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From Probabilities to Pictures
A probabilistic graphical model allows us to pictorially represent
a probability distribution*
Graphical Model:
Probability Model: o e
p(x1, T2, 3) = q |
p(z1)p(r2)p(z3 | 71, 22) e

he graphical model structure obeys the factorization of the
probability function in a sense we will formalize later

* We will use the term “distribution” loosely to refer to a CDF / PDF / PMF



Graphical Models

A variety of graphical models can represent the same
probability distribution

Bayes Network ‘Factor Graph Markov Random Field
| Y

Directed Models Undirected Models

[Source: Erik Sudderth, PhD Thesis]



Factorized Probability Distributions

A probability distribution over RVS x = (x1,...,x4) can be
written as a product of factors,

1
p(gj) — E Hd-’C(IC)
Where: ceC
 C a collection of subsets of indices {1,....d}

 ¢(-) are nonnegative factors (or potential functions)
» Z the normalizing constant (or partition function)

7= [ Tl dz

ceC




Undirected Graphical Models

Agraph G = (V, &) Is a set of vertices V and edges £ . An edge
(s,t) € £ connects two vertices s, t € V.

In undirected models edges are specified
Irrespective of node ordering so that,

(s,t) e E&(t,s) € €

Distributions are typically specified with
unknown normalization (easier to specify),

p(z) oc | | velae)




Markov Random Fields (MRFs)

A factor ¥'.(z.) corresponds to a clique ¢ € C (fully connected
subgraph) in the MRF

An MRF does not imply a unigue factorization,
Clique for example all the following are “valid”.

d;(l‘la L2y L3, T4, $5)
(21, 9, 23)U (23, 4)U (23, X5)

1/-’(51, 35‘2)7//‘(392; 353)1/;(1:1,, $3)7//’(3’33¢ 1174)1/-’(51?31 365)

A factorization is valid if it satisfies the Global
Markov property, defined by conditional
iIndependencies




Conditional Independence (Undirected)

We say z4 and z are independent
orz, I zo If:

p(za,zc) = p(za)p(zC) / \ / \E\

=

We say they are conditionally D) ]
independent or z4 1L z¢ | zp If:

T \O- {k 1
p(za,zc | zp) = p(za | zp)p(zc | 2B) \ jo \ \/f

Def' We Say p<$) IS g|0ba||y MarkOV Conditional independence
W.r.t. g If ra 1L xo ‘ rp 1IN any in undirected graphical models
Separating set Of g is defined by separating sets

[ Source: Michael I. Jordan]



Hammersley-Clifford Theorem

Thorem (Hammersley-Clifford). Let C denote the set of cliques of an undirected
graph G. A probability distribution defined as a normalized product of non-negative
potential functions on those cliques 1s then always Markov with respect to G:

p(x) o H Ve(x.)

ceC

Conversely, any strictly positive density which is Markov with respect to G can be repre-
sented in this factored form.

A minimal factorization i1s one where all factors are maximal
cliques (not a strict subset of any other cligue) in the MRF



Pairwise Markov Random Field

Often easier to specify and do inference on pairwise model

p(xﬁy) X HQ/)S<$51 H Q/’Tst xijt

seV l (s,t)EE l

Likelihood Prior

i Observations E

Unknown
Variables

Restricted class of MRFs
» 2-node factor exists for every edge
 EXplicit factorization of joint distribution

» High-order factors not always easily
decomposed into pairwise terms



Example: Image Segmentation

O O—O—Q Notional figure [Source: Kundu, A. et al., CVPR16]
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Pairwise MRF energy:— log p(x,y) = log Z + Z Vi(xi, ;) + Z l/ﬁz-,j(x@s, $j)
J (4.7)
Low energy configurations = High probability
L2 Likelihood: ¥(z;, v;) = ||z; — vil|® Potts model: ¥ (z;, z;) = I(z; = x;)

MAP (minimum energy) configuration = Piecewise constant regions



Factor Graphs

A hypergraph’H = (V, F) where a hyperedge f € F is a subset
of vertices f C V.

Factor graphs explicitly encode factorization of

distribution:
(%) © p(z) o< | [ vs(ay)
fer
@ where z; = {z; : i € f} the set of variables in

factor f. For example:

@ @ 77//’($1)%/5‘($2)1/-’($1; L2, 35‘3)7/)(593? 1194)?/-/‘@3? $5)



Example: Low Density Parity Check Codes

Sparse Parity Check Matrix

Factor Graph Representation
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[Source: David MacKay]



Example: Low Density Parity Check Codes

Factor Graph Representation
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* Valid codes have zero parity: p

* Chanel noise model arbitrary, e.qg. flip bits w/ ¢ probabillity:

H(l . E)]I(rn:tn)t_ﬂ(’rn#tn)

T

p(r|t) = HP(TH | 20)

[Source: David MacKay]
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Directed Graphs

Def. A directed graph is a graph with edges (s, t) € € (arcs)
connecting parent vertex s € V to a child vertext € V

Def. Parents of vertext € V are given by the
o 9 set of nodes with arcs pointing to ¢,

Pa(t) = {s: (s,t) € £}

e Children of ¢t € V are given by the set,
@ e Ch(t) ={t: (t,k) € £}

Ancestors are parents-of-parents.
Descendants are children-of-children.




Bayes Network

Model factors are normalized conditional distributions:

p(z) = || p(z: | zpags))
sey |—> Parents of node s

9 9 Directed acyclic graph (DAG) specifies
factorized form of joint probabillity:

p(x1)p(x2)p(x3 | 1, 22)p(74 | T3)p(T5 | 73)

@ e Locally normalized factors yield globally
normalized joint probability



Example: Gaussian Mixture Model
Bayes nets are easily simulated via ancestral sampling

Joint Sample

Probability Model Bayes Net

7 ~ Dirichlet(-)
pr ~ N ()

o ~ Inv-Gammal(-)

zn | ™~ Cat(m)

YUn ‘ Zny Mz, Oz, ™ N(“va JZn)

@

N K

Specification Is more difficult than undirected models since
each factor must be a normalized probability measure



Plate Notation

Plates denote replication of elements

Example:
@ ¢ © - @ O
X, X, X, Xy X
Example: 0




Example: Linear Gaussian Dynamics System

Latent state z € R” evolves

O () Q>+ according to linear dynamics.
@ ° @ Observations y € R are
linear functions of the state.
Conditional Probability Model: State-Space Model (equivalent):
T | 21 ~ N(Azi_1, Q) ry = Ari—1 + € where €~ N(0,0Q)
State Dynamics Pro\cess Noise Plant Equations “White” Noise
Y ‘ Ly N(Cﬂ?tj R) Yt — Cﬁ?t +w where W ~v .)\/’(0TJ R)
P A S

Measurement Model Observation Noise



Example: Linear Gaussian Dynamical System
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Conditional Independence (Directed)

Not as simple as graph separation in directed graphs...

“Explaining Away Evidence” p(2)p(z | 2)py | 2)
Binary RVs: Binary RVSs:
X . Robber X : Heat On
Y : Earthquake Y :A/IC On
Z . House Alarm Z . Temperature
XYY |Z X1lY|Z

Directed separation (d-separation) property indicates
conditional independence in directed models.



Bayes Ball Algorithm

To testif z4 1L x¢ | xp imagine rolling a “ball” from each node in
r4 . The "ball” follows certain rules defined by canonical 3-
node subgraphs:

- Incoming & outgoing edges

X Y /Z
v Y blocks the Bayes ball,
® Q:TO:’O acting as a d-separator.
;
X Y /Z

Q Y does not block. Itis not
S ( ) ( ) ( ) a d-separator.

[Source: Michael | Jordan]



Two OQutgoing Arrows Two Incoming Arrows

A A RS 4
O @ O

Y

Y blocks Y does not block Y blocks Y does not block

If a set zp blocks for every node inzsthenz, 1L z¢ | 25 .
Conversely, If a ball reaches any node in z-then they are not
conditionally independent.



Summary

0'9 @ @ Undirected models may be specified up to

ol ONNO normalization. Factorization may not be
< % e unique for MRFs.
OB © Directed models useful for product of
locally-normalized conditional probabillities.
o Simplifies simulation via ancestral sampling.

© ) Conditional independence more difficult.

Y Y

Conditional independence givenby . _
ﬁ J'%j graph separation and d-separation = o
O for undirected / directed models.



