

Vit () = (a+ X0 By [tZ,x)])— 2.

= Construct a noisy natural gradient,

j ~ Uniform(1,...,n)
ﬁ'iﬂtﬁ(}t) =a+ nE(ﬁ; [t(Z:,x;)] — A.

]27]

= This is a good noisy gradient.

o Its expectation is the exact gradient (unbiased).
o It only depends on optimized parameters of one data point (cheap).

[ Source: David Blei ]



Stochastic Variational Inference

Input: data x, model p(f3, z, X).

Initialize A randomly. Set p, appropriately.

repeat
Sample j ~ Unif(1,...,n).

Set local parameter ¢ «— [E, [ng (ﬁ_,x-)].
Set intermediate global parameter

A= a+nEy[t(Z;,x)].

Set global parameter

A=(1—p)r+pi

until forever

[ Source: David Blei ]



Topic Models

Topic models discover hidden thematic structure in large
collections of documents

[ Source: David Blei ]



Topics

gene 0.04
0.02
genetic 0.01

‘--—-"'—---

life 6.02
evolve 0.01
organism 0.01

data 0.02
number 8.62

Documents

Topic Models

Seeking Life's Bare (Genetic) Necessities

COLP SPRING HAa RK— S i thar L e espeanill m
1L e ims | i ERRVAN ik

. Mewmenias

computer 0.01

L —

Topic proportions and Topics
assighments
& ™
M
——
L
L

Each fopic is a distribution over words (vocabulary)

Each document is a mixture of corpus-wide topics
Each word is drawn from one of the topics (they are distributions)

Topic proportions and

Documents .
assignments

Seeking Life’s Bare (Genetic) Necessities

COrp SPRING HARBOR. NEW YORK— Saze el sl ey
Elac i zones Jovsinvorgannien li: ey e he TR000

s syghie

e m“h{

But we only observe documents; everything else is hidden (unsupervised learning problem)
Need to calculate posterior (for millions of documents; billions of latent variables):
P(topics, proportions, assignments | documents)

[ Source: David Blei ]



Example: Latent Dirichlet Allocation

Per-word

Proportions . .
parameter topic assignment Topic
parameter . _
Per-document Observed | Latent Dirichlet Allocation (LDA):
topic proportions word Topics o
I l l By, ~ Dirichlet(n)
v \ 64 ~ Dirichlet(a)
Zd.n ’ 04 ~ Cat(@d)
.——I-(_\"——I—'/_\—b - mq——.
NI AN Q N Wd,n ‘ Zd,'mﬁ ~ Ca’t(/BZd,n)
o 0, Zd.n W n )8;{ N
N D K

« Assumes words are exchangeable (“bag-of-words” model)
* Reduces parameters while still yielding useful insights
« Complete conditionals are closed-form (we can do mean field)

[ Source: David Blei ]



Game
Season
Team
Coach
Play
Points
Games
Giants
Second
Players

Bush
Campaign
Clinton
Republican
House
Party
Democratic
Political
Democrats
Senator

Children
School
Women
Family
Parents
Child
Life
Says
Help
Mother

Life
Know
School
Street
Man
Family
Says
House
Children
Night

Building
Street
Square
Housing
House
Buildings
Development
Space
Percent
Real

Stock
Percent
Companies
Fund
Market
Bank
Investors
Funds
Financial
Business

Example: Latent Dirichlet Allocation

Film
Movie
Show

Life

Television
Films
Director

Man
Story

Says

Won
Team
Second
Race
Round
Cup
Open
Game
Play
Win

Church
War
Women
Life
Black
Political
Catholic
Government
Jewish
Pope

Book
Life
Books
Novel
Story
Man
Author
House
War
Children

Yankees
Game
Mets
Season
Run
League
Baseball
Team
Games
Hit

Art
Museum
Show
Gallery
Works
Artists
Street
Artist
Paintings
Exhibition

Wine
Street
Hotel
House
Room
Night
Place
Restaurant
Park
Garden

Government
War
Military
Officials
Iraq
Forces
Iraqi
Army
Troops
Soldiers

Police
Yesterday
Man
Officer
Officers
Case
Found
Charged
Street
Shot

Topics found in 1.8M articles from the New York Times

900 - Online S5K [Hoffman et al., 2010]

850 -
800 -
__.::: Online 3.3M ™ .. Batch 98K
) 750 -
Q700 -
o
0O 650 -
600 -

10°° 10* 10*° 10° 10°° 10° 10°°
Documents seen (log scale)

» Stochastic VI (online) shows faster learning as compared to
standard (batch) updates

« Similar learning rate when dataset increased from 98K to 3.3M
documents

» Perplexity measures posterior uncertainty (lower is better)

Perplexity = 28 (P) = 2= 2., (@) logp()

[ Source: David Blei ]



Summary: Variational Inference

1) Begin with intractable model posterior:
p(z)p(Y | x)
plz|Y) = |
p(Y) Llyll(:?hgzld
2) Choose a family of approximating distributions O that is tractable

3) Maximize variational lower bound on marginal likelihood:

logp(Y) > max L(q) = Eg4llog p(x,Y)] + H(q)

4) Maximizer is posterior approximation (in KL divergence)
q¢" = argmax L(q) = arg Jéréin KL(q(x)|p(z | Y) ——

, ,r’II\‘L(q(z: v*) || plz|x))
qeQ Q ﬂ ) s
N ) f}

Different approximating families ¢ lead to different \
forms of optimizing variational bound \




Summary: Mean Field VI

» Mean field family assumes approximating distribution

— H qS((ES)

seV
» Mean field algorithm performs coordinate ascent on lower bound

qs(xs) o< exp {Eq _ [log p(z, V)] }

» Coordinate ascent updates require complete conditionals to be conjugate
» Similar, but stricter, assumption to Gibbs sampling

» MF update takes specific form depending on model p(.), e.g. pairwise MRF:

,LLSk O(ws exp{ Z E ( —1) gbst(k xt)]}

tel'(s)



Summary: Stochastic (Mean Field) VI

3
» MF coordinate ascent updates require visiting B T R N
» Doesn’t scale to large datasets
15

> Stochastic VI updates using stochastic gradient ascent '+ |

> Randomly Subsample dataset 05k N
> Compute stochastic estimate of full gradient based on subsample of R R e
» Stochastic gradient step on variational parameters (v here): osl \ R

Vit1l = Vg + Pt@yﬁ(w) - : % 5 3

» Step sizes must decrease over time while satisfying Robbins-Monro conditions
Zpt — 00, Zp? < 0
t=0 t=0

» Often call standard MF “batch” since updates based on full data
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