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We develop a family of algorithms for statistical inference in models of high dimen-

sional continuous random variables. Our approach builds on existing variational

methods, which provide computationally efficient alternatives to Markov chain Monte

Carlo (MCMC) sampling. While efficient, existing variational approximations are not

applicable to many continuous models of practical interest, or they are altogether un-

stable and produce degenerate solutions. We construct a more powerful class of

algorithms for posterior marginal and maximum a posteriori (MAP) inference which

avoids these limitations. Throughout this thesis we present a series of vignettes

demonstrating the generality of our approach on disparate applications such as: hu-

man pose estimation in images and video, protein structure prediction, and target

tracking.

We begin by considering MAP inference problems for continuous Markov random

fields (MRFs) where the well-known max-product (MP) variant of belief propagation

(BP) cannot be applied due to non-Gaussian statistics. Motivated by similar ideas

in sum-product BP we develop a particle-based approximation of the continuous MP

messages. Unique to the MAP setting, however, is a need for diversity among the

hypotheses, to avoid classic particle degeneracies. Using an integer programming

formulation we enforce particle diversity, from which we can recover a set of distinct

local maxima. Our nonparametric approximation applies to any model for which the

probability density can be evaluated in a black-box manner, even for models with no

analytic form. We validate our approach using a model for estimating human pose

from single images and videos.

To further motivate and validate our approach we consider the challenging problem

of estimating three-dimensional protein structures. Using our particle-based approx-

imations we optimize the continuous energy function encoding protein stability, and

thereby avoid discrete approximations employed by most existing methods. In this

way we are able to recover fine details of protein structure which standard methods

fail to capture, and by preserving diverse hypotheses our approach maintains the

conformational diversity proteins are known to exhibit.

The final component of this thesis explores variational methods for posterior

marginal inference. We begin by developing inference based on expectation prop-

agation (EP) for tracking a time-evolving target in the presence of measurement

error and clutter detections. Our method outperforms existing tracking algorithms
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while generalizing classical techniques. Motivated by non-convergence and degen-

eracy issues that are observed in this setting, we formulate a convergent nonlinear

optimization which uses an augmented Lagrangian technique with provable conver-

gence guarantees. Moreover, we identify the set of constraints that, when violated,

produce unnormalizable marginal approximations in message passing fixed points.

Using gradient projection we strictly enforce these normalization constraints to guar-

antee variational approximations are well-formed. These techniques outperform loopy

BP and EP on MRFs with discrete, Gaussian and Gaussian mixture distributions.



Variational Approximations with Diverse Applications

by

Jason L. Pacheco

B. S., U. Massachusetts Dartmouth, 2003

Sc. M., Brown University, 2008

A dissertation submitted in partial fulfillment of the

requirements for the Degree of Doctor of Philosophy

in the Department of Computer Science at Brown University

Providence, Rhode Island

March 2016



c© Copyright 2016 by Jason L. Pacheco



This dissertation by Jason L. Pacheco is accepted in its present form by

the Department of Computer Science as satisfying the dissertation requirement

for the degree of Doctor of Philosophy.

Date
Erik Sudderth, Advisor

Recommended to the Graduate Council

Date
Michael Littman, Reader

Date
Alexander Ihler, Reader

Dept. of Computer Science, UC Irvine

Approved by the Graduate Council

Date

Dean of the Graduate School

iii



Contents

1 Introduction 1

1.1 Finding Modes of Continuous Distributions . . . . . . . . . . . . . . . 2

1.1.1 Human Pose Estimation and Tracking . . . . . . . . . . . . . 2

1.1.2 Protein Structure Prediction . . . . . . . . . . . . . . . . . . . 4

1.2 Convergent Alternative to Message Passing . . . . . . . . . . . . . . . 6

1.3 Improved Variational Inference for State-Space Models . . . . . . . . 7

1.4 Overview of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Particle-Based Continuous MAP Inference . . . . . . . . . . . 8

1.4.2 Continuous Optimization of Protein Side Chains . . . . . . . . 9

1.4.3 Convergent Variational Inference without Degeneracy . . . . . 9

1.4.4 Improved Variational Inference for Tracking in Clutter . . . . 10

2 Variational Inference for Graphical Models 11

2.1 Graphical Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Undirected Graphical Models . . . . . . . . . . . . . . . . . . 12

2.1.2 Bayesian Networks . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Exponential Family . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Definition and Parameterization . . . . . . . . . . . . . . . . . 16

2.2.2 Basic Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Message Passing and Variational Inference . . . . . . . . . . . . . . . 18

2.3.1 Variational Free Energy . . . . . . . . . . . . . . . . . . . . . 18

2.3.2 Message Passing for Marginal Inference . . . . . . . . . . . . . 19

2.3.3 Message Passing for MAP Inference . . . . . . . . . . . . . . . 24

2.3.4 Variational MAP Inference . . . . . . . . . . . . . . . . . . . . 24

3 Particle Max-Product Belief Propagation 29

3.1 Particle-Based Message Approximations . . . . . . . . . . . . . . . . 30

3.1.1 Sum-Product Particle BP . . . . . . . . . . . . . . . . . . . . 30

3.1.2 Particle Max-Product . . . . . . . . . . . . . . . . . . . . . . . 32

iv



3.2 Diverse Particle Max-Product . . . . . . . . . . . . . . . . . . . . . . 35

3.2.1 Diverse Particle Selection . . . . . . . . . . . . . . . . . . . . 35

3.2.2 Minimax Particle Selection . . . . . . . . . . . . . . . . . . . . 38

3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.1 Single Image Human Pose Estimation . . . . . . . . . . . . . . 40

3.3.2 Articulated Pose Tracking in Video . . . . . . . . . . . . . . . 45

3.3.3 Optical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4 Protein Structure Prediction 52

4.1 Side Chain Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1 Amino Acid Side Chains . . . . . . . . . . . . . . . . . . . . . 53

4.1.2 Discrete Rotamer Optimization . . . . . . . . . . . . . . . . . 53

4.2 Continuous Side Chain Optimization . . . . . . . . . . . . . . . . . . 55

4.2.1 Graphical Model of Side Chain Placement . . . . . . . . . . . 55

4.2.2 Resolving Ties in the Conformation . . . . . . . . . . . . . . . 57

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Variational Inference for Generalized Gaussian Mixtures 61

5.1 Robust Target Tracking in Clutter . . . . . . . . . . . . . . . . . . . 61

5.1.1 Expectation Propagation for Target Tracking . . . . . . . . . 62

5.1.2 Target Tracking Simulation . . . . . . . . . . . . . . . . . . . 67

5.2 Convergent Minimization of Bethe Approximations . . . . . . . . . . 68

5.2.1 Bethe Variational Problems . . . . . . . . . . . . . . . . . . . 69

5.2.2 Method of Multipliers (MoM) Optimization . . . . . . . . . . 73

5.2.3 MoM Algorithms for Probabilistic Inference . . . . . . . . . . 75

5.2.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.5 Discrete Markov Random Fields . . . . . . . . . . . . . . . . . 78

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Contributions and Suggestions 81

6.1 Discussion of Contributions . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Suggestions for Future Research . . . . . . . . . . . . . . . . . . . . . 82

6.2.1 Exploiting Solution Diversity . . . . . . . . . . . . . . . . . . 83

6.2.2 Structured Learning of Continuous MRFs . . . . . . . . . . . 83

6.2.3 Particle Representations for Protein Folding . . . . . . . . . . 84

v



A Derivations and Proofs 85

A.1 Gradient Calculations for Bethe Minimization . . . . . . . . . . . . . 85

A.1.1 Discrete Markov Random Fields . . . . . . . . . . . . . . . . . 85

A.1.2 Gaussian Markov Random Fields . . . . . . . . . . . . . . . . 86

A.1.3 Discrete Mixtures of Gaussian Potentials . . . . . . . . . . . . 87

A.2 Diverse Particle Selection Proofs . . . . . . . . . . . . . . . . . . . . . 89

A.2.1 Proof of Prop. 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . . 89

A.2.2 Proof of Prop. 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . . 90

Bibliography 92

vi



Chapter 1

Introduction

Graphical models are used to express complex global relationships by specifying sim-

pler local interactions. In computer vision, for example, graphical models of human

pose are defined via a loose-limbed approach where neighboring parts are joined by

springs and orientation is given by relative displacement and rotation [151, 50]. While

the model is defined by simple pairwise relationships, it is sufficiently expressive to

capture complex global variations in pose and appearance. In other disciplines, such

as computational biology, the complex 3D structure of a protein molecule can be

modeled by simple pairwise energetic relationships between groups of atoms [137].

However, a model alone is not useful without the ability to perform inferences or

estimate unknown quantities based on observed information.

It is precisely the expressiveness of graphical models that makes statistical infer-

ence so difficult. For example, the Ising lattice from statistical physics encodes the,

sometimes chaotic, dynamics of interacting electrons, such as phase transitions, or

the dynamics of disordered magnets known as spin glasses. Though the model defini-

tion is simple, the chaotic global dynamics it encodes make estimating the unknown

electron states computationally intractable [149].

The most challenging inference problems arise in continuous models with high-

dimensional non-Gaussian statistics. In this thesis we develop algorithms for approx-

imate marginal and maximum a posteriori inference for such models, where existing

techniques do not apply. We focus on algorithms that apply to a broad class of mod-

els, regardless of their analytic form, and explore these algorithms in a variety of

contexts.

1
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1.1 Finding Modes of Continuous Distributions

In many applications the natural inference task is to estimate the most likely config-

uration of unknowns, given observed data. So-called maximum a posteriori (MAP)

inference is particularly important for models of physical systems, such as the human

body or protein molecules. Physical constraints imposed by these models prohibit ar-

bitrary global configurations, and so it is important to reason about jointly consistent

solutions that are feasible.

For continuous models MAP inference reduces to a nonlinear optimization, of-

ten with many local optima due to the complexity of the underlying distribution.

Moreover, global optima are not always preferable due to inaccuracies in model spec-

ification. To be robust to model mismatch it is important to capture multiple local

optima, since they often correspond to good solutions. In models of protein struc-

ture for example, where form is closely linked to function, it is known that protein

molecules assume multiple stable configurations, and characterizing these is impor-

tant [165, 100, 109].

In this thesis we develop particle-based MAP inference for the so-called diverse

M-best MAP inference problem [17]. Our approach is inspired by a similar method for

approximate marginal inference [79], but incorporates a notion of diversity in the set

of hypotheses to capture multiple local optima. This nonparametric approximation

enables MAP inference for an arbitrary probability distribution without imposing

analytic restrictions on the model class. While the framework is entirely general,

we focus on applications involving articulated physical models of human bodies and

protein structure.

1.1.1 Human Pose Estimation and Tracking

Analysis of images involving human figures (sometimes called “looking at people”)

has continued to be one of the most active application areas in computer vision

for more than a decade. Reasoning about human behavior from images and video

involves problems such as detection, localization and tracking [122, 75, 51]. Accurately

reasoning about human pose provides an informative cue for automated systems, e.g.

for image understanding, activity recognition, and “smart” surveillance [156, 185, 61].

Models of human pose largely began with the Pictorial Structures (PS) of Fischler

and Elschlager [53] and later refined by Felzenszwalb and Huttenlocher [50, 51]. The

PS model represents articulated limbs by rectangular bounding boxes, capturing only

high-level shape information such as length and area. The “cardboard people” models

of Ju et al. [89] attempt to capture minor shape variations with polygonal regions,

while a richer shape model is expressed in terms of edge contours by Freifeld et al. [55].
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Figure 1.1: Human pose estimation. Left: Deformable structures model of human pose
and shape. Right: Example estimates of pose and shape on the Buffy dataset.

The Deformable Structures (DS) model of Zuffi et al. [187] combines this notion of

smooth shape deformations with the PS model by replacing bounding boxes with a

PCA shape model.

Despite advancements in modeling the statistics of human pose, reliable infer-

ence remains a challenge. Articulated pose models represent the orientation of parts

by their relative displacement and rotations. These representations result in high-

dimensional energy minimization problems for which existing methods can often prove

unreliable. The PS model, for example, expresses energy in terms of local potentials

for each part which encode image evidence, and pairwise spring-like potentials that

constrain deformations between neighboring parts. This minimization is non-trivial

and Felzenszwalb and Huttenlocher [50] suggest a dynamic programming approach

based on a discretized state-space. Variations on the basic PS model with discrete

max-product are numerous [8, 24, 48, 133, 134], and in particular Yang and Ra-

manan [176] have produced state-of-the-art results on one evaluation by learning a

mixture representation of part likelihoods.

Building on the DS model of Zuffi et al. [187] we express human pose estimation

as a continuous energy minimization. By also modeling shape variation the problem

size is drastically increased, further necessitating inference which can reliably operate

in a high-dimensional continuous space.

Estimating human pose from video sequences extends the pose estimation task

temporally. Ferrari et al. [52] apply the PS model to pose tracking while developing

progressive search-space reduction techniques to allow for discretization of the high-

dimensional solution space. The authors find no benefit in performing inference on

the full temporal model, indeed they show that results degrade when the temporal

correlations are incorporated. This finding is echoed by Sapp et al. [139] where the

authors also incorporate optical flow as a temporal cue. Zuffi et al. [188] exploit
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Figure 1.2: Human pose tracking. Left: Deformable structures model with temporal
extensions. Right: Example estimates of pose over a video sequence.

optical flow with their flowing puppets model via flow-based proposal distributions

within particle swarm optimization. These temporal links, however, are not explicitly

modeled and inference is performed on individual frames.

Among the previous works for pose estimation in video sequences it remains to

be demonstrated that there is a significant advantage to performing inference on the

structural and temporal model, jointly. We strongly suspect this is a result of inef-

fective inference on the high-dimensional energy function. Pruning and discretization

of the solution space is too coarse to be of practical use, while local search, particle

filters and particle swarm optimization do not exploit the structure of the model. In

Chapter 3 we develop particle-based max-product inference for human pose track-

ing, which allows for optimization in the continuous space while exploiting the model

structure. Extending this to the temporal domain we will incorporate flow-based pro-

posals while performing joint inference on the full joint distribution over structural,

as well as temporal components.

1.1.2 Protein Structure Prediction

Proteins comprise a class of macromolecules occurring in the cell and which are nec-

essary for virtually all biological functions. They can act as enzymes, catalyzing

biochemical reactions important for cellular tasks such as metabolism. Together with

RNA polymerase proteins play a key role in the transcription process where they serve

as initiation factors determining where transcription begins on the DNA strand. Pro-

teins even play a major role in creating new proteins, where together with rRNA they

comprise the ribosome, the location for protein synthesis.
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Figure 1.3: Protein structure. Top: The primary structure given by a sequence of
amino acids joined by peptide bonds which form a backbone, and amino acid side chains as
sticks. Bottom: 3D tertiary structure of protein in its native state. Coils denote secondary
structural elements of the backbone, called α-helices. Amino acid side chains are shown as
small sticks attached to the backbone.

A protein molecule consists of a chain of amino acids joined by peptide bonds

Fig. 1.3 (top). Atomic interactions between nearby amino acids, as well as environ-

mental interactions, cause the protein to assume a three-dimensional structure or a

conformation Fig. 1.3 (bottom). Predicting this structure is one of the most im-

portant tasks in computational microbiology as it determines the binding sites and

biological function of the protein.

Protein structure prediction is critical for drug discovery and disease research.

The majority of neurodegenerative diseases such as Alzheimer’s and amyotrophic

lateral sclerosis (ALS) are believed to be linked to misfolded proteins which cause a

buildup of insoluble extracellular deposits [143]. While methods exist for experimental

validation of a protein’s native structure, these methods often involve costly and

difficult procedures such as X-ray crystallography and nuclear magnetic resonance

(NMR) imaging. Developing more effective prediction algorithms is an active area of

research as these would aid experimental validation.

Existing computational methods for structure prediction are primarily limited to

Markov chain Monte Carlo sampling combined with simulated annealing to deal with
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the highly multimodal energy landscape. Because the problem is extremely high-

dimensional, many approaches limit the search space through the use of fragment

assembly methods which exchange sequences of amino acids for homologues of known

structure [137]. While fragment assembly performs well experimentally [118], there

are many cases where homologues are insufficient or non-existent. In these cases ab

initio structure prediction estimates the structure of a novel protein by minimizing

an energy function based on the physics of atomic interactions [9].

In Chapter 4 we address protein structure prediction using the same particle-

based inference as underlying our results in human pose estimation. We show that by

minimizing the continuous energy function that models protein structure we are able

to avoid inaccuracies associated with the standard discretization. Moreover, our focus

on solution diversity preserves multiple stable conformations wknown to be associated

with protein function [165, 100, 109].

1.2 Convergent Alternative to Message Passing

Inference algorithms developed in this thesis fall under the class of variational meth-

ods [169, 85, 88], which pose statistical inference as an optimization problem. The

objective function, known as the variational free energy, is minimized over the class

of probability density functions [181, 183]. Necessary conditions for stationarity

are given by the calculus of variations, from which variational methods derive their

name [62].

In practice the variational free energy is optimized using fixed-point methods

known as message passing algorithms [169], such as the well-known belief propaga-

tion (BP) and expectation propagation (EP) algorithms [127, 114]. While existing

message passing algorithms define fixed point iterations corresponding to stationary

points of the variational free energy, their greedy dynamics do not distinguish be-

tween local minima and maxima, and can fail to converge. For continuous estimation

problems, this instability is linked to the creation of invalid marginal estimates, such

as Gaussians with negative variance. This behavior is unpredictable and problematic

in practice, and leads to uninterpretable approximations.

We instead develop a convergent optimization algorithm which directly minimizes

the variational objective while avoiding degenerate marginals. Our approach leverages

augmented Lagrangian methods with well-understood convergence properties [21],

and uses gradient projection [22] to ensure that marginal approximations are valid at

all iterations. We derive general algorithms for discrete and Gaussian pairwise Markov

random fields, showing improvements over standard loopy belief propagation. We also

apply our method to a hybrid model with both discrete and continuous variables,
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Figure 1.4: State-space models and target tracking. Top Left: Switching state-
space model over discrete zt and continuous xt states, with observations yt. Bottom Left:
Dropping temporal correspondence on discrete states yields the target tracking model, where
discrete components represent the assignment of observations to target or clutter. Right:
Example output of target tracking with target observations (red) and clutter (blue).

showing improvements over expectation propagation.

1.3 Improved Variational Inference for State-Space

Models

State-space models provide a framework for relating the unknown parameters of a

time-evolving system (or time-series [154]) to a sequence of measurements from a,

possibly noisy, remote sensor. These models are widely used in the acoustic arena

for recognizing human speech [132] and distinguishing individual speakers [173], or

to detect abnormal seismic events such as nuclear tests and earthquakes [103]. With

more general sensors one is often interested in estimating an object’s spatial position

over time, known as target tracking.

Applications of target tracking are numerous, ranging from surveillance systems

and air traffic control to visual object tracking. When the target in question is

non-cooperating and can undergo changes in dynamics, these maneuvers must be

inferred. A switching state-space model [14, 13] extends this representation to the

case where the evolution of a continuous process is conditioned on a set of discrete

states, Fig. 1.4 (left-top). To further complicate the problem advances in sensor

technology often require tracking software to deal with high-sensitivity and low SNR

environments. This results in another sort of discrete uncertainty in establishing the
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correspondence between observations and targets, so-called assignment uncertainty.

Such uncertainty is often modeled by dropping the temporal link between discrete

elements, Fig. 1.4 (left-bottom).

In a probabilistic setting the assignment problem leads to computational in-

tractability [5], for which there is a rich literature on approximation algorithms [12].

Stochastic approximations are widely used in the form of particle filters [45], but can

be unstable for high-dimensional problems. Heuristic adaptations of the Kalman fil-

ter result in deterministic approximations with nearest-neighbor data association [5],

which generally perform poorly in high clutter environments.

In Ch. 5 we extend the focus on deterministic methods and develop a family

of algorithms based on (EP). This approach is similar in spirit to existing filtering

approaches, but extends and generalizes these methods to produce smoothed posterior

estimates. When compared to traditional tracking techniques on a variety of synthetic

examples our approach produces significantly more accurate estimates.

1.4 Overview of Contributions

In this thesis we develop robust statistical methods for marginal and MAP infer-

ence, which we demonstrate on a variety of applications. We summarize our primary

contributions below.

1.4.1 Particle-Based Continuous MAP Inference

In many domains involving models of complex–often physical–interactions it is nec-

essary to estimate continuous marginals for which exact message updates are in-

tractable. Moreover, increased dimensionality prohibits accurate numerical methods

based on discretization. Monte Carlo methods like simulated annealing provide one

common alternative [63, 6], but in many applications they are impractically slow to

converge.

Inspired by work on particle filters and sequential Monte Carlo methods [30],

several algorithms employ particle-based approximations of continuous BP messages

via a non-uniform discretization which adapts and evolves across many message-

passing iterations [92, 157, 82, 79]. This literature focuses on the sum-product BP

algorithm for computing marginal distributions where importance sampling methods

are used to update particle locations and weights.

Motivated by complementary families of MAP inference problems, we instead de-

velop a diverse particle max-product (D-PMP) algorithm in Chapter 3. We view the
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problem of approximating continuous max-product BP messages from an optimiza-

tion perspective, and treat each particle as a hypothesized solution. Particle sets

are kept to a computationally tractable size not by stochastic resampling, but by an

optimization algorithm which directly minimizes errors in the max-product messages.

We show that the D-PMP algorithm implicitly seeks to maintain all significant pos-

terior modes, and is substantially more robust to initialization than previous particle

max-product methods. We demonstrate the generality of this approach on a range of

diverse applications such as human pose estimation, tracking, and protein structure

prediction.

1.4.2 Continuous Optimization of Protein Side Chains

The high-dimensional representations used in protein structure prediction prohibit

continuous minimization of the free energy. To cope with this most methods rely on

a coarse discretization based on experimentally validated conformations [47]. Opti-

mization proceeds either by a discrete surrogate objective or via simulated annealing

with local gradient optimization [25, 29, 137]. While discrete approximations offer

efficient alternatives, they fail to capture fine details of protein structure. Optimiza-

tion based on simulated annealing can be computationally prohibitive and sensitive

to initialization.

In Chapter 4 we apply particle max-product to protein side chain prediction,

thereby avoiding the limitations associated with approximate techniques based on

discretization. Moreover, our diverse particle selection procedure capably preserves

multiple distinct configurations, thus avoiding local convergence issues which plague

simulated annealing. Preserving these diverse conformations is important for struc-

ture prediction, where proteins assume multiple stable conformations relating to dis-

tinct functions [165, 100, 109].

1.4.3 Convergent Variational Inference without Degeneracy

Prior work in convergent inference is largely focused on discrete models, where degen-

eracy issues do not arise. For example, the belief optimization approach by Welling

and Teh [172] exhibits convergence and degeneracy issues similar to loopy BP when

applied to Gaussian models. The convex concave procedure [184] and related double-

loop algorithms minimize the convex components of the variational objective while

forming local convex approximations to the remaining terms. The double-loop algo-

rithm of Heskes and Zoeter [73] is convergent for continuous switching state-space

models, but does not address degeneracy.
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In Ch. 5 we develop optimization of the variational objective which addresses the

convergence and degeneracy issues that plague existing methods. Local convergence

is guaranteed under mild assumptions via properties of the method of multipliers [22,

21]. Degenerate marginal approximations occur due to normalization constraints,

which are inactive for discrete models, and that are not strictly enforced for continuous

models. By using gradient projection methods we explicitly enforce these constraints

and ensure iterates represent valid distributions at all stages of inference.

1.4.4 Improved Variational Inference for Tracking in Clutter

Probabilistic target tracking in the presence of missed and false (clutter) detections

poses a challenging problem, for which exact Bayesian inference is intractable [5].

While there is thus a rich literature on approximate tracking algorithms we focus on

deterministic approximate inference algorithms. Sequential Monte Carlo methods,

such as particle filters, are also used for tracking [45] but lead to less compact state

representations and can be unstable for high-dimensional problems.

The probabilistic data association filter (PDAF) [11] incorporates observations se-

quentially via a single forward pass, approximating the state’s marginal distribution

as Gaussian with matched mean and covariance. The probabilistic multi-hypothesis

tracker (PMHT) [155, 11] instead adapts the expectation maximization (EM) algo-

rithm to iteratively estimate smoothed state estimates from a fixed batch of data.

These algorithms are derived from different measurement models: the PDAF as-

sumes the target produces at most one true detection per time step, while the PMHT

assumes the number of true detections is binomially distributed.

In Chapter 5 we propose a family of alternative tracking algorithms based on ex-

pectation propagation (EP) [114], a sophisticated variational approach to approximate

inference. This approach is similar in spirit to the PDAF, in that we incorporate lo-

cal evidence and project to a family of tractable approximate marginal distributions.

Unlike PDAF, however, our EP algorithms can produce accurate smoothed state

estimates; be easily adapted to various measurement models; and employ marginal

approximations of varying complexity.



Chapter 2

Variational Inference for Graphical

Models

We briefly introduce the concepts upon which our later contributions are based. We

begin with a review of graphical models (Sec. 2.1), a core modeling tool which moti-

vates our view of the statistical inference tasks we will explore in later chapters. From

graphical models we move to the exponential family of distributions (Sec. 2.2). Aside

from covering typical properties of the exponential family we introduce the unnor-

malized exponential family, which we will use in later sections related to expectation

propagation (EP).

From the Markov independence properties of graphical models we construct effi-

cient inference algorithms based on local computations (Sec. 2.3). These local com-

putations can be interpreted as passing messages in the graphical model. Message

passing algorithms optimize a global variational objective to perform approximate

inference and are at the core of this thesis.

2.1 Graphical Models

Exploiting independence between random quantities is key to developing efficient al-

gorithms for learning and inference, but modeling these interactions can be difficult.

Graphical models offer a diagrammatic approach to modeling complex global rela-

tionships via simpler local interactions. Such representations are particularly helpful

in complex systems, involving many random variables, where dependencies may be

difficult to capture [127, 101, 37]. Moreover, the dependency structure encoded in

the graphical model can be exploited to develop efficient inference algorithms.

Consider a set of random variables x = (x1, . . . , xd) and a collection of subsets C
of indices {1, . . . , d} where each index appears in at least one subset. A probability

11
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density function (PDF) can be represented as the following product density,

p(x) =
1

Z

∏
c∈C

ψc(xc), Z =

∫
X

∏
c∈C

ψc(xc)dxc. (2.1)

The quantity Z is a global normalizing constant which is independent of random vari-

ables x. Through connections to statistical physics Z is called the partition function.

With a slight abuse of terminology we refer to the nonnegative factors ψ as potential

functions. The connection with energy potentials is more explicitly shown by the

equivalent Gibbs distribution,

p(x) ∝ exp

(
− 1

T

∑
c∈C

ϕc(xc)

)
, (2.2)

where ϕc = − logψc are the energy potentials. Traditionally the Gibbs representation

explicitly includes a temperature T , which controls the relative height of modes in

the distribution. Every random vector x has a Gibbs representation, though the

factorization is not necessarily unique. For example, consider the two equivalent

Gibbs representations,

ψ123(x1, x2, x3)ψ4(x4) and ψ12(x1, x2)ψ34(x3, x4). (2.3)

While unique these factorizations may express the same probability density, and the

dependency structure of each factorization may yield inference algorithms with dif-

ferent computational properties.

Graphical models can be partitioned into two classes based on edge type: undi-

rected and directed. Undirected models are more general and often easier to specify

than their directed counterparts because factors underlying the graph need not be

locally normalized. However, directed models often result in more efficient inference

algorithms and can simplify the sampling process due to the restriction that factors

are conditional probabilities. In the following sections we discuss three of the most

common graphical model types, depicted in Figure 2.1, along with the benefits and

limitations of each.

2.1.1 Undirected Graphical Models

The graph G = (V , E) defines a graphical model with vertices s ∈ V and edges

(s, t) ∈ E . Undirected models have the property that edges are defined irrespective

of node ordering,

(s, t) ∈ E ⇐⇒ (t, s) ∈ E . (2.4)
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x1 x2

x3

x1 x2

x3

x1 x2

x3

Figure 2.1: Graphical models. Left: A pairwise Markov random field respects the
factorization ψ(x1, x2)ψ(x2, x3)ψ(x1, x3). The factorization is implicit and may equally
respect a non-pairwise factorization ψ(x1, x2, x3). Center: A factor graph explicitly denotes
the latter non-pairwise factorization. Right: A Bayesian network encodes an unambiguous
product of normalized conditional probabilities p(x1)p(x2)p(x3 | x1, x2).

The most general construction of an undirected graphical model is given by the

Markov random field (MRF). The MRF implicitly encodes the Gibbs factorization (2.1)

in terms of graph cliques. The factor graph extends this construction by explicitly

denoting the factorization via special factor nodes. The following sections describe

each construction in detail.

Markov Random Fields

The MRF dates back to a study of random lattices by Dobruschin [44] and has since

been widely used in applications ranging from statistical physics [181] to low-level

computer vision [63, 71]. An MRF is an undirected graph G = (V , E) with a vertex

s ∈ V for each component variable xs. An edge (s, t) ∈ E exists for every pair of

nodes s and t that appear in a potential ψc(·) of joint factorization,

p(x) =
1

Z

∏
c∈C

ψc(xc). (2.5)

A stochastic process x is said to be Markov with respect to the graph G = (V , E) if x

has a Gibbs representation that gives the graph G by the above construction.

An MRF is equivalently defined in terms of conditional independencies. For a

disjoint subset of nodes A,B and C let,

xA⊥xC | xB (2.6)

mean the variables xA are independent of xC conditioned on xB. A stochastic process

x is Markov with respect to G if for every set of conditionally independent variables

xA⊥xC | xB any path from vertex A to C must pass through vertex B. If x is

Markov with respect to G then x is Markov with respect to any graph G
′

= (V , E ′)
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over the same vertices V that has E ⊆ E ′ , and by this reasoning x always respects the

complete graph.

The factorization expressed by an MRF G is implied by the graph cliques. For

each potential ψc(xc) there must exist a clique in G with vertices c ⊆ V . Moreover,

the factorization expressed by an MRF may not be unique, for example the complete

graph is consistent with any factorization.

A minimal representation is one in which the factors ψc are maximal cliques of

the MRF G. But even this minimal representation may not be unique. For example,

consider the function which takes the value one if x1 = x2 = x3 and zero everywhere

else. There are two minimal factorizations of this function,

I(x1 = x2)I(x1 = x3) and I(x1 = x2)I(x2 = x3), (2.7)

where I is the Kronecker delta function.

Pairwise Markov Random Fields

Frequently throughout this thesis we will express p(x) as a product density which

factorizes according to single-node local evidence potentials, and pairwise compatibility

potentials. This construction is known as a pairwise MRF and takes the form,

p(x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E
ψst(xs, xt). (2.8)

Pairwise MRFs are simple to specify which has lead to their wide adoption, but

they are also flexible. Pairwise MRFs are a general class of graphical models in

the sense that they can encode any probability distribution via its junction tree

representation [41, 37]. Specialized classes of MRFs such as the pairwise binary

lattice date back to the pioneering work of Ising [84], the so-called Ising model, as

well as the multivariate extension, the Potts model. For these reasons we will assume

pairwise MRF models in many of the later chapters.

Factor Graphs

Factor graphs explicitly represent the Gibbs factorization through special factor nodes,

and thus avoid the ambiguities associated with MRFs. The representation is an undi-

rected bipartite graph G = (V , E) with a vertex for every variable xs and each factor

ψc. An edge (s, c) ∈ E connects these two nodes if xs is an argument of ψc. For

C ⊂ V , the set of factor vertices, the joint density of a factor graph is unique,

p(x) =
1

Z

∏
c∈C

ψc(xc), (2.9)
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where xc is the set of variables connected by the factor vertex c ∈ C. Each edge

connects a random variable with a factor as depicted in Fig. 2.1.

The topology of factor graphs enables development of efficient message passing

inference such as the sum-product belief propagation algorithm [96], which we discus

in Sec. 2.3.2. The connection between graphical representations and inference has

made factor graphs popular for developing channel decoders such as the popular

turbo codes [20, 19], shown to be equivalent to sum-product BP inference on a factor

graph [56, 112]. The factor graph representation was then used to extend turbo codes

and rediscover the class of low density parity check (LDPC) codes [60, 32, 20, 19, 33].

2.1.2 Bayesian Networks

When factors are locally normalized conditional probabilities we may define a directed

acyclic graph (DAG), known as a Bayesian network. The graph G = (V , E) contains

a single node for each random variable s ∈ V with directed edges, so the existence of

a directed edge (s, t) ∈ E does not imply the reverse edge exists,

(s, t) ∈ E ; (t, s) ∈ E . (2.10)

For the distribution to be well-defined the graph must not contain directed cycles.

More formally, for any directed sequence (s1, . . . , sk) where (si, si+1) ∈ E , there must

be no edge from k back to the start node (sk, s1) /∈ E .

For a node s ∈ V let Pa(s) be the set of parents. Each factor is a normalized

conditional probability,

ψ(xs, xPa(s)) = p(xs | xPa(s)). (2.11)

We can write the full joint distribution as a product of conditional and marginal

probabilities. For a leaf node without parents we follow the convention that Pa(s) = ∅
and the factor is a prior probability ψ(xs, xPa(s) = ∅) = p(xs):

p(x) =
∏
s∈V

p(xs | xPa(s)). (2.12)

Bayesian networks simplify marginal inference since we do not need to compute

a partition function. Sampling the distribution is also more straightforward than for

undirected graphs. To draw a sample x ∼ p(x) one begins by drawing samples from

the prior distribution at the leaves xs ∼ p(xs). Then, one samples the children of

node s, denoted Ch(s), so that xt ∼ p(xt | xPa(t)). This generative process is repeated

until all nodes are sampled and it is guaranteed to be well-defined on a DAG.
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2.2 Exponential Family

The exponential family encompasses a large class of well-known probability distribu-

tions including the Gaussian, Bernoulli, Multinomial, Gamma, Dirichlet, and many

others. The exponential family is well-studied both in terms of its analytic proper-

ties [169] and its information geometry [135, 39, 4, 3, 16], making it a convenient set

to work with. This is particularly true for statistical inference tasks, which can often

be recast as mapping between alternate forms of parameterization. In the following

sections is a brief overview of some of the properties directly relevant to later chap-

ters, beginning with a definition of the exponential family and its alternate forms of

parameterization.

2.2.1 Definition and Parameterization

The exponential family defines a distribution for a random vector x ∈ X in terms of

canonical parameters θ ∈ Θ and sufficient statistics φ(x) = (φ1(x), . . . , φd(x)) where

φα : X → Rd. The corresponding density is fully specified by these elements,

pθ(x) = h(x) exp
{
θTφ(x)− Φ(θ)

}
, Φ(θ) = log

∫
X
h(x) exp

{
θTφ(x)

}
dx, (2.13)

with base measure h(x) and log-partition function Φ(θ) = logZ(θ). The log-partition

function plays a prominent role in later chapters, and estimating it is a core problem in

statistical inference where it is the marginal log-likelihood of the data. In exponential

families the log-partition function is also the cumulant generating function. By this

relationship derivatives of the partition function yield moments of the distribution:

∂Φ(θ)

∂θα
= Epθ [φα(x)],

∂2Φ(θ)

∂θα∂θβ
= Epθ [φα(x)φβ(x)]. (2.14)

That the second derivative yields a covariance, which by definition is positive semi-

definite, implies convexity of Φ(θ) [169, Prop. 3.1]. This fact implies convexity on the

set of valid canonical parameters,

Θ , {θ ∈ Rd | Φ(θ) < +∞}. (2.15)

An alternative parameterization can be given in terms of mean parameters µα =

Epθ [φα(x)]. We will generally use pµ to denote the mean parameterization and pθ
for the canonical parameterization. Convexity of Φ(θ), along with the cumulant

generating function property (2.14), implies convexity of the set of realizable mean

parameters,

M , {µ ∈ Rd | ∃ p s.t. Eθ[φ(x) = µ]}. (2.16)
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Characterizing this set plays a prominent role in variational inference (Sec. 2.3) as

it provides a constraint set that defines valid distributions. In Sec. 5.2 we develop

marginal inference based on gradient projection, which avoids degenerate distribu-

tions outside of this set, such as Gaussians with negative definite covariance matrices.

2.2.2 Basic Properties

The canonical form of (2.13) has a number of useful properties, in particular ex-

ponential families are closed under multiplication and the product density takes a

simple form. For density functions f(x) and q(x) with canonical parameters θf and

θq, respectively, the product density p(x) ∝ f(x)q(x) is in the exponential family with

parameters θp = θf + θq provided θp ∈ Θ are valid canonical parameters,

exp
{
θTf φ(x)− Φ(θf )

}
exp

{
θTq φ(x)− Φ(θq)

}
∝ exp

{
(θf + θq)

Tφ(x)− Φ(θf + θq)
}
.

A corollary of this is the well-known property that Gaussians are closed under mul-

tiplication. A less well-known property that we will exploit in later sections, is that

Gaussians are closed under division, provided the resultant covariance matrix is pos-

itive semidefinite.

Canonical parameters are useful for analytic operations, such as multiplication

and division, whereas mean parameters are more useful for statistical tasks. For

instance, given some p̃(x) we can find the closest pµ(x) in the exponential family in

terms of Kullback-Leibler divergence. This I-projection, as it is known in information

geometry, leads to the well-known moment-matching property of the exponential

family,

µ̂ , arg min
µ

KL(p̃‖pµ)⇔ µ̂ = Eep[φ(x)]. (2.17)

This property states that for any distribution p̃(x) the closest exponential family

approximation is efficiently found by calculating the expected sufficient statistics

Eep[φ(x)].

Some exponential families are closed under marginalization, for example consider

the multivariate Gaussian N(x | µ,Σ). The marginal distribution p(x(i)), the ith

element of x, is given by the corresponding elements of the mean parameters N(x(i) |
µ(i),Σ(i, i)). An example of an exponential family not closed under marginalization is

given by the product of Gaussian and multinomial distributionsN(x | µk,Σk)Mult(k |
θ). Marginalization over k yields a Gaussian mixture which is not in the exponential

family.
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2.3 Message Passing and Variational Inference

The approach underlying variational inference is to recast statistical inference as an

optimization problem. The resulting objective, known as the variational free energy,

minimizes Kullback-Leibler divergence with respect to an unknown function of the

random variables (Sec. 2.3.1). Variational inference derives its name from the calculus

of variations, which addresses the problem of optimizing functionals [62]. In practice,

the optimization is typically intractable, both in the number of constraints and terms

in the objective function, so approximations and relaxations are introduced. Fixed-

point iterations known as message passing algorithms approximate optimization for

marginal (Sec. 2.3.2) and maximum a posteriori (MAP) inference (Sec. 2.3.3). A

good tutorial on the subject of variational inference is provided by Jaakkola [85] with

further details in [88, 169].

2.3.1 Variational Free Energy

We begin by introducing the concept of marginal inference and the corresponding

variational formulation. Given a distribution p(x, y) let y be observed values and let

x be latent random vectors. Consider a variable xs, the task of posterior marginal

inference is to compute the conditional distribution,

p(xs | y) =
p(xs, y)

p(y)
, p(y) =

∫
p(x, y)dx. (2.18)

More generally, we may wish to compute the conditional density p(xS | y) for any sub-

set of variables xS = (xs1 , . . . , xsn). The normalization p(y) is the marginal likelihood

– it depends on observed data and any model parameters.

Variational inference poses the following optimization,

maximize
q

J(q) = log p(y)−KL(q(x) ‖ p(x | y)). (2.19)

Maximization is with respect to the variational distribution q, which is constrained to

be a valid probability distribution. While the optimization (2.19) seems vacuous, it

is sensible for a couple of reasons: first, observe that the Kullback-Leibler divergence

is non-negative and vanishes when q(x) equals the true posterior p(x | y). Second,

if the true posterior is a feasible solution then the optimal value J(q∗) equals the

log-partition function, and for all other values of q yields a bound,

J(q) ≤ log p(y), J(q∗) = log p(y).

However, the variational optimization (2.19) can only be evaluated if the posterior

p(x | y) is tractable. With some algebra, the objective can be reformulated in a way
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that can be evaluated for any tractable distribution q,

J(q) = −KL(q(x) ‖ p(x, y)) = Eq[− log p(x, y)] +H(q). (2.20)

In this form the objective decomposes according to the structure of q and the joint

distribution p. Moreover, the variational objective (2.20) is closely related to energy

minimization in statistical physics. Let F(q) = −J(q) and we have the variational

free energy,

minimize
q

F(q) = Eq[− log p(x, y)]−H(q). (2.21)

The two terms on the r.h.s. of the variational free energy (2.21) have competing

influence. The first term Eq[·] is known as the average energy and encourages the

variational distribution q to explain the data. The second term H(q) acts as a regu-

larizer by encouraging maximum entropy.

2.3.2 Message Passing for Marginal Inference

For tree-structured distributions the variational problem (2.21) can be efficiently op-

timized via fixed point algorithms whereby each iteration recursively updates local

statistics in the graphical model. These fixed point iterations can be interpreted

as passing messages along edges of the graph. The resulting algorithms, known as

message passing algorithms, decompose the global variational objective, via Markov

independence, and optimize the free energy in terms of strictly local computations.

For graphs with cycles we will see that these algorithms are not guaranteed to yield

exact inference, but that empirically they often produce accurate approximations.

Belief Propagation

We show how Markov independence leads to efficient inference through a concrete

example. To simplify the discussion let us drop the distinction between observed

data and focus only on latent variables. Consider the following pairwise MRF,

p(x1, x2, x3, x4) ∝ ψ1(x1)ψ2(x2)ψ3(x3)ψ4(x4)ψ12(x1, x2)ψ23(x2, x3)ψ24(x2, x4). (2.22)

For an acyclic model the marginal p(x1) can be computed directly, and we can use

properties of Markov independence to decompose this computation. In this example

x2 is a separator for any pair of variables, meaning any two variables are conditionally

independent given x2 (see Sec. 2.1.1). Therefore, we can compute integrals over x3

and x4 independently and multiply the results to integrate over x2. We denote these
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xs

qs(xs)=ψs(xs)
∏

t∈Γ(s)

mts(xs) Γ(s)

xs xt

mts(xs)=
∫

ψt(xt)ψst(xs, xt)
∏

u∈Γ(t)\s
mut(xt) dxt

Γ(t)\s

ψst(xs, xt)

Belief Message Update
Figure 2.2: Belief propagation update equations for marginal and message.

sub-operations m32(x2) and m42(x2) because they can be interpreted as messages

being passed between nodes in the graphical model:

p(x1) ∝ ψ1(x1)

∫
ψ2(x2)

(∫
ψ23(x2, x3) dx3

)
︸ ︷︷ ︸

m32(x2)

(∫
ψ24(x2, x4) dx4

)
︸ ︷︷ ︸

m42(x2)

dx2

︸ ︷︷ ︸
m21(x1)

. (2.23)

Belief Propagation (BP) [127] codifies the marginal calculations for distributions

Markov with respect to a graph G. The BP marginal and message update equations

for a pairwise MRF are,

q(xs) ∝ ψs(xs)
∏
t∈Γ(s)

mts(xs) (2.24)

mts(xs) =

∫
ψt(xt)ψst(xs, xt)

∏
u∈Γ(t)\s

mut(xt) dxt (2.25)

The marginal over xs is given by the product of messages mts(xs) from neighbors

t ∈ Γ(s), and the local evidence ψs(xs). The message from node t to s is computed

recursively by multiplying incoming messages to node xt with the local evidence and

compatibility potentials, and then integrating over xt. The message is a function of

xs, the receiving node. Figure 2.2 gives a graphical representation of the message and

marginal updates.

The pairwise factorization is assumed for simplicity since any model can be ex-

pressed as a pairwise MRF via its junction tree representation (c.f. Sec. 2.1.1). For

general factor graphs BP is variously known as the sum-product BP algorithm [96],

since updates involve products over messages, and for discrete models the integrals

become summations.
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xs xt

Cavity Distribution

1

ψst(xs, xt)

xs xt

Message Update

3

ψst(xs, xt)

Projection

2

p̂ts(xs) =
∫

q\ts (xs)ψst(xs, xt)q
\s
t (xt)dxt

Figure 2.3: Expectation propagation updates for pairwise MRFs.

For acyclic graphs BP yields exact marginals. For graphs with cycles the recur-

sions (2.25) are well-defined, but they produce approximations to the true marginals.

Loopy BP (LBP) often produces good approximations in practice [119, 112], but it is

not guaranteed to converge. Loopy BP convergence is well-studied for discrete pair-

wise MRFs resulting in sufficient conditions for convergence. Early work by Tatikonda

and Jordan [161] drew on connections with a theory of Gibbs measures to insure con-

vergence of LBP based on Dobrushin’s condition. These results were later tightened

by Heskes [72], and further by Ihler [78] with analysis that implies bounds on the

distance between LBP fixed points and on the propagation of message errors.

Expectation Propagation

The message update integral (2.25) constrains BP to discrete and Gaussian MRFs.

Expectation Propagation (EP) applies to a much broader class of models [114, 73,

169], and is made possible by exploiting closure properties of the exponential family

(see Sec. 2.2). For a cleaner presentation we assume a pairwise MRF consisting of

only pairwise potentials,

p(x) =
1

Z

∏
(s,t)∈E

ψst(xs, xt). (2.26)

This factorization is w.l.o.g. since node factors ψs can always be absorbed arbitrar-

ily into a neighboring edge potential. Expectation propagation approximates the

marginal ps(xs) with a density in the exponential family defined to be a product of
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messages,

qs(xs) = exp(〈θs, φ(xs)〉 − Φ(θs)) ∝
∏
t∈Γ(s)

mts(xs) (2.27)

with canonical parameters θs, sufficient statistics φ(xs) and mean parameters µs =

E[φ(xs)]. The messages mts(·) belong to the unnormalized exponential family with

parameters θts and a scale factor γts,

mts(xs) = γts exp(〈θts, φ(xs)〉). (2.28)

To update the marginal approximation qs(xs) we first choose a factor ψst and

remove the corresponding messages from marginals over nodes incident to this factor.

The so-called cavity is an unnormalized exponential family:

q\ts (xs) =
qs(xs)

mts(xs)
= γ\ts exp(〈θ\ts , φ(xs)〉). (2.29)

We form the augmented distribution by multiplying the true factor ψst with the cor-

responding cavity distributions and integrating over xt,

p̂ts(xs) =

∫
q\ts (xs)ψst(xs, xt)q

\s
t (xt)dxt. (2.30)

The augmented distribution (2.30) is a local approximation to the marginal, but is

not necessarily in the exponential family. The variational approximation is updated

by projecting into the exponential family,

qnews (xs) = arg min
q

KL(p̂ts(xs) ‖ q(xs)). (2.31)

Using the moment matching property of the exponential family (see Sec. 2.17) we

update the parameters as,

µnews = Eqnews
[φ(xs)] = Ep̂ts [φ(xs)]. (2.32)

One restriction EP imposes is that moments of the augmented distribution (2.32) can

be computed. If these integrals are not analytic they can be numerically approxi-

mated, for example by quadrature methods [186]. The associated canonical parame-

ters θnews can be computed from (2.32) to yield the log-partition Φ(θnews ), which fully

specifies the exponential family density. Finally, we update the message from t to s

as,

mts(xs) =
qnews (xs)

q
\t
s (xs)

. (2.33)

This message update is easily calculated by subtracting canonical parameters, θts =

θnews − θ
\t
s . The algorithm proceeds iteratively by updating each factor ψst for all

(s, t) ∈ E in any order. Convergence is determined when the change in message

parameters θts falls below some specified threshold.
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Figure 2.4: Constraint sets of Bethe variational problem (2.39)

Bethe Variational Objective

Fixed points of BP and EP correspond to stationary points of a variational opti-

mization known as the Bethe free energy [183, 181, 182]. We briefly discuss this

correspondence for a pairwise MRF G = (V , E), a more detailed discussion is given

by Yedidia et al. [183]. Consider a variational distribution q(x) in the exponential

family with sufficient statistics φ(x) ∈ Rd,

q(x) ∝ exp{〈θ, φ(x)〉}, µ = Eq[φ(x)]. (2.34)

The variational distribution decomposes into unary qs(xs) and pairwise qst(xs, xt)

marginal approximations. With this parameterization we obtain a compact represen-

tation of the variational free energy (2.21) in terms of mean parameters,

min
µ∈M(G)

F(µ) = min
µ∈M(G)

Eµ[− log p(x)]−H[µ]. (2.35)

The constraint set M(G) is the set of realizable marginal mean parameters, which

ensures that the variational distributions are well-defined marginals,

M(G) = { µ : ∃ some p(x) with marginal mean parametersµ }. (2.36)

For discrete models M(G) is known as the marginal polytope and is specified by a

set of linear inequalities. However, exactly characterizing the marginal polytope may

require exponentially many constraints [169]. We relax the constraints to the set of

locally consistent marginal distributions L(G), which are properly normalized and

satisfy expectation constraints associated with each edge of the graph,

Cs(µ) = 1−
∫
qs(xs;µs) dxs︸ ︷︷ ︸

Normalization

, Cts(µ) = µs − Eqst [φs(xs)]︸ ︷︷ ︸
Local Consistency

. (2.37)
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This is a relaxation in the sense that M(G) ⊂ L(G) with strict equality if G does not

contain cycles. We approximate the entropyH[µ] with the entropy of a tree-structured

distribution. Such an approximation is tractable and consistent with L(G), and yields

the Bethe free energy,

FB(µ) =
∑

(s,t)∈E
Eqst [log qst(xs, xt)− logϕst(xs, xt)]

−
∑
s∈V

(ns − 1) Eqs [log qs(xs)− logψs(xs)], (2.38)

where we define the shorthand ϕst = ψstψsψt and ns = |Γ(s)| is the number of

neighbors to node s. The resulting Bethe variational problem (BVP) is,

minimize
µ

FB(µ)

subject to Cts(µ) = 0,∀s ∈ V , t ∈ Γ(s)

Cs(µ) = 0,∀s ∈ V ,
{µs : s ∈ V} ∪ {µst : (s, t) ∈ E} ∈ K.

(2.39)

The constraint set K =
⋃
s Ks

⋃
st Kst defines the set of valid mean parameters µ. The

definition of K depends on the variational distribution q, for example if q is Gaussian

then K is the positive semidefinite cone.

2.3.3 Message Passing for MAP Inference

Another common task in statistical inference is to quantify uncertainty about the

maximizing configuration of random variables, known as maximum a posteriori (MAP)

inference. In this section we show that the MAP problem has a variational for-

mulation which can be seen as the zero temperature limit of the variational prob-

lem [169, 168, 166]. We also introduce the max-product (MP) variant of BP, a mes-

sage passing algorithm which solves the MAP variational objective in tree-structured

graphical models [2, 37, 41]. For loopy models, where the variational problem is in-

tractable, we discuss the reweighted max-product (RMP) algorithm, which minimizes

an upper bound on the MAP probability.

2.3.4 Variational MAP Inference

Maximum a posteriori inference is sensible in applications where a jointly consistent

estimator is preferred. Some examples we discuss later in this thesis are the articulated

models of human pose (Sec. 3.3.1 and Sec. 3.3.2) and protein structure prediction

(Ch. 4).
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To simplify the presentation we assume p(x) is a discrete pairwise MRF with

xs ∈ {1, . . . , K}. The log-joint distribution is given by the following overcomplete

representation,

log p(x) =
∑
s∈V

K∑
i=1

θs;iδi(xs) +
∑

(s,t)∈E

K∑
i=1

K∑
j=1

θst;ijδi(xs)δj(xt) + const. (2.40)

Let φs(xs) = (δ1(xs), . . . , δK(xs))
T be a vector of sufficient statistics for node s ∈ V .

The set of maximizing configurations x∗ is given by the more compact representation:

x∗ ∈ arg max
x

log p(x) = arg max
x

〈θ, φ(x)〉. (2.41)

The max-marginal distribution encodes uncertainty about the maximum value for any

variable, and is the MAP analogue of the posterior marginal:

qs(xs) ∝ maximize
x′

p(x′) subject to x′s = xs. (2.42)

With the exponential family assumption we can formulate the variational prob-

lem (2.19) as a maximization w.r.t. mean parameters,

Φ(θ) = maximize
µ

〈θ, µ〉+H(µ). (2.43)

A connection between MAP and variational inference is drawn by considering an in-

verse scaling of the canonical parameters θ/T . This temperature T plays the same

role as in the Gibbs distribution (2.2); it controls the relative height between modes.

As T → 0 the distribution places all of its mass on the set of maximizers (2.41).

The MAP problem is recovered as the zero temperature limit of the variational prob-

lem [169, 168, 166],

max
x
〈θ, φ(x)〉 = lim

T→0
TΦ

(
θ

T

)
= lim

T→0
max
µ
{〈θ, µ〉 − T H(µ)} . (2.44)

Taking the limit T → 0 in (2.44) yields the result that MAP inference corresponds

to a linear program (LP),

max
x
〈θ, φ(x)〉 = max

µ∈M
〈θ, µ〉 ≤ max

µ∈L
〈θ, µ〉. (2.45)

Derivation of the relaxation above is analogous to the development of the Bethe

free energy discussed in Sec. 2.3.2. The constraint set (the marginal polytope M) is

intractable for arbitrary models making the optimization NP-hard [149]. The set of

locally consistent marginals M ⊂ L relaxes these constraints and produces a tractable

approximation. The assumption that x is discrete ensures that the inner product

〈θ, µ〉 is well-defined, but a similar correspondence holds for continuous MRFs with

a suitable inner product definition [170, 116, 128].
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xs xt

Γ(t)\s

ψst(xs, xt)

Belief Message Update
Figure 2.5: Reweighted max-product (RMP) updates.

Max-Product Belief Propagation

Just as sum-product BP optimizes the Bethe free energy, we seek a message passing

algorithm that solves the MAP LP relaxation (2.45). The max-product (MP) variant

of BP replaces integration with maximization to update messages,

mts(xs) = maximize
xt

ψt(xt)ψst(xs, xt)
∏

u∈Γ(t)\s
mut(xt). (2.46)

For tree-structured distributions MP solves the MAP LP relaxation (2.45), which is

tight, and MP beliefs correspond to the true max-marginal distributions [168]. For

models with cycles, however, the connection is more subtle. We adopt the terminology

of Wainwright et al. [169] and refer to max-product beliefs as psuedo-max-marginals,

νs(xs) ∝ ψs(xs)
∏
t∈Γ(s)

mts(xs). (2.47)

While MP does not solve the MAP LP relaxation for general models and in the next

section we consider a reweighted variant of max-product more closely aligned with

the MAP LP objective.

Upper Bounds on the MAP Probability

The MAP LP relaxation (2.45) allows us to verify global optimality when the solution

to the MAP LP relaxation µ∗ = arg max µ∈L〈µ, θ〉 is integral. However, max-product

does not solve the MAP LP relaxation for arbitrary models, except those with special

combinatorial structure such as bipartite matching and weighted b-matching [169].

An alternative bound of the MAP probability is given by a convex combination

of tree-structured MRFs. We begin with a distribution ρ over spanning trees T for

some graph G:

ρ = {ρ(T ) | ρ(T ) ≥ 0,
∑
T∈T

ρ(T ) = 1}, (2.48)
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Associated with each tree T ∈ T is a distribution with canonical parameter vector

θ(T ) respecting the tree structure. Jensen’s inequality upper bounds the MAP log-

probability:

maximize
x

〈θ, φ(x)〉 ≤
∑
T∈T

ρ(T ) maximize
x

〈θ(T ), φ(x)〉. (2.49)

The bound (2.49) involves a maximization over tree-structured distributions, and so

it can be evaluated efficiently for fixed ρ and parameters θ(T ). The bound is tight

if and only if all tree distributions in the support of ρ agree on their maximizers – a

condition is known as tree agreement.

Given a fixed spanning tree distribution ρ the set of valid tree parameters θ(T )

must equal parameters of the true distribution θ when averaged over the spanning

tree distribution Eρ[θ(T )] = θ. The dual problem of finding the tightest bound (2.49)

can be formulated by the following LP,

minimize
θ(T )

∑
T∈T

ρ(T ) maximize
x

〈θ(T ), φ(x)〉 subject to Eρ[θ(T )] = θ. (2.50)

The tightest such bound is exactly given by the MAP LP relaxation (2.45) and is

independent of the spanning tree distribution ρ. This surprising result can be shown

by straightforward derivation of the Lagrangian dual and noting that strong duality

holds [168]. Kolmogorov showed that this result holds more generaly for non-spanning

trees so long as every edge is contained in at least one tree [93].

Reweighted Max-Product BP

Finding the tightest bound (2.50) is as difficult as solving the MAP LP relaxation (2.45).

Reweighted max-product (RMP) tries to find a tight bound via message passing,

which is often much more efficient than solving the dual LP directly [178, 179]. In

the remainder of this section we make use of the following shorthand notation,

θs(xs) =
K∑
i=1

θs;iδi(xs), θst(xs, xt) =
K∑
i=1

K∑
j=1

θst;ijδi(xs)δj(xt) (2.51)

With some algebra we can rewrite the RMP bound (2.49) in terms of edge appearance

probabilities ρst for each edge (s, t) ∈ E ,

maximize
x

〈θ, φ(x)〉 ≤ maximize
x

∑
s∈V

θs(xs) +
∑

(s,t)∈E
ρstθst(xs, xt)

 . (2.52)
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Reweighted MP messages and pseudo-max-marginals are given by,

mts(xs) = maximize
xt

ψt(xt)ψst(xs, xt)
1
ρst

∏
u∈Γ(t)\smut(xt)

ρut

mst(xt)1−ρst (2.53)

νs(xs) ∝ ψs(xs)
∏
u∈Γ(s)

mus(xs)
ρus , (2.54)

where ψ(x) = exp(θ(x)) for the discrete MRF case we consider. Pseudo-max-marginals

can also be computed for the pairwise terms νst(xs, xt) as a function of the messages.

It remains to show conditions under which an RMP fixed point solves the MAP LP re-

laxation. Consider the case where pseudo-max-marginals contain a set of maximizers

consistent across nodes and edges,

x∗s ∈ arg max
xs

νs(xs), (x∗s, x
∗
t ) ∈ arg max

xs,xt

νst(xs, xt). (2.55)

Wainwright et al. [168] showed that this condition, known as strong tree agreement

(STA), is sufficient for the RMP fixed point to solve the MAP LP relaxation. More-

over, if STA holds then the MAP LP relaxation (2.45) is tight and x∗ in (2.55) is a

MAP configuration. Weiss et al. [171] also showed that it is sometimes possible to

construct a MAP configuration when STA does not hold, but Kolmogorov showed

by counterexample that this correspondence does not always hold [93] for non-binary

models. Kolmogorov and Wainwright provide stronger connections between RMP

fixed points and the MAP LP relaxation for binary models [94].



Chapter 3

Particle Max-Product Belief

Propagation

Graphical models allow us to capture complex global phenomena by specifying simpler

local interactions. When making statistical inferences, however, model complexity of-

ten results in difficult calculations. Such problems arise, for example, in computer

vision applications that involve estimating and tracking articulated objects from im-

ages [158, 82, 150, 187, 188] or in the estimation of appearance features parameterized

by continuous quantities [157]; in signal processing where core problems involve track-

ing acoustic contacts [155, 12], estimating signals that arise from arbitrary stochastic

processes [30] or spatial reasoning among distributed sensors [80]; and in computa-

tional biology where models of protein dynamics [148, 26] and structure [137, 35]

require sampling and optimizing complex energy functions.

Traditional sampling-based approaches to marginal and maximum a posteriori

(MAP) inference are lacking in several aspects: methods, such as importance sam-

pling or stochastic local search, do not exploit structure encoded in the graphical

model resulting in inference that scales poorly with the problem dimension [6, 77];

sequential Monte Carlo (SMC), or particle filters, exhibit classic particle degenera-

cies over moderate time scales [30]; and simulated annealing (SA) requires a cooling

schedule that is prohibitively slow in practice [70].

In this chapter we develop a particle-based max-product algorithm for MAP infer-

ence in continuous MRFs. The approach stochastically samples realizations of each

random variable, known as particles, to approximate continuous message functions.

Our algorithm, diverse particle max-product (D-PMP), combines the flexibility of

sampling-based approaches with the efficiency of message passing. At each stage of

the algorithm D-PMP maintains a diverse set of posterior mode hypotheses, captur-

ing multiple local optima and thereby avoiding classic degeneracies associated with

29
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particle filters. The integer program (IP) underlying diverse particle selection encour-

ages diversity in the maintained hypotheses, without requiring tuning of application-

specific distances among hypotheses. Moreover, the IP formulation is a submodular

maximization, allowing efficient greedy optimization with optimality guarantees that

preserve pseudo-max-marginal approximations.

3.1 Particle-Based Message Approximations

A key benefit of message passing inference is that it efficiently enumerates realiza-

tions of each random variable to marginalize or maximize over joint configurations

(c.f. Sec. 2.3). Markov chain Monte Carlo (MCMC) sampling [6, 110], by contrast,

samples a single joint configuration at each pass of the algorithm, which can lead

to long mixing times. Sequential Monte Carlo (SMC) maintains several joint con-

figurations at each stage, but portions of trajectories cannot be interchanged as in

dynamic programming. Furthermore, SMC trajectories are highly correlated, leading

to well-known degeneracies over moderate time scales [30, 83, 69, 90]. Particle filters

and MCMC can be combined to resolve some of these shortcomings, thereby leading

to methods that iteratively improve SMC estimates [27, 125] or Metropolis-Hastings

proposals based on particle filters [7]. Stochastic local search [77, 67] offers an al-

ternative metaheuristic for MAP inference that avoids restrictions imposed on valid

MCMC samplers, but it too iterates in the space of joint configurations.

In this section we review particle-based approximations for message passing in-

ference. Continuous message functions are approximated via stochastic samples, or

particles, which are resampled at each iteration. For marginal inference (Sec. 3.1.1)

sum-product message integrals are approximated with importance sampling [79] or

via Gaussian kernel density estimation [157, 82]. For MAP inference (Sec. 3.1.2) the

continuous maximization in max-product messages is approximated via stochastic lo-

cal search whereby particles are sampled and discarded at each iteration to discover

modes of the distribution.

3.1.1 Sum-Product Particle BP

For simplicity we focus on a pairwise Markov random field (MRF) with graph G =

(V , E), vertices s ∈ V and edges (s, t) ∈ E , and density:

p(x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E
ψst(xs, xt). (3.1)
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The sum-product variant of BP (c.f. Sec. 2.3.2) computes marginal densities via local

message recursions. The local belief qs(xs) and messages mts(xs) are given by:

qs(xs) ∝ ψs(xs)
∏
t∈Γ(s)

mts(xs), mts(xs) =

∫
ψt(xt)ψst(xs, xt)

∏
u∈Γ(t)\s

mut(xt) dxt,

where Γ(s) = {t | (s, t) ∈ E} is the set of nodes neighboring s, and Xt is the continuous

domain of xt. The continuous BP updates do not directly provide a realizable algo-

rithm as the integral over Xt may be intractable, and the message function mts(xs)

may not have an analytic form.

Importance Sampling

BP message updates can be viewed as an expectation of the pairwise potential func-

tion ψst(xs, xt). Importance sampling [6] provides an approximation of expectations

via weighted samples:

E[g(x)] =

∫
X
g(x)p(x) dx ≈

N∑
i=1

g(x(i))w(x(i)), (3.2)

x(i) ∼ q(x), w(x) ∝ p(x)

q(x)
,

N∑
i=1

w(x(i)) = 1.

We draw N i.i.d samples {x(i)}Ni=1 from the proposal distribution q(x). These samples

represent weighted point masses in the empirical measure p̂(x) =
∑N

i=1w(x(i))δx(i)(x).

The Monte Carlo estimate of (3.2) is then,

Ê[g(x)] =
N∑
i=1

g(x(i))w(x(i)). (3.3)

Assuming Ê[g(x)] exists and is finite, and that q(x) is absolutely continuous w.r.t. p(x),

the estimator (3.3) is unbiased and consistent [64]. The best proposal distribution is

one that minimizes the variance and is q(x) = |g(x)|p(x). The name importance sam-

pling comes from this result, namely that particles should be concentrated in areas

where p(x) and |g(x)| are mutually large, and thus important.

For the case where p(x) is known only up to a normalization constant importance

sampling provides the following estimator,

Ê[g(x)] =
1
N

∑N
i=1 g(x(i))w(x(i))

1
N

∑N
i=1w(x(i))

=
N∑
i=1

g(x(i))w̃(x(i)), (3.4)

where w̃(x(i)) is a normalized importance weight. The estimator (3.4) is consistent,

but biased since it is a ratio of two unbiased estimators [6].
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Particle Belief Propagation

Particle BP uses importance sampling to approximate the continuous BP message

updates [79]. Given particles Xt = {x(i)
t }Ni=1 sampled from some proposal distribution

x
(i)
t ∼ qt the message approximation via importance sampling is:

m̂ts(xs) =
N∑
i=1

ψst(xs, x
(i)
t )wt(x

(i)
t ). (3.5)

The importance weight for a sample x
(i)
t ∈ Xt compensates for the mismatch between

the proposal and the true posterior,

wt(x
(i)
t ) =

ψt(x
(i)
t )
∏

u∈Γ(t)\s m̂ut(x
(i)
t )

qt(x
(i)
t )

. (3.6)

We can approximate the continuous BP beliefs q̂s(xs) over the particles X by substi-

tuting the message approximations m̂ from Eq. (3.5). It can be beneficial to sample

particles from the approximate marginals using a Metropolis-Hastings MCMC sam-

pler to iteratively draw proposals [92, 79].

For junction tree representations of Bayesian networks Koller et al. [92] describe a

general framework for approximating clique marginals. The nonparametric BP [157]

and Pampas [82] algorithms approximate continuous BP messages with kernel density

estimates, and use Gibbs samplers [81] to propose particles from belief distributions.

The sum-product particle belief propagation (PBP) algorithm of [79] associates parti-

cles with nodes rather than messages or cliques, and thus avoids the need for explicit

marginal density estimates.

3.1.2 Particle Max-Product

The max-product (MP) variant of BP is similar to the sum-product form, where

messages maximize, instead of marginalize, over joint configurations (see Sec. 2.3.3).

For tree-structured MRFs the beliefs qs(xs) correspond to max-marginal distribu-

tions [168], which encode the probability of the most likely joint configuration,

qs(xs) ∝ maximize
x′

p(x′) subject to x′s = xs. (3.7)

For MRFs with cycles the reweighted max-product (RMP) algorithm approxi-

mates max-marginal distributions via message passing (see Section 2.3.4). Given a

spanning tree distribution with edge appearance probabilities ρst the RMP message
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Figure 3.1: Loopy PMP flowcharts. Each variant of PMP has several stages: the
particle set is augmented with draws from stochastic proposals, then RMP messages are
updated on the augmented particles, and finally a subset of particles are discarded to control
computation. Different particle selection methodologies lead to different PMP methods,
such as Greedy PMP (G-PMP) of [128], the Top-N PMP (T-PMP) of [23], the Metropolis
PMP (M-PMP) of [95], and the Diverse PMP (D-PMP) of [123].

update and pseudo-max-marginal are given by,

m̃ts(xs) = maximize
xt∈Xt

ψt(xt)ψst(xs, xt)
1
ρst

∏
u∈N(t)\sm̃ut(xt)

ρut

m̃st(xt)1−ρst (3.8)

ν̃s(xs) ∝ ψs(xs)
∏
u∈Γ(s)

m̃us(xs)
ρus ≈ qs(xs). (3.9)

The messages m̃ involve a continuous maximization, which may have no closed-form

solution and no compact representation. Particle max-product (PMP) methods ap-

proximate these continuous functions by optimizing over a discrete set of particles

X ⊂ X found via stochastic search. Each iteration monotonically increases a lower

bound on the true MAP probability:

maximize
x∈X

log p(x) ≤ maximize
x∈X

log p(x). (3.10)

Each PMP iteration improves this bound in several stages, summarized in Fig. 3.1,

which we describe in detail in the following sections.

Augment via Stochastic Proposals

Given a current set of N particles Xt ⊂ Xt a stochastic local search seeks higher-

likelihood configurations. At each iteration PMP first creates an augmented particle

set Xaug = X ∪ Xprop of size αN for α > 1. New particles are drawn from proposal

distributions Xprop ∼ q(X). In the simplest case, Gaussian random walk proposals

qgauss(xs) = N(xs | x̄s,Σ) sample perturbations of current particle locations x̄s [163,

128]. For some models, a more informative neighbor-based proposal is possible that

samples from edge potentials qnbr(xs | x̄t) ∝ ψst(xs, x̄t) conditioned on a particle x̄t at

neighboring node t ∈ Γ(s) [23]. Specialized “bottom-up” or “data-driven” proposals

based on approximations of observation potentials ψs(xs) can also be effective [123].
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Reweighted Max-Product Optimization

Standard or reweighted MP message updates are used to approximate the max-

marginal distribution of each proposed particle. The αN values of each discrete

message vector satisfy

mts(xs) = max
xt∈Xaug

t

ψt(xt)ψst(xs, xt)
1
ρst

∏
u∈Γ(t)\smut(xt)

ρut

mst(xt)1−ρst . (3.11)

Note that messages are computed by discrete optimization over Xaug, the augmented

particle set. Pseudo-max-marginals can be computed via the approximate messages,

νs(xs) ∝ ψs(xs)
∏

u∈Γ(s) mus(xs)
ρus . Message updates require O(α2N2) operations,

and compute the pseudo-max-marginal νs(xs) for each xs ∈ Xaug.

Particle Selection

Particles are accepted or rejected to yield N new states Xnew ⊂ Xaug. Particle se-

lection makes subsequent iterations more computationally efficient by avoiding an

unbounded growth in the number of particles, but can lead to classic degeneracies

if done improperly. Several different particle selection methods have been proposed,

which we briefly review.

The simple greedy PMP (G-PMP) method selects the single particle with the

highest max-marginal value x∗s = arg max xs∈Xaug
s
νs(xs), and samples particles from

Gaussian random walk proposals qgauss(xs) with mean x∗s [163, 128]. G-PMP up-

dates are computationally efficient, but the greedy selection does not retain particles

near multiple modes and the random walk proposals do not effectively explore high-

dimensional spaces.

A less greedy selection method is top-N PMP (T-PMP), which retains the N par-

ticles with the highest estimated max-marginal probability. This top-N PMP [123]

generalizes PatchMatch BP [23], a method specialized to low-level vision tasks which

utilizes top-N particle selection and neighbor proposals. T-PMP finds high proba-

bility solutions quickly, but the top-N particles are often slight perturbations of the

same solution, reducing the number of effective particles and causing sensitivity to

initialization.

Building directly on the sum-product PBP algorithm of [79], Kothapa et al. [95]

proposed Metropolis PMP (M-PMP), which approximately samples particles from

the current max-marginal estimate using a Metropolis sampler with Gaussian random

walk proposals. Because the entire particle set is replaced at each iteration, discovered

modes may be lost and the bound of Eq. (3.10) may decrease. While drawing particles

from max-marginals does explore important parts of the state space, computing the
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Metropolis acceptance-ratio requires an expensive O(N2) message update. Moreover,

because we do not seek to approximate expectations as in PBP, the bias concerns

that motivate traditional importance sampling methods do not apply here.

3.2 Diverse Particle Max-Product

To avoid degeneracies common to other methods the D-PMP

particles via a diverse selection step favoring states which minimally distort the

current RMP messages. The algorithm, outlined in Fig. 3.1, naturally encourages

diversity by preserving solutions near multiple local optima thereby enabling D-PMP

to reason more globally than other methods.

Diverse PMP discards states that are not necessary to retain accurate message

approximations by selecting the subset of particles that minimize distortion from

the RMP messages m. In Section 3.2.1 we present a distortion measure that yields a

submodular optimization, with an efficient greedy approximation and a multiplicative

optimality bound. We also consider a formulation based on minimizing maximum

message distortions (Sec. 3.2.2) which has shown good empirical results, but analysis

is more difficult than for the submodular formulation.

3.2.1 Diverse Particle Selection

For each node t ∈ V we select a subset of particles via the indicator vector z ∈
{0, 1}αN , where z(i) = 1 denotes that particle x(i) ∈ Xaug is selected. The message

vector over this subset is m̂ts(z) and messages mts over all particles Xaug are given by,

mts(a) = maximize
b∈{1,...,αN}

Mst(a, b), m̂ts(a; z) = maximize
b∈{1,...,αN}

z(b)Mst(a, b). (3.12)

For notational convenience we have combined terms needed for RMP message updates

into a message foundation matrix Mst ∈ RαN×αN ,

Mst(a, b) = ψt(x
(b)
t )ψst(x

(a)
s , x

(b)
t )

1
ρst

∏
u∈Γ(t)\smut(b)

ρut

mst(b)1−ρst . (3.13)

We choose the subset of particles that minimizes total distortion between the messages

m̂ts(z) and mts, resulting in the following integer program (IP):

minimize
z

∑
s∈Γ(t)

αN∑
a=1

(
mts(a)ρts − m̂ts(a; z)ρts

)
(3.14)

subject to ‖z‖1 ≤ N, z ∈ {0, 1}αN .
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By incorporating edge appearance probabilities ρst, which scale the relative height

of modes, D-PMP more accurately preserves messages over edges that are well-

represented in the set of spanning trees.

Submodularity and Other Properties of Diverse Selection

The objective (3.14) encourages states which preserve RMP pseudo-max-marginal

approximations. For each node s ∈ V the pseudo-max-marginal νs is a product of

incoming messages from neighbors t ∈ Γ(s), allowing us to link message distortion to

pseudo-max-marginal distortion:

Proposition 3.2.1 Let 0 � m̂ � m � 1, 0 ≤ ψ ≤ 1 and edge appearance probabilities

ρst ∈ [0, 1]. For all nodes s ∈ V we have:

‖νs − ν̂s‖1 ≤
∑
t∈Γ(s)

∑
xs

[
mts(xs)

ρts − m̂ts(xs)
ρts
]
. (3.15)

The intuition is the following: discarding particles introduces error into the messages

and pseudo-max-marginals, and the diverse selection IP (3.14) minimizes the upper

bound (3.15) ensuring that pseudo-max-marginal approximations are preserved. In

addition to bounding the pseudo-max-marginal error, we show that diverse selection

corresponds to a submodular maximization.

Submodularity A set function f : 2Z → R defined over subsets of Z is submodular

iff for any subsets Y ⊆ X ⊆ Z and an element e /∈ X the function f satisfies,

f(Y ∪ {e})− f(Y ) ≥ f(X ∪ {e})− f(X).

The property of submodularity states that adding an element e to the smaller set

Y produces more gain than adding it to the larger set X. This property of diminishing

marginal gain is formalized by the quantity ∆(Y, e) , f(Y
⋃
{e})− f(Y ), known as

the margin.

Proposition 3.2.2 The optimization (3.14) is equivalent to maximizing a monotonic

submodular objective subject to cardinality constraints.

The result of Prop. (3.2.2) follows by reformulating the objective (3.14) as a facility

location problem, which is submodular [120]. In Appendix A.2 we provide a construc-

tive proof that does not rely on earlier results. The selection IP (3.14) is NP-hard [36],

and in the next section we develop a well-known greedy approximation for this prob-

lem which obtains a (1− 1/e) multiplicative optimality bound [115, 106, 120].
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Figure 3.2: Lazy greedy particle selection of xt to for a two-node correlated Gaussian
model with compatibility ψst(xs, xt) = N(x | µst,Σst) and unary potentials of evenly-
weighted mixtures of two Gaussians. Particles are greedily selected left-to-right. Top Row:
Message foundation matrix showing particle set as a regular grid (dashed lines) to aid
visualization and selected particles (green). Middle Row: Message over augmented particles
mts (blue) and subset m̂ts (green). We also show the continuous message m̃ts for reference
(blue line). Bottom Row: Margin at each particle selection (blue) with selected particle
margin (red).

Lazy Greedy Selection

The standard lazy greedy approach to submodular maximization exploits diminishing

marginal returns to avoid redundant computations [115, 106]. Each iteration updates

and sorts the largest margin until a stable maximizer is found. The algorithm termi-

nates when N particles are selected, or the maximum margin is zero. In this section

we formulate the lazy greedy algorithm for particle selection.

Initialize: For each node t let M =
[
(M

ρs1t
s1t )T , . . . , (M

ρsdt
sdt

)T
]T

be the reweighted

message foundations of neighbors Γ(t) = {s1, . . . , sd} as in Eq. (3.13). Initialize the

selection vector z and margins:

∆(b) =
dαN∑
a=1

M(a, b), z(b) = 0, ∀ b ∈ {1, αN}. (3.16)

First Iteration: Ensure that the current MAP estimate x∗ is never discarded by
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setting z(b∗) = 1, where b∗ is the index of x∗t in the augmented particle set Xaug
t .

Update the message approximation m̂(a) = M(a, b∗).
Iterations 2 to N : Choose the largest margin to update b̃ = arg max {b|z(b)=0}∆(b).

If ∆(̃b) = 0 then terminate prematurely since the message can be perfectly recon-

structed with a subset of particles. If ∆(̃b) has already been updated on the cur-

rent iteration then set z(̃b) = 1 and update the message approximation m̂(a) =

max(m̂(a),Mt(a, b̃)). Otherwise, update the margin and repeat,

∆(̃b) ,
∑
a

[
max(m̂(a),M(a, b̃))− m̂(a)

]
. (3.17)

The lazy greedy algorithm iteratively updates and re-sorts margins from the pre-

vious iteration in decreasing order. A stable maximizer is achieved when a margin

remains the maximizer after the update (3.17). Margins are guaranteed to be non-

increasing as new particles are considered, and so this partial ordering is guaranteed

to find the selection that produces the largest marginal gain. While worst-case com-

putation is O(αN2), in practice only a few margins are typically updated to find

the maximizer, thus avoiding quadratic complexity. Moreover, computation can be

dramatically reduced by storing margins in a max heap, allowing O(1) access to the

maximizer. Figure 3.2 graphically demonstrates lazy greedy particle selection for a

simple two-node Gaussian mixture model.

3.2.2 Minimax Particle Selection

Another possible distortion measure is to minimize the maximum message error. This

approach prefers particles to approximate local maxima via the following IP:

minimize
z

maximize
s∈Γ(t), 1≤a≤αN

mts(a)ρst − m̂ts(a; z)ρst (3.18)

subject to ‖z‖1 ≤ N, z ∈ {0, 1}αN .

Like the submodular formulation this IP is NP-hard and so we present a greedy

approximation algorithm.

Following a development similar to the lazy greedy algorithm (Sec. 3.2.1) for each

node t let M =
[
(M

ρs1t
s1t )T , . . . , (M

ρsdt
sdt

)T
]T

be the message foundations of neighbors

Γ(t) = {s1, . . . , sd} as in Eq. (3.13). Maximizing over the columns of M ∈ RdαN×αN

produces a concatenated vector of outgoing messages to all neighbors. Similarly, max-

imizing over any subset of columns (indexed by z ∈ {0, 1}αN) produces a concatenated

vector of messages computed on a subset of the corresponding particles,

m(a) = maximize
1≤b≤αN

M(a, b), m̂(a; z) = maximize
1≤b≤αN

z(b)M(a, b), ∀1 ≤ a ≤ dαN.
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Figure 3.3: Minimax particle selection. Three particles selected from left-to-right on
node xt for the Gaussian mixture model in Fig. 3.2. Top Row: Level sets of the foundation
matrix showing regular grid of particles (dashed black) and selected particles bk (green).
Bottom Row: Message mts over augmented particles (blue) with selected arg max location
ak (red) and m̂ts over subset (green). Continuous message (blue line) is computed by
numerical approximation for reference.

Starting with an empty particle set z(0) = ~0 at iteration k = 1, . . . , N select a single

particle with index bk, and update the selection z(k)(bk) = 1. Each step improves our

approximation of the augmented messages m, and because maximization is associative

we can incrementally update the approximation,

m̂(a; z(k)) = max
{
m̂(a; z(k−1)), M(a, bk)

}
. (3.19)

To choose the next particle identify the index ak ∈ {1, . . . , dαN} with the largest

distortion and select the particle index bk∈ {1, . . . , αN} that minimizes this error:

ak = arg max
1≤a≤dαN

m(a)− m̂(a; z(k−1)), bk = arg max
1≤b≤αN

M(ak, b), (3.20)

and set z(k)(bk) = 1. The particle selection of Eq. (3.20) always eliminates errors in

the max-product message for particle ak, and may also reduce or eliminate errors in

messages for particles a where ψst(x
(a)
s , x

(bk)
t ) is large.

Each step of the greedy algorithm requires O(dαN) time, so the overall cost of

selecting N particles is O(dαN2). This quadratic cost is comparable to the RMP

message updates in Eq. (3.11). While our experiments treat N as a fixed parameter

trading off accuracy with computational cost, it may be useful to vary the number

of selected particles across nodes or iterations of D-PMP, for example by selecting

particles until some target error level is reached. See Figure 3.3 for a graphical

depiction of the greedy selection procedure on the toy Gaussian mixture model.
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Figure 3.4: Human pose estimation Deformable Structures [187] models human pose
and shape with a loose-limbed Gaussian prior. Spring potentials encourage connected body
components, while a PCA model encodes part shape. A contour-based likelihood scores
part location in the image via an SVM classifier, trained on HOG features for each body
part, and a logistic regression function calibrates scores across each part [129]. A skin color
likelihood measures appearance similarity of the lower arms to a histogram of skin color.

3.3 Experimental Results

Particle max-product imposes few restrictions on the MRF structure, allowing it to

be applied in many applications. The approach is well suited to models of articulated

physical objects, such as when reasoning about human figures in images. In the

following sections we consider human pose estimation in both images (Sec. 3.3.1) and

video (Sec. 3.3.2). We conclude with an application to optical flow estimation for

images pairs (Sec. 3.3.3).

3.3.1 Single Image Human Pose Estimation

We model human pose and shape in single images using the deformable structures

(DS) model [187], an articulated part-based human body representation. Unlike the

related Pictorial Structures (PS) model [50], high-dimensionality of the DS state space

makes discretization infeasible.

Deformable Structures

The DS model specifies a pairwise MRF with nodes s ∈ V for each body part, and

links kinematic neighbors with edges (s, t) ∈ E (Figure 3.4). With global rotation θs,

scale ds, center os, and shape zs, the state of part s is

xs = (zs, os, sin(θs), cos(θs), ds)
T . (3.21)

Shape is modeled via PCA analysis of part-specific training data; we learn a trans-

formation matrix Bs and mean ms for each part type. A set of contour points cs and
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joint locations ps are given in object-centered coordinates via a linear mapping,

(cs, ps)
T = Bszs +ms. (3.22)

The likelihood of pose xs is obtained by projecting these joint locations into image

coordinates with the rotation matrix R(θs), scaling ds, and translation t(os),

is(xs) = dsR(θs)

(
cs
ps

)
+ t(os). (3.23)

Using the above representation the DS joint probability is a pairwise MRF involv-

ing three types of potentials:

p(x) ∝
∏
s∈V

ψcontour
s (xs)ψ

skin
s (xs)

∏
(s,t)∈E

ψbody
st (xs, xt). (3.24)

Image likelihoods are given by two complementary potentials which capture infor-

mation about boundary contours and skin color. The contour likelihood is based

on an SVM classifier trained on histogram of oriented gradients (HOG) features

hs(is(xs)) [40]. SVM scores fs(hs(is(xs))) are mapped to calibrated probabilities via

logistic regression [129], using a weight as and bias bs learned from validation data:

ψcontour
s (xs) =

1

1 + exp(asfs(hs(is(xs))) + bs)
. (3.25)

The skin color likelihood ψskin
s (xs) captures the tendency of lower arms to be un-

clothed, and is derived from a histogram model of skin appearance [187].

The kinetic prior between a pair of neighboring body parts captures relative dis-

placement, orientation and scale difference. Neighboring parts (s, t) ∈ E are con-

nected by joints with locations pst and pts, respectively. The relative displacement

qts = pts − pst, relative orientation θts = θt − θs, and scale difference dts = dt − ds are

computed via the transformation,

Tst(xs, xt) = (zs, zt, sin(θts), cos(θts), qts, dts)
T . (3.26)

The prior distribution models relative position, orientation, and scale via a multivari-

ate Gaussian,

ψbody
st (xs, xt) ∝ N(Tst(xs, xt) | µst,Σst)IA(ds, θs)IA(dt, θt), (3.27)

where the indicator function IA(·) enforces validity of angular components and non-

negativity of the scale parameters by the constraint set A = {d, θ | d > 0, sin2θ +

cos2θ = 1}.
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Initialization Contour Likelihood MAP

Figure 3.5: Synthetic pose estimation. Left: Initial particles sampled uniformly at
random in the image plane. Center: Synthetic likelihood proportional to squared distance
from image contours. Right: Ground truth MAP estimate corresponds to second-from-right
figure.
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Joint Error Log-Probability Joint Error vs. Dist.

Figure 3.6: Synthetic image experiments Left: Box plots for 10 trials of the “ICML”
experiment, where the joint error equals the L2 distance from the true MAP pose, averaged
over all joints. Center: Log-probability of the most likely configuration identified by each
method. Right: Average joint error in the distance experiment plotted versus the distance
separating the 9 poses. Each line shows estimation error for a single pose across 6 images.

G-PMP T-PMP M-PMP D-PMP

Figure 3.7: Typical synthetic pose estimation results We show the final MAP esti-
mate (top) and 200 particles per part (bottom) for each method.

Synthetic Images

We compare D-PMP with baseline methods on a set of synthetic images by using

a simplified version of the DS model. The reduced model does not include skin

likelihood potentials ψskin and the contour likelihood ψcontour is based on squared

distance from image edges, see Fig. 3.5. We conduct two experiments that evaluate

accuracy of the MAP estimate and sensitivity to initialization for each PMP method.
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G-PMP T-PMP M-PMP D-PMP

Figure 3.8: Preserving multiple modes Figures do not overlap at the furthest spacing
(top), but extremities overlap at the closest spacing (bottom). Each method is run for 300
iterations from 30 random 200-particle initializations. The top 9 modes (red) are obtained
by selecting the closest torso particle to each ground truth puppet, and from this a Viterbi
backward pass generates the remaining limbs.

In all cases we run 300 PMP iterations with a total budget of 200 particles.

In the first experiment we use a hand-constructed image containing four silhouettes

arranged to spell “ICML” (Figure 3.4). Using exhaustive gradient optimization we

verify that the third figure from the left (the letter “M”) corresponds to the global

MAP. We run for 10 uniformly random initializations and report error of the predicted

joint locations in Figure 3.6. D-PMP consistently produces MAP estimates near the

global peak, and thereby produces lower error than other methods which are sensitive

to initialization. We also consider a hybrid method, D/T-PMP, in which D-PMP is

run for the first 200 iterations and T-PMP for the final 100 to refine the estimate and

provide better alignment.

To evaluate diversity we sample 9 puppets from the DS model prior and arrange

them in a 3 × 3 grid. We measure the ability of each PMP method to preserve

hypotheses over a sequence of 6 images with decreasing relative distance between

puppets (Figure 3.8). Using an oracle to select the torso particle closest to each

puppet we generate a conditional mode of the remaining parts via a Viterbi-style

backward pass. Figure 3.6 (right) plots average error versus puppet distance for each

of the 9 puppets. D-PMP maintains significantly better mode estimates compared to

other methods as shown by the final particles in Figure 3.8. We observe sensitivity

to local optima in T-PMP and G-PMP, which generally capture only a single mode.

M-PMP scatters particles widely, but does a poor job of concentrating particles on

modes of interest.
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Figure 3.9: Detection results. Left: Average PCP score versus the number of hypotheses
for images containing a single person. We report PCP for all parts and for only the lower
arms. Right: Precision-recall curves for images containing multiple people. We report full
body detections and lower arm detections, determined via a PCP threshold of 0.5. A body
is detected if either the torso or head is detected.

Single Person Multiple People

Figure 3.10: Preserving multiple hypotheses Left: Single person images showing a
MAP estimate (red) with poor arm placement. The second and third ranked solutions
preserved by D-PMP, by max-marginal values, are shown for upper (magenta-cyan) and
lower arms (white-green); they offer much greater accuracy. Right: The full set of particles
at the final iteration of D-PMP shows multiple hypotheses retained about multiple people
(top). For each person, we also plot the best pose in the set of retained hypotheses (bottom,
red).

Real Images

Next, we look at real images from the Buffy the Vampire Slayer dataset [52] pose

estimation benchmark. The dataset consists of a standard partition of 276 test images

and nearly 500 training images. We use a recent set of stickmen annotations for all

figures in the dataset [99] and report separate results on frames containing single and

multiple figures.

Each inference method initialized using 100 particles sampled around candidate

hypotheses from the flexible mixture of parts (FMP) pose estimation method [177],

pruned below a score of 0.5 and followed by non-maximal suppression with overlap

threshold 0.8. We run each method with 100 particles for 100 iterations and compare

to the N-best maximal decoders computed on the raw FMP detections [126].
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For single-person images we use the standard percentage of correctly estimated

parts (PCP) distance-based detection metric for evaluation. Unlike results reported

by Ferrari et al. [52] we normalize PCP by the fixed number of images in the dataset,

thereby avoiding irregularities when varying the number of hypotheses. Pose hypothe-

ses are sorted according to their max-marginal value (or FMP score), and Figure 3.9

shows detection accuracy versus the number of hypothesized poses. While accuracy

for the arms are uniformly lower than total detection, the trends are is similar: given

an identical model D-PMP is more accurate than conventional particle max-product

algorithms. We offer qualitative examples of how D-PMP preserves alternative (upper

and lower arm) hypotheses in Figure 3.10.

Figure 3.9 reports precision-recall (P-R) for multiple people, this the a standard

metric for multiclass object detection. A body is considered detected if the torso or

head PCP score is 1, and we evaluate the lower arm detection separately. Our P-R

methodology differs slightly from those used in PSCAL VOC in that we compute

detection considering the top scoring poses within each image, rather than a ranking

across images. D-PMP again outperforms all other methods, both for body detection

as well as for lower arm detection. Figure 3.10 offers qualitative examples of D-

PMP’s ability to preserve hypotheses about multiple people in an image. Without

an explicit model of multiple people, we are able to infer their existence by finding

multiple diverse posterior modes.

3.3.2 Articulated Pose Tracking in Video

Integrating information over a video sequence enables pose estimation that is robust

to transient artifacts arising from motion blur, poor lighting, and other appearance

variations. In practice, however, little benefit has been reported from modeling tem-

poral dynamics, with most work showing superior accuracy by ignoring temporal

dependence [52] or by modeling limited temporal dependence [139, 188]. These fail-

ures are largely the result of inadequate inference that is unable to exploit the rich

structure imposed by a dynamical model of pose evolution. To address this we adopt

the flowing puppets model of Zuffi et al. [188] and develop PMP inference to jointly

infer pose over the video sequence (see Figure 3.11).

Flowing Puppets

The flowing puppets model builds on Deformable Structures by placing a prior over

motion between consecutive frames. The likelihood model incorporates temporal

information via optical flow estimates. Let the set of vertices s ∈ V is |V| = N × T
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Figure 3.11: Tracking human pose and shape. The flowing puppets [188] model (left)
extends the DS model of structural kinematics by incorporating a flow-based hand detector
(center-left). Appearance constancy terms (right) enforce the notion that parts are largely
invariant to significant changes in appearance over short time scales. We further extend the
model with a Gaussian scale mixture motion model.

for N parts and T frames, the joint probability is then:

p(x) ∝
∏
s∈V

ψcontour
s (xs)ψ

skin
s (xs)ψ

hand
s (xs)

∏
(s,t)∈Epart

ψbody
st (xs, xt)∏

(s,t)∈Eframe

ψappearance
st (xs, xt)ψ

motion
st (xs, xt). (3.28)

The MRF (3.28) is defined over sets of edges, within-frame edges Epart and edges

between identical parts in consecutive frames E frame. A graphical depiction of edge

sets is shown in Figure 3.11.

The the structural prior ψbody
st is identical the DS prior (3.24) as are the skin

color ψskin
s and contour likelihoods ψcontour

s . A motion model encodes the relative

displacement of part joint locations in neighboring frames. For a pair of nodes (s, t) ∈
E frame the relative displacement of joints is given by wst = ps − pt where ps are the

joint points for node s given by the linear projection (3.22). A Gaussian scale mixture

with component weights πk encodes relative motion while remaining robust to bursts

of large motion,

ψmotion
st (xs, xt) =

∑
k

πkN(wst|ust, Vst,k). (3.29)

An appearance constancy likelihood captures the similarity of color histograms

between parts in consecutive frames. Let h(xs) ∈ RJ be the color histogram over pix-

els that lie within the part xs when projected onto the image plane. The appearance

likelihood is given by the average element-wise product between histograms,

ψappearance
st (xs, xt) = exp

(
1

J
h(xs)

Th(xt)

)
. (3.30)

The hand term ψhand
s scores the likelihood of hand placement as in Sapp et al. [139]

and is only evaluated for the hand region. A linear SVM hand classifier is trained on
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Figure 3.12: VideoPose2 test results. Left: Elbow and wrist detection accuracy
for each PMP algorithm based on a distance threshold ranging from 15 to 40 pix-
els. Right: Detection accuracy of the oracle solution at a 30-pixel detection radius.
Particles are chosen in their selection order. Accuracy continues to improve as more
D-PMP particles are considered, showing greater diversity in the particle set.

T-PMP

D-PMP

Figure 3.13: Pose tracking particle diversity. Final particles for several frames of
a VideoPose2 test clip (41). T-PMP (top) loses track of the right hand, all particles are
concentrated on an alternate mode. D-PMP (bottom) maintains greater diversity in the
particles, and retains estimates of the right hand at the correct location, and the position
preferred by T-PMP.

the flow gradient magnitude, thereby exploiting the notion that hands often exhibit

large motion. The hand log-likelihood is the average score of the hand detector over

pixels in the projected part hypothesis.

Results

We evaluate tracking accuracy on the VideoPose2 dataset developed by Sapp et

al. [139]. The dataset is a benchmark for recent pose tracking publications [188, 43],

consisting of 44 clips from the TV shows “Friends” and “Lost”, with each clip run-

ning 2-3 seconds for a total of 1,286 frames. The dataset is curated to contain frames

showing a central figure with upper body visible. We use the standard training-test
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G-PMP T-PMP D-PMP Ground Truth

Figure 3.14: Preserving multiple hypotheses. Top Row: Final flow estimate of each
method for the “Rubber Whale” sequence. The color key (top-right) encodes flow vector
orientation, color saturation denotes magnitude. Bottom Row: Detail of highlighted region
showing selected flow particles as vectors (black) and the MAP label (red). The MAP
estimates of D-PMP and T-PMP have higher probability than ground truth, but D-PMP
preserves the correct flow in the particle set.

split of 26 training clips and 18 test clips, with one clip recycled for algorithm and

model development.

Following [188] we initialize inference using the top scoring solutions given by

Flexible Mixture of Parts (FMP) [176] along with uniformly sampled puppets. We

use the same DS prior from experiments reported in Section 3.3.1. We find that

PMP produces reasonable accuracy in acceptable time using 100 particles and 100

iterations.

For evaluation we compute distance-based detection accuracy of the elbow and

wrist; a part is considered detected if it falls within a distance threshold ranging from

15 pixels up to 40 pixels. Figure 3.12 (left) reports accuracy of the MAP estimate for

each PMP algorithm. D-PMP typically produces the most accurate solution, though

T-PMP performs well at large detection thresholds. Estimation failures tend to be

the result of poor model fit, as reflected in the oracle accuracy plots, Figure 3.12

(right). Allowing more hypotheses improves the oracle accuracy of D-PMP whereas

T-PMP shows little improvement. This suggests that diversity of D-PMP particles

preserves high quality estimates that are discarded by T-PMP and not preferred

under the model. Figure 3.13 shows final particles of each method, and we see that

T-PMP does not keep any accurate right arm particles; by contrast D-PMP maintains

hypotheses in both locations.
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Figure 3.15: Optical flow results. Left: Log-probability quantiles showing median
(solid) and best/worst (dashed) MAP estimates versus PMP iteration for 11 random ini-
tializations on the Middlebury training set. Left-Center: Oracle AEPE over the training
set. Right-Center: Log-probability quantiles on the test set (G-PMP omitted due to poor
performance on training). Right: Log-probability of the MAP estimates at the pixel-level
model obtained by initializing L-BFGS at the D-PMP solution.

3.3.3 Optical Flow

Given a pair of (grayscale) images I1 and I2 in RM×N we estimate the motion of each

pixel s from one image to the next. This flow vector xs is decomposed into horizontal

u and vertical v scalar components. We model flow at the superpixel level using the

Classic-C model [159], holding flow constant over each superpixel. Edges are given

by the immediate neighbors in I1.

The pairwise term enforces a smoothness prior on flow vectors via the robust

Charbonnier penalty, a differentiable approximation to L1. This term is approxi-

mately quadratic in the range [−σ, σ] and smoothly transitions to a linear function

beyond this range. The potential decomposes additively as logψst = φvert
st + φhor

st into

vertical and horizontal components, defined as follows:

φhor
st (us, ut) = −λs

√
σ2 + (us − ut)2. (3.31)

The spatial smoothness depends on scaling parameter λs.

Likelihood potentials logψs(xs) = φs(xs) assume brightness constancy: properly

matched pixels should have similar intensities. Each superpixel s contains a number

of pixels Is = {(i1, j1), . . . , (ik, jk)}, and for each pixel (i, j) we compute the warped

coordinates (̃i, j̃) = (i + us, j + vs). The likelihood penalizes the difference in image

intensities, again using the Charbonnier penalty:

φs(us, vs) = −λd
∑

(i,j)∈Is

√
σ2 + (I1(i, j)− I2(̃i, j̃))2 (3.32)

In computing the warped coordinates we also constrain any pixels which flow outside

the image boundary to be exactly on the boundary, ĩ = min(M,max(0, i + us)). We

apply bicubic interpolation for non-integer coordinates.
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Avg. Log-Prob. (p value) Avg. EPE (p value)

RMP -2.446E6 (0.008) 1.623 (0.008)

G-PMP -1.408E6 (0.008) 0.699 (0.008)

T-PMP -1.212E6 (0.008) 0.382 (0.727)

D-PMP -1.209E6 (–) 0.362 (–)

Classic-C – 0.349 (0.727)
Table 3.1: Optical flow MAP estimates. Average log-probability and AEPE over 11
random initializations on the Middlebury training set. Reported p values are compared to
D-PMP using a Wilcoxon signed rank test, we consider p < 0.05 significant.

Results

We evaluate on the Middlebury optical flow benchmark [10] using 11 random ini-

tializations. D-PMP and T-PMP utilize 75% neighbor proposals and 25% random

walk. We compute SLIC superpixels [1] with region size 5 and regularizer 0.1 result-

ing in about 5,000 to 15,000 superpixels per image. We use the Charbonnier widths

σ = 0.001 recommended for this model [159], but learn different scaling parameters

(λs = 16, λd = 1) to compensate for our superpixel representation.

Figure 3.15 (left) reports log-probability quantiles over the 8 Middlebury training

images. To demonstrate particle diversity we report average endpoint error (AEPE)

of the oracle solution in Figure 3.15 (left-center). D-PMP shows a large reduction in

AEPE after just a few particles while T-PMP remains nearly flat, suggesting little

diversity. In just two dimensions the Gaussian spread of G-PMP particles naturally

leads to an error reduction. The benefit of particle diversity is best visualized near

object boundaries (see Fig. 3.14).

We also compare to a specialized coarse-to-fine, multiscale inference algorithm

for Classic-C1, using the recommended settings and with the median filter disabled.

We also compare to RMP on a fixed regular discretization of 200 flow vectors. As

shown in Table 3.1, D-PMP yields significantly higher probability solutions, but is

equivalent to T-PMP in AEPE. D-PMP also achieves equivalent results to Classic-C

optimization, which is highly tuned to the Middlebury dataset.

We cannot directly compare probability of the Classic-C and D-PMP solutions, be-

cause the former models flow at the pixel level. Instead, using L-BFGS initialized from

the D-PMP solution, we optimize the pixel level model and compare log-probability

of the result with Classic-C for both training and test sequences (Fig. 3.15 (right)).

Again, even compared to a highly-tuned specialized optimization method, D-PMP

achieves statistically equivalent results.

1http://people.seas.harvard.edu/~dqsun
Experiments use code accessed on 06 February 2015.

http://people.seas.harvard.edu/~dqsun
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3.4 Discussion

Particle max-product methods provide a class of general-purpose MAP inference algo-

rithms for high-dimensional, continuous graphical models. These methods balance the

efficiency of variational approximations with the flexibility of particle-based approx-

imations. Particle selection, necessary to control computation, induces degeneracies

reminiscent of sequential Monte Carlo when done naively. To avoid such degenera-

cies we introduce a diverse particle selection approach which preserves multiple local

modes.

Through this diversity our algorithm (D-PMP) is better able to reason globally

about competing hypotheses, and is more robust to initialization. With D-PMP we

obtain accurate pose estimates on a challenging dataset, and for images with multiple

people we preserve hypotheses on each figure even without an explicit multi-person

model. Motivated by results on single images we explore pose tracking in video where

temporal dynamics induce cyclic dependencies in the underlying MRF. To support

loopy models we use a reweighted variant of max-product message passing and refor-

mulate diverse particle selection to incorporate the RMP spanning tree distribution.

When D-PMP is applied to pose estimation in video we obtain superior accuracy to

competing particle max-product methods.

While pose estimation serves as a motivating application we stress that D-PMP

is not specialized to this task, but is a general inference algorithm. We demonstrate

the generality of our approach for a very loopy optical flow model. Using the same

implementation of D-PMP we obtain competitive performance with standard infer-

ence algorithms for this task. A Matlab library, built on UGM [140], implementing

these methods is available2.

2http://www.cs.brown.edu/~pachecoj

http://www.cs.brown.edu/~pachecoj


Chapter 4

Protein Structure Prediction

One of the most important tasks in computational biology is the ability to predict

the 3D structure of a protein from its amino acid sequence. The structure is used

to locate drug binding sites, determine biological function, and understand diseases

linked to misfolding. While protein folding is an ambitious goal several important sub-

problems in structure prediction are more attainable, such as side chain prediction,

protein docking, binding, and design. We focus on side chain prediction and discuss

how D-PMP inference can advance the state-of-the-art for this problem.

The majority of existing approaches to protein structure prediction rely on a fixed

discretization of the structural representation. Optimization over this discrete space

is generally performed by simulated annealing Monte Carlo [137], discrete search [58],

or by max-product belief propagation [59]. We show that optimization over the

continuous space of side chain placement is able to capture structural details that

discrete methods cannot.

Several related methods consider continuous optimization of protein structure.

While they do not consider side chain prediction Peng et al. [128] apply the greedy

PMP variant (Ch. 3) for protein folding. Ghorie et al. apply the Metropolis variant of

PMP [95] lacking the diverse particle selection that we propose here [65]. Such diverse

configurations are particularly important in protein structure since proteins ar known

to take multiple stable configurations, depending on function [165, 100, 109].

Most structure prediction methods seek several distinct configurations via inde-

pendent MCMC chains [59, 58, 137]. With few exceptions [57] little attention has been

paid to finding a diverse set of conformations. Lang et al. [100] propose a method to

discover multiple distinct side chain configurations by drawing samples from an elec-

tron density map, however this approach requires experimental X-ray data. Through

our diverse particle selection we show that D-PMP is capable of preserving solutions

at multiple local optima.

52
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Figure 4.1: Amino acid (left) consisting of a backbone and side chain molecule, with
individual atoms labeled. Amino acids bond to form a repeated protein backbone (right).

4.1 Side Chain Prediction

Each of the twenty biologically relevant amino acids consist of a central carbon atom

(Cα) surrounded by an amine group (NH2) and a carboxylic acid (COOH). Neigh-

boring amino acids bond to form a repeated backbone structure, shown in Figure 4.1.

In addition to the backbone, a molecule unique to each amino acid type, known as

a side chain, is attached to Cα. Assuming a known protein backbone configuration,

side chain prediction attempts to estimate the configuraiton of side chain molecules

along the protein chain.

4.1.1 Amino Acid Side Chains

A compact angular representation of side chains is given by dihedral angles (Fig. 4.2 (left)),

which encode the relative rotation of intersecting planes. Unlike an encoding of atomic

coordinates, which allows physically impossible structures, an angular representation

exploits structural constraints of rigidly bonded atoms, thereby reducing the total

degrees of freedom. The coordinates of each atom are recovered from an angular

encoding by assuming ideal bond geometry [49].

Side chain composition varies by amino acid type with up to four dihedral angles

χ1, . . . , χ4 for each amino acid type. Each dihedral angle describes a rotation about

neighboring carbon atom bonds, for example χ1 is a rotation about the backbone Cα

and the first side chain carbon Cβ (Fig. 4.2 (right)).

4.1.2 Discrete Rotamer Optimization

While side chain angles may take any configuration in the continuum χi ∈ [0◦, 360◦)
they tend to cluster around one of three stable configurations in observed X-ray

structures χi ∈ {60◦, 180◦, 300◦}. These configurations, known as rotamers [25],
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Figure 4.2: Dihedral angles (left) define relative rotation between intersecting planes de-
fined by bonded atoms. Among the 20 amino acid types (center) the number of side chain
dihedral angles varies (right).

Estimate Rotamers D-PMP Particles
Figure 4.3: Non-rotameric side chains. Left: X-ray (green), RMP (red), Rosetta
(magenta) and D-PMP (black) estimates. Center: Standard rotamers are all poor approxi-
mations. Right: Final D-PMP particles all overlapping the level set of the electron density
(mesh). (PDB: 1GK9, Trp154) [146]

are not uniformly preferred, but instead occur with varying marginal probability

in observed X-Ray structures. Rotamer libraries encode these marginal probabilities

while marginalizing [130, 108] or conditioning [47, 46] on backbone configurations.

Methods for side chain prediction rely almost exclusively on discrete optimization

over rotamer configurations, to avoid minimizing a continuous energy function. The

optimization is NP-hard [149], but can be solved in some cases using dead-end elimi-

nation (DEE) [42, 68], a branch-and-bound method for reducing the size of the search

space. Large proteins, however, may remain intractable and search methods based

on A∗ [104, 58] or simulated annealing [105, 76, 97] are used to optimize the energy.

Heuristic techniques have also been developed, such as the widely used SCWRL [29]

and TreePack [174] algorithms.

Max-product BP is effective for estimating side chains from the rotamer discretiza-

tion. Fromer et al. apply standard max-product (MP) to side chain prediction and

protein design [58]. Yanover et al. investigate standard MP and reweighted max-

product (RMP) compared to a general-purpose LP solver (CPLEX) for side chain

prediction [178, 179]. When MP does converge it typically produces the best solution

in the shortest time, and RMP almost always finds the solution significantly faster

than CPLEX. Weiss et al. look at the more general class of convex BP algorithms,
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Figure 4.4: Protein structure energetics. Left: Pairwise MRF derived by adding an
edge between each pair of residues within a 10 Å radius. Center: The Lennard-Jones
6-12 potential between two atoms is extremely repulsive at close range and attractive at
moderate ranges. Right: The Dunbrack rotamer probability for a single side chain angle is
a Gaussian mixture to the marginal statistics of observed side chain dihedral angles.

of which reweighted BP is one instance [171], where they focus on conditions under

which the MAP can be provably obtained. Finally, Sontag et al. explore provably

convergent MPLP optimization for side chain packing [153].

4.2 Continuous Side Chain Optimization

Rotamer libraries enable efficient optimization, but they assume an ideal geometry

known to be violated by some proteins [162, 146]. Moreover, the rotamer discretiza-

tion is a coarse approximation that fails to capture fine details of side chain place-

ment. By applying particle max-product we instead perform side chain prediction by

minimizing a continuous energy function that is motivated by well-supported ther-

modynamic interpretations [9, 145, 54, 28, 109].

4.2.1 Graphical Model of Side Chain Placement

We propose a simple model of side chain prediction as a pairwise MRF. Nodes s ∈ V
represent amino acids and edges (s, t) ∈ E join nearby amino acids with Cα atoms in

a 10 Å radius,

p(x) ∝
∏
s∈V

ψrot
s (xs)

∏
(s,t)∈E

ψLJ
st (xs, xt). (4.1)

Our approach is similar to the discrete formulation of Yanover et al. [179], but defined

over a continuous latent state. For a side chain with D dihedral angles the latent state

is a vector of angles xs ∈ [0◦, 360◦)D. Pairwise terms model the physical interaction

between nearby amino acids and unary terms encode the likelihood of side chain

configurations.
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The repulsive and attractive forces of atomic interaction are described by the van

der Waals forces. The Lennard-Jones potential [87] gives a numerical approximation

to these forces between for a pair of amino acids (s, t),

logψLJ
st (xs, xt) =

Ns∑
i=1

Nt∑
j=1

4ε

[(
σ

rij(xs, xt)

)6

−
(

σ

rij(xs, xt)

)12
]
, (4.2)

where rij(xs, xt) is the relative distance between a pair of atoms, Ns is the number of

atoms in the sth amino acid, ε controls the strength of attraction, and σ is the cutoff

distance where atoms do not interact.

The likelihood of proposed structural properties encodes the statistics of observed

X-ray structures. This rotamer probability scores the likelihood of side chain dihe-

dral angles based on the rotamer library of Dunbrack et al. [47, 46]. The rotamer

probability is given by a Gaussian mixture over M rotamers,

ψrot
s (xs) =

M∑
m

πmN(χs|µm,Σm). (4.3)

The mean µ and covariance Σ of each mixture component are implicitly conditioned

on the backbone dihedral angles at each amino acid. Backbone angles are binned in

20◦ increments to produce a finite set of moments.

4.2.2 Resolving Ties in the Conformation

In PMP we resolve ties using an approach similar to one proposed for discrete

MRFs [171]. Recall that, given RMP fixed point messages mus and edge appear-

ance probabilities ρus, pseudo-max-marginals for each node are (Sec. 2.3.4):

νs(xs) ∝ ψs(xs)
∏
u∈Γ(s)

mus(xs)
ρus .

A similar definition holds for pairwise pseudo-max-marginals νst on each edge (s, t) ∈
E . These pseudo-max-marginals admit a provably MAP solution x∗ if a consistent

labeling exists in the set of maxima [168]:

x∗s ∈ arg max
xs

νs(xs), (x∗s, x
∗
t ) ∈ arg max

xs,xt

νst(xs, xt).

For continuous distributions exact ties rarely exist, but small numerical errors in

the estimated pseudo-max-marginals can perturb the particle that is inferred to be

most likely, and lead to joint states with low probability due to conflicted edges. This
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G-PMP T-PMP D-PMP

Figure 4.5: Label Conflicts. Above: Selected side chain particles of two amino acids
(PDB: 1QOW). Diversity in the D-PMP particle set presents more opportunity for an
inconsistent labeling. Below: Naively maximizing the node max-marginal over two tied
states can produce a very unlikely joint configuration.

problem is common in the side chain model and as illustrated in Fig. 4.5, the diversity

in the D-PMP particles makes conflicts more likely.

To address ties we relax the set of optima to those states with pseudo-max-

marginal values within ε of the maximum:

OPT(νs) = {x∗s : |νs(x∗s)− arg max
xs

νs(xs)| ≤ ε}. (4.4)

Let VT be the set of tied nodes with more than one near-maximal state and ET =

E∩(VT ⊗ VT ) the edges joining them. Let x∗NT be the unique assignments for non-tied

nodes. Construct an MRF over the remaining tied nodes as

pT (xT ) ∝
∏
s∈VT

ψ̃s(xs)
∏

(s,t)∈ET
ψst(xs, xt), (4.5)

with the conditioned node potentials

ψ̃s(xs) = ψs(xs)
∏

t∈Γ(s)\VT
ψst(xs, x

∗
t ). (4.6)

We label the remaining nodes x∗T = arg max xT
pT (xT ) using the junction tree algo-

rithm. If the junction tree contains a unique maximizer, then x∗ = (x∗T , x
∗
NT ) is the

global MAP over the particles X. This guarantee follows from the reparameterization

property of pseudo-max-marginals and Theorem 2 of [171]. Clique size is reduced

by eliminating non-tied nodes, and by constraining labels to the set of tied states

xT ∈ OPT(νs).
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Figure 4.6: Side chain prediction. We compare each method and both L1 and L∞
diverse selection methods. Left: Total log-probability over 20 proteins. Median (solid) and
best/worst (dashed) results on 11 random initializations. Left-Center: Total log-probability
for 370 proteins. Right-Center: RMSD (in angstroms Å) of the oracle solution on larger
set. Right: Log-probability of all 370 proteins versus the fixed rotamer discretization with
RMP inference.

4.3 Experimental Results

In the following experiments we explore PMP for protein side chain prediction. We

show that our approach to diverse particle selection captures multiple distinct so-

lutions which encode the conformational diversity that proteins are known to ex-

hibit [165, 100, 109]. For evaluation of the side chain energy (4.1) we use the Rosetta

molecular modeling package [137].

In addition to evaluating energy potentials Rosetta is also our main comparison

benchmark. Rosetta predicts structure using a Monte Carlo plus minimization ap-

proach proposed by Li and Scheraga [107]. Proposal distributions vary depending

on whether the goal is side chain prediction or folding. For side chain prediction

Metropolis proposals are sampled from the rotamer library, followed by continuous

quasi-Newton optimization [137].

In Figure 4.6 we compare estimation accuracy of side chain placement for each

algorithm on two sets of proteins selected from the Protein Data Bank1. Particle

max-product is configured with 50 particles for 50 iterations. D-PMP and T-PMP

proposals are 50% random walks from Gaussians wrapped to account for angular dis-

continuities, and 50% samples from the rotamer marginals. Neighbor-based proposals

are not used, due to the complex transformation between dihedral angles and atomic

coordinates.

D-PMP typical runs outperform competitors. We run each method from 11

random initialization on a small set (20 proteins) and report quantiles of total log-

probability (Fig. 4.6 (left)). Both D-PMP and T-PMP outperform G-PMP, due to

their ability to exploit the model likelihood through rotamer proposals, with D-PMP

showing the tightest confidence intervals. The second set is larger (370 proteins) and

1http://www.pdb.org
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Figure 4.7: Side chain particles. Top Row: Final particles for T-PMP and D-PMP,
and the ground truth conformation of a single protein (PDB ID: 2H8E). Region marked
in red is detailed below. Bottom Row: Closeup of first ten amino acids, showing the fixed
backbone (black) and final particles colored by backbone location. D-PMP preserves more
diverse particles in areas of uncertainty.

we report the total log-probability of a single run for each method (Fig. 4.6 (left-

center)).

D-PMP preserves a diverse configuration of side chains. Fig. 4.7 shows a

qualitative comparison of diversity between D-PMP and T-PMP for a single protein.

To measure diversity we report RMSD of the oracle solution (Fig. 4.6); D-PMP shows

a substantial improvement in accuracy after only a few particles. We also compare

the submodular particle selection (L1) with the minimax formulation (L∞); both

preserve diversity similarly, but the former offers stronger theoretical justification.

4.4 Discussion

The results in this chapter further demonstrate effectiveness of D-PMP inference for

arbitrary continuous MRFs. Indeed, the side chain model explored here bears little

resemblance to the models of human pose estimation which were the focus of Chap-

ter 3. One significant difference is the Lennard-Jones potential, which describes com-

patibility of nearby atoms. This energy is extremely peaked at close ranges leading

to frequent ties in the pseudo-max-marginals, not observed in previous applications.

We show that resolving these ties is crucial to avoid extreme penalties in the MAP

labeling, and can be done in a way previously proposed for discrete MRFs.

Through our departure from the standard approach to side chain prediction, based
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on discrete energy minimization, we show that optimization of a continuous energy

function avoids several inaccuracies imposed by the rotamer discretization. First,

side chains tend to cluster around the rotamer configurations, but significant variation

exists around these modes which is not captured by a discretization [18]. Secondly, the

final dihedral angle of many residues often does not obey the rotamer discretization

leading to continuous density estimates [147], a phenomenon that is naturally handled

by optimizing continuous energies. Finally, experimental results show that some

side chains disobey the rotamer configurations entirely, or can be found in multiple

configurations [146], both cases are supported by D-PMP (Fig. 4.3).



Chapter 5

Variational Inference for

Generalized Gaussian Mixtures

The BP message updates (2.25) are only tractable for discrete and Gaussian proba-

bility models, and we begin this chapter with an exploration of inference algorithms

on a broader class of models. In particular we develop EP inference for a broad class

of target tracking models in the presence of unwanted clutter detections modeled by

Gaussian mixture emission probabilities (Sec. 5.1). Our approach unifies a number

of classical techniques in probabilistic target tracking into a common framework, and

also generalizes to yield new algorithms not previously considered in the literature.

Going further, we introduce a new class of inference algorithms (Sec. 5.2) based

on applying Lagrange multiplier methods to directly minimize a variational objective

function. Stationary points of this objective, known as the Bethe free energy, corre-

spond to fixed points of LBP and EP. By this correspondence the resulting algorithms

share the same solution set as their message passing counterparts, but are provably

convergent and exhibit superior stability properties by avoiding degenerate conditions

which often occur in Gaussian LBP and EP for continuous models.

5.1 Robust Target Tracking in Clutter

Within the Bayesian approach to target tracking there are two competing models

for representing uncertainty in observation assignments. The probabilistic data asso-

ciation filter (PDAF) [11] assumes at most one true target detection per time step

and incorporates observations sequentially via a single forward pass. The probabilis-

tic multi-hypothesis tracker (PMHT) [155] allows for an arbitrary number of target

detections and adapts the expectation maximization (EM) algorithm to iteratively es-

timate smoothed state updates from a fixed batch of data. Both of these approaches

61
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approximate the intractable posterior over the target state with a single Gaussian.

In contrast to previous approaches, which consider only a single observation assign-

ment model, we derive EP inference for both models. To differentiate the algorithms

from their probability models we refer to the dependent observation assignment model

underlying the PDAF, and the independent observation assignment model underlying

the PMHT. We also consider single Gaussian and Gaussian mixture approximations

of the posterior over target state. In the next sections we briefly outline each of the

algorithms. For a more detailed discussion see the published report [124].

5.1.1 Expectation Propagation for Target Tracking

We begin by briefly reviewing the EP updates first discussed in Sec. 2.3.2. Consider

a joint distribution which factorizes according to

p(x | D) ∝ p0(x)
∏
i

ψi(x) (5.1)

with latent variables x, prior distribution p0(x), and observed data D encoded via

non-negative factors ψi(x). We choose an approximating distribution q(x) that is in

a tractable exponential family [169] of distributions, with matched factorization

q(x) = p0(x)
∏
i

ψ̃i(x) ≈ p(x | D). (5.2)

We refer to ψ̃i(x) as messages, which can be thought of as local approximations.

EP provides a means for iteratively refining each ψ̃i(x) such that q(x) approximates

the true posterior p(x | D). At each iteration, EP updates the posterior and factor

approximations according to the following procedure:

q\i(x) = q(x)/ψ̃i(x) (Cavity)

p̂(x) ∝ q\i(x)ψi(x) (Augmented Distribution)

qnew(x) = arg min
q

D(p̂(x) ‖ q(x)) (KL Projection)

ψ̃i(x) ∝ qnew(x)/q\i(x) (New Message)

The KL projection can be computed in closed form via moment-matching (c.f. Sec. 2.2).

The messages ψ̃i(x), as well as the cavity distribution q\i(x), are members of an unnor-

malized exponential family. EP does nothing to explicitly enforce their normalizability–

an issue we directly address in Sec. 5.2. For the KL projection to be well-posed, the

augmented distribution p̂(x) must be normalizable. If it is not then we “halt” the up-

date, leaving the message unchanged. For more details on EP in general, see [114, 169].
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In the following sections we derive EP inference algorithms for the dependent clut-

ter assignment model underlying the PDAF, and the independent clutter assignment

model that PMHT assumes. We consider approximations of state distributions by

two exponential families, single Gaussian and Gaussian mixture. We do not apply

the mixture approximation to the independent assignment model, where the mixture

size is exponential in the number of observations per timestep.

For all of the target tracking models we consider the joint distribution factorizes

as a time series with first-order Markov dependence:

p(X,Z) =
1

Z
p0(x0)

T∏
t=1

ψt(xt−1, xt)ϕt(xt, zt) (5.3)

where the target state at scan t is xt ∈ Rn with prior p0(x0) = N(x | µ0, V0) and linear

Gaussian target dynamics ψt(xt−1, xt) = N(xt | Fxt−1, Q) where F,Q ∈ Rn×n. The

observation likelihoods ϕt(xt, zt) encode the assignment model, and depend implicitly

on observed data yt = {yit}Mt
i=1.

Clutter Assignment Models

Under the dependent assignment model, at most one detection per timestep is related

to the target state. Assignments are encoded as zt ∈ {0, . . . ,Mt}, where zt = 0

indicates that all observations are clutter. Otherwise, yztt is target-generated:

ϕDt (xt, zt) = δzt,0λ0 +
Mt∑
i=1

δzt,iλiN(yit | Hxt, R) (5.4)

Here, δ·,· is the Kronecker delta, H ∈ Rm×n and R ∈ Rm×m. The overall potential is

a mixture of Mt Gaussians and a constant. Typically, λ0 = (1− Pd)N(yit | 0,Σ0) and

λi = Pd
Mt
p(zt = i) for some probability of detection Pd.

The independent assignment model assumes the Mt detections are marginally

independent, where zit = 0 if detection i is clutter, and zit = 1 if it is related to the

target:

ϕIt (xt, z
i
t) = δzit,0λ0 + δzit,1λ1N(yit | Hxt, R) (5.5)

The overall observation likelihood at time t is then the product
∏Mt

i=1 ϕ
I
t (xt, z

i
t), a

mixture of O(2Mt) Gaussians plus a constant term.

EPD: Dependent Assignment, Single Gaussian

We begin with a Gaussian marginal posterior approximation qt(xt) = N(xt | mt, Vt)

defined as the product of a forward message αt(xt), a backward message βt(xt), and
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(a) EPD (b) EPI (c) EPD+
Figure 5.1: Factor graphs illustrating the joint factorization and messages underlying three
EP tracking algorithms. EPD: Dependent observation assignments, single Gaussian state
distributions. EPI: Independent observation assignments, single Gaussian state distribu-
tions. EPD+: Dependent observation assignments, Gaussian mixture state distributions.

a measurement message γt(xt):

qt(xt) ∝ αt(xt)γt(xt)βt(xt) ≈ p(xt | Y T
1 ) (5.6)

The messages are parameterized as unnormalized Gaussians in information form,

αt(xt) = sαt exp(−1

2
xTt Λα

t xt + xTt η
α
t ), (5.7)

with similar definitions for βt(xt) and γt(xt). Figure 5.1(a) shows a factor graph [169]

for this model along with overlays denoting the direction and type of messages. The

forward pass augmented distribution at scan t yields a Gaussian density,

p̂t(xt) ∝ γt(xt)βt(xt)

∫
Xt−1

αt−1(xt−1) γt−1(xt−1)ψt(xt−1, xt) dxt−1 (5.8)

The EP projection step introduces no approximation, so qnew
t = p̂t. The forward

messages αt(xt) are as in a conventional Kalman filter, and the reverse messages

βt(xt) as in a two-pass Kalman smoother. In contrast, the measurement messages

γt(xt) involve a projection step since the augmented distribution is non-Gaussian:

p̂t(xt) ∝
Mt∑
zt=0

αt(xt)ϕ
D
t (xt, zt)βt(xt) (5.9)

The projection qnew
t ∝ arg minq D(p̂t‖q) matches the mean and variance of the Gaus-

sian mixture p̂t(xt). The measurement message update is γnew
t (xt) =

qnew
t (xt)

αt(xt)βt(xt)
.

A single forward pass of this algorithm, iteratively updating αt and γt, is equivalent

to the PDAF [11]. To see this, note the correspondence between the PDAF prediction

step and the calculation of the forward messages αt. Similarly, the PDAF association

probabilities correspond to the mixture weights of the augmented distribution of

Eq. (5.9). The projection step yields a Gaussian posterior qt(xt), the mean of which

corresponds to the minimum mean square error (MMSE) state prediction of PDAF.
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Further iterations of EPD provide a novel way of generalizing PDAF to produce

smoothed state estimates. Each iteration has linear complexity O(N), where N =∑T
t=1 Mt is the total number of detections.

EPI: Independent Assignment, Single Gaussian

As in the EPD algorithm, we approximate the state posterior via a single Gaussian

distribution:

qt(xt) ∝ αt(xt)

(
Mt∏
i=1

γit(xt)

)
βt(xt) ≈ p(xt | Y T

1 ) (5.10)

Note that we have a separate measurement message γit(xt) for each observation, and

the posterior depends on the product of all of these messages. Figure 5.1(b) shows

a factor graph for this model with overlays indicating the forward, backward, and

measurement messages. The forward pass augmented distribution at scan t yields a

Gaussian density,

p̂t(xt) ∝ βt(xt)
Mt∏
i=1

γit(xt)

∫
Xt−1

αt−1(xt−1)

Mt−1∏
i=1

γit−1(xt−1)ψt(xt−1, xt) dxt−1

This is Gaussian, so as in EPD the forward and backward messages correspond to

conventional Kalman filters and smoothers. The measurement message update at

each scan is equivalent to an instance of EP for the clutter problem [114].

One full iteration of EPI has linear complexity O(N), where N is again the total

number of detections. This algorithm does not appear to be equivalent to classical

tracking algorithms, for any message schedule. EPI assumes the same assignment

model as the PMHT, but the inference algorithms are different.

EPD+: Dependent Assignment, Gaussian Mixture

Returning to the dependent assignment model of EPD, we extend EP to employ a

more flexible, Gaussian mixture marginal approximation. A closely related algorithm

has been used for inference in switching state-space models [73]. Tractability of the

posterior is maintained by limiting the marginal at scan t to a mixture approximation

with Mt modes, one for each possible clutter assignment zt,

qt(xt, zt) =
Mt∑
j=0

δzt,jpt,jN(xt | mt,j, Vt,j) ≈ p(xt, zt | Y T
1 )

Note that unlike the simpler EPD approximation, qt(xt, zt) is defined over the target

state xt and assignments zt jointly. Measurement messages are not necessary, because
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the measurement potential lies in the approximating family. We define the marginal

as the product of forward and backward messages qt(xt, zt) ∝ αt(xt, zt)βt(xt, zt). The

messages are parameterized as unnormalized Gaussian mixtures,

αt(xt, zt) =
Mt∑
j=0

δzt,jp
α
t,j exp(−1

2
xTt Λα

t,jxt + xTt η
α
t,j) (5.11)

with a similar definition for βt(xt, zt). Figure 5.1(c) depicts a factor graph repre-

sentation of this model with overlays for the forward and backward messages. The

augmented distribution in the forward pass at scan t is:

p̂t(xt, k) ∝ βt(xt, k)ϕDt (xt, k)

Mt−1∑
j=0

∫
Xt−1

αt−1(xt−1, j)ψ(xt−1, xt) dxt−1.

For each candidate zt = k, the augmented distribution p̂t(xt, k) is a Gaussian mixture

with Mt−1 components. We project each of these mixtures to a single Gaussian

qnew
t (xt, zt = k) with matched mean and covariance. The posterior approximation

qnewt is then a mixture of Mt + 1 Gaussians, indexed by zt.

The updates of backward messages βt(xt, zt) proceed similarly to the forward

pass. A single forward pass of EPD+ is similar to the Gaussian Pseudo-Bayesian

estimator of second order (GPB2) [11], which is a forward filter for estimation in a

switching linear dynamical system (SLDS). One or more forward and backward passes

of EPD+ correspond to smoothed generalizations of GPB2, and thus novel algorithms

for tracking in clutter. If there are M detections per time step, one iteration of EPD+

has computational complexity O(TM2) = O(NM). This is greater than EPD but

still linear in T , and often tractable.

KNN: Nearest Neighbor Association Baseline

The Kalman filter with nearest neighbor association (KNN) provides a baseline com-

parison [5]. Given approximate filtered marginals p̂t(xt) = N(xt | mt, Pt), we predict

the state evolution as follows:

p̂(xt+1 | Y t
1 ) = N(xt+1 | Fmt, Q+ FPtF

T )

We refer to x̂t+1|t = Fmt as the predicted target state and P̂t+1|t = Q + FPt−1F
T

as the predicted covariance. The predicted measurement is given by ŷt+1 = Hx̂t+1|t.
Assuming Gaussian noise, the most likely associated measurement can be selected

based on the detection nearest to ŷt+1:

ẑt+1 = arg min
z∈{1,...,Mt}

‖ŷt+1 − yzt+1‖2
2
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(a) (b) (c)

Figure 5.2: Data sampled from the dependent assignment model (top) and independent
assignment model (bottom). (a) Example scenario with Pd = 0.7 and λ = 10−4.5. True
target detections are red, clutter detections blue. (b) Across 100 instances, we plot the
median (solid) and (0.25, 0.75) quantiles (dashed) of L1 error versus clutter density λ. (c)
Close-up track estimates (solid), and one standard deviation error estimates (dashed), for
multiple methods applied to a single instance of each dataset.

The measurement residual is calculated based on the nearest-neighbor association as

νt+1 = y
ẑt+1

t+1 − ŷt+1. Incorporating the measurement we update the marginal as,

p̂t+1(xt+1) = N(xt+1 | x̂t+1|t +Wνt+1, P̂t+1|t −Wt+1St+1W
T
t+1)

where Wt+1 and St+1 are the typical Kalman gain and innovation covariance, respec-

tively. The smoothed posterior marginal p̂(xt | Y T
1 ) is computed as the product of

forward and reverse-time filters, using associations as above.

5.1.2 Target Tracking Simulation

We conduct a Monte Carlo simulation for a one-dimensional latent state xt with

random walk dynamics xt ∼ N(xt−1, σ
2
p), initialized uniformly in the observation

region. Under either assignment model, target detections yit ∼ N(xt, σ
2
m) and clutter

detections yit ∼ N(0, σ2
0). The clutter density λ is proportional to the number of false

detections.

We evaluate algorithm performance by the L1 distance from the true posterior
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marginals, accurately approximated by finely discretizing the state space and run-

ning the forward-backward algorithm for hidden Markov models (HMMs) [169]. This

numerical baseline is possible with one-dimensional states, but intractable for higher-

dimensional problems where our EP algorithms remain feasible.

We vary the clutter density λ ∈ {10−5.5, 10−5.0, 10−4.5, 10−4.0}, fixing the probabil-

ity of detection as Pd = 0.7. For every setting of parameters we sample 100 random

instances, each with T = 100 time points. While convergence is not guaranteed

in these models, we achieve adequate convergence for our results by damping the

conventional EP message updates [114, 73], with damping parameter α = 0.5.

Figure 5.2 shows results for data sampled from the both the dependent and inde-

pendent assignment models. As measured by L1 error, EP consistently outperforms

baseline methods, and the Gaussian mixture approximation of EPD+ is superior in

almost all cases. In general EP seems robust to model mismatch, as EPD+ is effective

even for data from the independent assignment model. EPD clearly improves over

PDAF.

Figure 5.2(c) shows close-up track estimates for particular instances sampled from

each assignment model. KNN consistently underestimates posterior variance, while

PDAF overestimates it. State estimates among the EP algorithms are generally

comparable or superior to baselines. EPD+ more accurately estimates the posterior

variance than other methods.

5.2 Convergent Minimization of Bethe Approxi-

mations

Message passing algorithms are convenient for many applications, such as the tracking

problems explored in the previous sections. However, neither LBP nor EP are guar-

anteed to converge. Even in simple continuous models, both methods may improperly

estimate invalid or degenerate marginal distributions, such as Gaussians with negative

variance. Such degeneracy typically occurs in classes of models for which convergence

properties are poor, and there is evidence that these problems are related [111, 38].

Extensive work has gone into developing algorithms which improve on LBP for

models with discrete variables, for example by bounding [184, 160] or convexify-

ing [167] the free energy objective. Gradient optimization methods have been applied

successfully to binary Ising models [172], but when applied to Gaussian models this

approach suffers similar non-convergence and degeneracy issues as LBP. Work on op-

timization of continuous variational free energies has primarily focused on addressing

convergence problems [73]. None of these approaches directly address degeneracy in
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the continuous case, and computation may be prohibitively expensive for these direct

minimization schemes.

By leveraging gradient projection methods from the extensive literature on con-

strained nonlinear optimization, we develop an algorithm which ensures that marginal

estimates remain valid and normalizable at all iterations. In doing so, we account for

important constraints which have been ignored by previous variational derivations

of the expectation propagation algorithm [113, 38, 73]. Moreover, by adapting the

method of multipliers [22], we guarantee that our inference algorithm converges for

most models of practical interest.

5.2.1 Bethe Variational Problems

Recall from Sec. 2.3.2 that fixed points of LBP and EP correspond to stationary

points of the constrained Bethe variational problem. We review this formulation for

a pairwise MRF,

p(x) =
1

Z

∏
s∈V

ψs(xs)
∏

(s,t)∈E
ψst(xs, xt). (5.12)

Let q(x) be a variational distribution in the exponential family with sufficient statis-

tics φ(x) and mean parameters µ = E[φ(x)]. The variational optimization is over

the relaxed constraint set of locally consistent marginal distributions L(G) satisfying

expectation constraints associated with each edge of the graph:

Cs(µ) = 1−
∫
qs(xs;µs) dxs, Cts(µ) = µs − Eqst [φs(xs)].

The objective function is the Bethe free energy, a tractable approximation to the

exact variational free energy that replaces an intractable entropy with that of a tree-

structured distribution,

FB(µ) =
∑

(s,t)∈E
Eqst [log qst(xs, xt)− logϕst(xs, xt)]

−
∑
s∈V

(ns − 1) Eqs [log qs(xs)− logψs(xs)], (5.13)

where we define the shorthand ϕst = ψstψsψt and ns = |Γ(s)| is the number of

neighbors to node s. The constrained Bethe variational problem (BVP) is then,

minimize
µ

FB(µ)

subject to Cts(µ) = 0,∀s ∈ V , t ∈ Γ(s)

Cs(µ) = 0,∀s ∈ V ,
{µs : s ∈ V} ∪ {µst : (s, t) ∈ E} ∈ K.

(5.14)
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Lagrange / Message Mapping Gaussian Lagrange Function
Figure 5.3: Correspondence to Bethe free energy. Left: For stationary points of the
Lagrangian (5.15) a bijection f exists between multipliers λ and canonical parameters θ
of the variational distribution. Right: Level sets of the Lagrangian for a Gaussian MRF.
Contours show the function in terms of the lagrange multiplier and marginal variance, the
marginalization constraint (green line) and unique BP fixed point (red star) are also shown.

The constraint set K =
⋃
s Ks

⋃
st Kst defines the set of valid mean parameters for

each node µs and edge µst marginal. The definition of K depends on the variational

distribution q, for example if q is Gaussian then K is the positive semidefinite cone.

Correspondence to Message Passing

We can optimize the BVP (5.14) by relaxing the normalization and local consistency

constraints with Lagrange multipliers. Constrained minima are characterized by sta-

tionary points of the Lagrangian,

L(µ, λ) = FB(µ) +
∑
s

λsCs(µ) +
∑
s

∑
t∈N(s)

λtsCts(µ). (5.15)

Equivalence between LBP fixed points and stationary points of the Lagrangian for

the discrete case have been discussed extensively [183, 169]. Similar correspondence

has been shown more generally for EP fixed points [169, 74]. Since our focus is on the

continuous case we briefly review the correspondence between Gaussian LBP fixed

points and the Gaussian Bethe free energy. For simplicity we focus on zero-mean

p(x) = N(x | 0, J−1), where diagonal precision entries Jss = As and

ψs(xs) = exp

{
−1

2
x2
sAs

}
, ψst(xs, xt) = exp

{
−1

2

(
xs xt

)( 0 Jst
JTst 0

)(
xs
xt

)}
.

Let q(xs) = N(xs | 0, Vs), q(xs, xt) = N(( xsxt ) | 0,Σst), Σst =
(
Vts Pst
Pts Vst

)
, and B̃st =(

As Jst
Jst At

)
. The Gaussian Bethe free energy then equals:

FGB(V,Σ) =
1

2

∑
(s,t)∈E

(
tr(ΣstB̃st)− log |Σst|

)
−
∑
s∈V

(
ns − 1

2

)
(VsAs − log Vs) . (5.16)
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Degenerate

Figure 5.4: Degenerate mean parameters. The constraints M defining the marginal
polytope are a subset of the locally consistent marginals defined by L. For continuous MRFs
L may include marginals outside the set of valid mean parameters K, e.g. Gaussians with
negative definite covariance.

The locally consistent marginal polytope L(G) consists of the constraints Cts(V ) =

Vs − Vts for all nodes s ∈ V and edges (s, t) ∈ E . The Lagrangian is given by,

L(V,Σ, λ) = FGB(V,Σ) +
∑
s

∑
t∈N(s)

λts [Vs − Vts] . (5.17)

Taking the derivative with respect to the node marginal variance ∂ L
∂Vs

= 0 yields the

stationary point V −1
s = As + 1

ns−1

∑
t∈N(s) λts. For a Gaussian LBP algorithm with

messages parameterized as mt→s(xs) = exp
{
−1

2
x2
sΛt→s

}
, fixed points of the node

marginal precision are given by

Λs = As +
∑
t∈N(s)

Λt→s

Let λts = −1
2

∑
a∈N(s)\t Λa→s. Substituting back into the stationary point conditions

yields V −1
s ⇒ Λs. A similar construction holds for the pairwise marginals. Inverting

the correspondence between multipliers and message parameters yields the converse

V −1
s ⇐ Λs (c.f. [74]).

Message Passing Non-Convergence and Degeneracy

While local message passing algorithms are convenient for many applications, their

convergence is not guaranteed in general. Loopy BP, for example, often fails to

converge for networks with tight loops [183] such as the 3× 3 lattice of Figure 5.5(a).

For non-Gaussian models with continuous variables, convergence of the EP algorithm

can be even more problematic [73].
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(a) (b) (c)

Figure 5.5: (a) Bethe free energy versus iteration for 3x3 toroidal binary MRF. (b) Node
marginal variance estimates per iteration for a symmetric, single-cycle Gaussian MRF with
three nodes (plot is of x1, other nodes are similar). (c) For the model from (b), the Gaussian
Bethe free energy is unbounded on the constraint set.

For continuous models message updates may yield degenerate, unnormalizable

marginal distributions which do not correspond to stationary points of the Lagrangian.

For example, for Gaussian MRFs the Bethe free energy FB(·) is derived from ex-

pectations with respect to variational distributions over nodes qs(xs;µs) and edges

qst(xs, xt;µst). If a set of hypothesized marginals are not normalizable (positive vari-

ance), the Gaussian Bethe free energy FGB(·) is invalid and undefined.

Degenerate marginals arise because the constraint K over valid mean parameters

is not represented in the Lagrangian (5.15); this issue is mentioned briefly in [169]

but is not dealt with computationally. Figure 5.5(b) demonstrates this issue for a

simple, three-node Gaussian MRF. Here LBP produces marginal variances which

oscillate between impossibly large positive, and non-sensical negative, values. Such

degeneracies are arguably more problematic for EP since its moment matching steps

require expected values with respect to an augmented distribution [114], which may

involve an unbounded integral.

Unboundedness of the Gaussian Bethe Free Energy

Conditions under which the simple LBP and EP updates are guaranteed to be ac-

curate are of great practical interest. For Gaussian MRFs, the class of pairwise

normalizable models are sufficient to guarantee LBP stability and convergence [111].

For non-pairwise normalizable models the Gaussian Bethe free energy is unbounded

below [38] on the set of local consistency constraints L(G).

We offer a small example consisting of a non-pairwise normalizable symmetric

single cycle with 3 nodes. Diagonal precision elements are Jss = 1.0, and off-diagonal
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elements Jst = 0.6. We embed marginalization constraints into a symmetric parame-

terization Vs = V and Σst =
(
V ρV
ρV V

)
. Feasible solutions within the constraint set are

characterized by V > 0 and −1 < ρ < 1. Substituting this parameterization into the

Gaussian free energy (5.16), and performing some simple algebra, yields

FGB(V, ρ) = −3

2
log V +

3

2
V (1 + 1.2ρ)− 3

2
log(1− ρ2).

For ρ < − 1
1.2

the free energy is unbounded below at rate O(−V ). Figure 5.5(c)

illustrates the Bethe free energy for this model as a function of V , and for several

values of ρ.

More generally, it has been shown that Gaussian EP messages are always normal-

izable (positive variance) for models with log-concave potentials [142]. It has been

conjectured, but not proven, that EP is also guaranteed to converge for such mod-

els [136]. For Gaussian MRFs, we note that the family of log-concave models coincides

with the pairwise normalizability condition. Our work seeks to improve inference for

non-log-concave models with bounded Bethe free energies.

5.2.2 Method of Multipliers (MoM) Optimization

Given our complete constrained formulation of the Bethe variational problem, we

avoid convergence and degeneracy problems via direct minimization using the method

of multipliers (MoM) [22]. In general terms, given some convex feasible region K,

consider the equality constrained problem

minimize
x∈K

f(x) subject to h(x) = 0

With penalty parameter c > 0, we form the augmented Lagrangian function,

Lc(x, λ) = f(x) + λTh(x) +
1

2
c||h(x)||2 (5.18)

Given a multiplier vector λk and penalty parameter ck we update the primal and dual

variables as,

xk = arg min
x∈K
Lck(x, λk), λk+1 = λk + ckh(xk). (5.19)

The penalty multiplier can be updated as ck+1 ≥ ck according to some fixed update

schedule, or based on the results of the optimization step. An update rule that we find

useful [22] is to increase the penalty parameter by β > 1 if the constraint violation is

not improved by a factor 0 < γ < 1 over the previous iteration,

ck+1 =

{
βck if ‖h(xk)‖ > γ‖h(xk−1)‖,
ck if ‖h(xk)‖ ≤ γ‖h(xk−1)‖. (5.20)
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cc

*

Convergence holds
for initialization in set

Gradient Projection MoM Convergence
Figure 5.6: Bethe optimization. Left: Gradient projection enforces feasible marginal
mean parameters. Each iteration the gradient∇f(xk) is calculated and Euclidean projection
enforces the closest feasible solution x̄k. Iterates xk+1 are generated in the direction of the
vector (x̄k − xk). Right: Method of multiplier optimization is guaranteed to converge for a
given initialization (c0, λ0) provided the suboptimality of the initial multiplier λ0 is upper
bounded by the initial penalty c0 by a linear coefficient δ > 0: ‖λ0 − λ∗‖ < δc0.

Gradient Projection

The augmented Lagrangian Lc(x, λ) is a partial one, where feasibility of mean pa-

rameters (x ∈ K) is enforced explicitly by projection. A simple gradient projection

method [22] defines a sequence

xk+1 = xk + αk(x̄k − xk), x̄k = [xk − sk∇f(xk)]
+ . (5.21)

The notation [·]+ denotes a projection onto the constraint set K. After taking a

step sk > 0 in the direction of the negative gradient, we project the result onto the

constraint set to obtain a feasible direction x̄k. We then compute xk+1 by taking a

step αk ∈ (0, 1] in the direction of (x̄k − xk). If xk − sk∇f(xk) is feasible, gradient

projection reduces to unconstrained steepest descent.

There are multiple such projection steps in each inner-loop iteration of MoM (e.g.

each xk update). For our experiments we use a projected quasi-Newton method [141]

and step-sizes αk and sk are chosen using an Armijo rule [22, Prop. 2.3.1].

Convergence Properties

Convergence and rate of convergence results have been proven [21, Proposition 2.4]

for the Method of Multipliers with a quadratic penalty and multiplier iteration

λk+1 = λk + ckh(xk). The main regularity assumptions are that the sequence {λk} is

bounded, and there is a local minimum for which a Lagrange multiplier pair (x∗, λ∗)
exists satisfying second-order sufficiency conditions, so that ∇x L0(x∗, λ∗) = 0 and

zT∇2
xx L0(x∗, λ∗)z > 0 for all z 6= 0. It then follows that there exists some c̄ such

that for all c ≥ c̄, the augmented Lagrangian also contains a strict local minimum

zT∇2
xx Lc(x∗, λ∗)z > 0.
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For convergence, the initialization of the Lagrange multiplier λ0 and penalty pa-

rameter c0 must be such that ‖λ0−λ∗‖ < δc0 for some δ > 0 and c ≥ c̄ which depend

on the objective and constraints. In practice, a poor initialization of the multiplier λ0

can often be offset by a sufficiently high c0. A final technical note is that convergence

proofs assume the sequence of unconstrained optimizations which yield xk stays in

the neighborhood of x∗ after some k. This does not hold in general, but can be

encouraged by warm-starting the unconstrained optimization with the previous xk−1.

To invoke existing convergence results we must show that a local minimum x∗

exists for each of the free energies we consider; a sufficient condition is then that the

Bethe free energy is bounded from below. This property has been previously estab-

lished for general discrete MRFs [72], for pairwise normalizable Gaussian MRFs [38],

and for the clutter model [114]. For non-pairwise normalizable Gaussian MRFs, the

example of Section 5.2.1 shows that the Bethe variational objective is unbounded be-

low, and further may not contain any local optima. While the method of multipliers

does not converge in this situation, its non-convergence is due to fundamental flaws

in the Bethe approximation.

5.2.3 MoM Algorithms for Probabilistic Inference

We derive MoM algorithms which minimize the Bethe free energy for three different

families of graphical models. For each model we define the form of the joint distri-

bution, Bethe free energy FB, local consistency constraints, augmented Lagrangian,

and the gradient projection step. Gradients, which can be notationally cumbersome,

are given in Appendix A.1.

Gaussian Markov Random Fields

We have already introduced the Lagrangian (5.17) for the Gaussian MRF. The Gaus-

sian Bethe free energy (5.16) is always unbounded below off of the constraint set in

node marginal variances Vs. We correct this by adding an additional fixed penalty in

the augmented Lagrangian,

Lc(V,Σ, λ) = FGB(V ) +
∑
s

∑
t∈N(s)

λts [Vs − Vts]

+
κ

2

∑
s

∑
t∈N(s)

[log Vs − log Vts]
2 +

c

2

∑
s

∑
t∈N(s)

[Vs − Vts]2 .

We keep κ ≥ 1 fixed so that existing convergence theory remains applicable. The

set of realizable mean parameters K is the set of symmetric positive semidefinite

matrices Vs,Σst. We therefore must solve a series of constrained optimizations of the
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form, minV,Σ Lck(V,Σ, λk), subject to Vs ≥ 0,Σst � 0. The gradient projection step

is easily expressed in terms of correlation coefficients ρst,

Σst =

[
Vst ρst

√
VstVts

ρst
√
VstVts Vts

]
.

Then, Σst � 0 if and only if Vst ≥ 0, Vts ≥ 0, and −1 ≤ ρst ≤ 1. The projection step

is then,

Vst = max(0, Vst), Vts = max(0, Vts), ρst = max(−1,min(1, ρst)).

The full MoM algorithm follows from gradient derivations in Appendix A.1.

Recall that in Section 5.2.1, we showed that the Gaussian Bethe free energy is

unbounded on the constraint set for non-pairwise normalizable models. We run MoM

on the symmetric three-node cycle from this discussion and find that MoM, correctly,

identifies an unbounded direction, and Figure 5.5(b) shows that the node marginal

variances indeed diverge to infinity.

Discrete Markov Random Fields

Consider a pairwise MRF where all variables xs ∈ Xs = {1, . . . , Ks} are discrete.

The variational marginal distributions are then qs(xs; τ) =
∏Ks

k=1 τ(xs)
I(xs,k), and

have mean parameters τ ∈ RKs . Let τ(xs) denote element xs of vector τ . Pair-

wise marginals have mean parameters τst ∈ RKs×Kt similarly indexed as τst(xs, xt).

The discrete Bethe free energy is then

FB(τ ;ψ) =
∑

(s,t)∈E

∑
xs

∑
xt

τst(xs, xt)[log τst(xs, xt)− logψst(xs, xt)]

−
∑
s∈V

∑
xs

(ns − 1)τs(xs)[log τs(xs)− logψs(xs)].

For this discrete model, our expectation constraints reduce to the following normal-

ization and marginalization constraints:

Cs(τ) = 1−
∑
xs

τs(xs), Cts(xs; τ) = τs(xs)−
∑
xt

τst(xs, xt).

The augmented Lagrangian is then,

Lc(τ, λ, ξ;ψ) = FB(τ ;ψ) +
∑

(s,t)∈E

[∑
xs

λts(xs)Cts(xs; τ) +
∑
xt

λst(xt)Cst(xt; τ)

]

+
∑
s∈V

ξssCs(τ) +
c

2

∑
s∈V

Cs(τ)2 +
c

2

∑
(s,t)∈E

[∑
xs

Cts(xs; τ)2 +
∑
xt

Cst(xt; τ)2

]
.
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Mean parameters must be non-negative to be valid, so K = {τs, τst : τs ≥ 0, τst ≥
0}. This constraint is enforced by a bound projection τs(xs) = max(0, τs(xs)), and

similarly for the pairwise marginals. While these constraints are never active in BP

fixed point iterations, they must be enforced in gradient optimization. With these

pieces and the gradient computations presented in Appendix A.1, implementation of

MoM optimization for the discrete MRF is straightforward.

Discrete Mixtures of Gaussian Potentials

We are particularly interested in tractable inference in hybrid models with discrete

and conditionally Gaussian random variables. A simple example of such a model is the

clutter problem [114], whose joint distribution models N conditionally independent

Gaussian observations {yi}Ni=1. These observations may either be centered on a target

scalar x ∈ R (zi = 1) or drawn from a background clutter distribution (zi = 0). If

target observations occur with frequency β0, we then have

x ∼ N(µ0, P0), zi ∼ Ber(β0), yi | x, zi ∼ N(0, σ2
0)(1−zi)N(x, σ2

1)zi

The corresponding variational posterior distributions are,

q0(x) = N(m0, V0), qi(x, zi) = ((1− βi)N(x | mi0, Vi0))(1−zi) (βiN(x | mi1, Vi1))zi .

Assuming normalizable marginals with V0 ≥ 0, Vi0 ≥ 0, Vi1 ≥ 0, as always ensured

by our multiplier method, we define the Bethe free energy FCGB(m,V, β) in terms of

the mean parameters in Appendix A.1. Expectation constraints are given by,

Cmean
i = E0[x]− Ei[x], Cvar

i = Var0[x]− Vari[x],

where Ei[·] and Var i[·] denote the mean and variance of the Gaussian mixture qi(x, zi).

Combining the free energy, constraints, and additional positive semidefinite con-

straints on the marginal variances we have the BVP for the clutter model,

minimize
m,V,β

FCGB(m,V, β;ψ)

subject to Cmean
i = 0, Cvar

i = 0, for all i = 1, 2, . . . , N

V0 ≥ 0, Vi0 ≥ 0, Vi1 ≥ 0

(5.22)

Derivation of the free energy and augmented Lagrangian is somewhat lengthy, and so

is deferred to Appendix A.1. Projection of the variances onto the constraint set is a

simple thresholding operation.
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5.2.4 Experimental Results

5.2.5 Discrete Markov Random Fields

We consider binary Ising models, with variables arranged in NxN lattices with toroidal

boundary conditions. Potentials are parameterized as in [182], so that

ψs =

[
exp(hs)

exp(−hs)

]
, ψst =

[
exp(Jst) exp(−Jst)

exp(−Jst) exp(Jst)

]
.

We sample 500 instances at random from a 10x10 toroidal lattice with each Jst ∼
N(0, 1) and hs ∼ N(0, 0.01). LBP is run for a maximum of 1000 iterations, and

MoM is initialized with a single iteration of LBP. We report average L1 error of the

approximate marginals as compared to the true marginals computed with the junction

tree algorithm [117]. Marginal errors are reported in Figure 5.7(a,top), and there is

a clear improvement over LBP in the majority of cases.

Direct evaluation of the Bethe free energy does not take into account constraint

violations for non-convergent LBP runs. The augmented Lagrangian penalizes con-

straint violation, but requires a penalty parameter which LBP does not provide. For

an objective comparison, we construct a penalized Bethe free energy by evaluating

the augmented Lagrangian with fixed penalty c = 1 and multipliers λ = 0. We

evaluate this objective at the final iteration of both algorithms. As we see in Fig-

ure 5.7(a,bottom), MoM finds a lower free energy for most trials.

Our implementations of LBP and MoM are in Matlab, and emphasize correctness

over efficiency. Nevertheless, computation time for LBP exceeds that of MoM. Wall

clock time is measured in seconds across various trials, and the percentiles for LBP

are 25%: 1040.46, 50%: 1042.57, and 75%: 1044.85. For MoM they are 25%: 290.25,

50%: 381.62, and 75%: 454.52.

Gaussian Markov Random Fields

For the Gaussian case we again sample 500 random instances from a 10x10 lattice

with toroidal boundary conditions. We randomly sample only pairwise normalizable

instances and initialization is provided with a single iteration of Gaussian LBP. We

find that MoM is generally insensitive to initialization in this model. True marginals

are computed by explicitly inverting the model precision matrix and average sym-

metric L1 error with respect to truth is reported in Figure 5.7(b,top).

For pairwise normalizable models, Gaussian LBP is guaranteed to converge to the

unique fixed point of the Bethe free energy, so it is reassuring that MoM optimization

matches LBP performance. The value of the augmented Lagrangian at the final iter-

ation is shown in Figure 5.7(b,bottom) and again shows that MoM matches Gaussian



79

0 0.1 0.2 0.3 0.4 0.5 0.6
0

0.1

0.2

0.3

0.4

0.5

Belief Propagation

M
e
th

o
d
 o

f 
M

u
lt
ip

lie
rs

Avg. Marginal Error

0.4 0.42 0.44 0.46 0.48 0.5
0.4

0.41

0.42

0.43

0.44

0.45

0.46

0.47

0.48

0.49

0.5

Belief Propagation

M
e

th
o

d
 o

f 
M

u
lt
ip

lie
rs

Avg. Marginal Error

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Expectation Propagation

M
e
th

o
d
 o

f 
M

u
lt
ip

lie
rs

Avg. Marginal Error

−180 −170 −160 −150 −140 −130 −120

−180

−170

−160

−150

−140

−130

−120

Belief Propagation

M
e
th

o
d
 o

f 
M

u
lt
ip

lie
rs

Augmented Lagrange

−20 0 20 40 60 80 100 120

−20

0

20

40

60

80

100

120

Belief Propagation

M
e

th
o

d
 o

f 
M

u
lt
ip

lie
rs

Augmented Lagrange

10
0

10
2

10
4

10
6

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Expectation Propagation

M
e

th
o

d
 o

f 
M

u
lt
ip

lie
rs

Augmented Lagrange

(a) (b) (c)
Figure 5.7: Performance of MoM and LBP on randomly generated (a) discrete 10 × 10
toroidal Ising MRFs, (b) 10×10 toroidal Gaussian MRFs, and (c) clutter models with N =
30 observations. Each point corresponds to a single model instance. Top: L1 error between
estimated and true marginal distributions, averaged over all nodes. Bottom: Penalized
Bethe free energy constructed by setting λ = 0, c = 1 in the augmented Lagrangian.

LBP on pairwise normalizable models. Computation time for MoM is slightly faster

with median wall clock time of 58.76 seconds as compared to 103.17 seconds for LBP.

The 25% and 75% percentiles are 37.81 and 92.10 seconds for MoM compared to 88.40

and 125.59 seconds for LBP.

Discrete Mixtures of Gaussian Potentials

To test the benefits of avoiding degenerate marginals, we consider the clutter model

of Sec. 5.2.3 with µ0 = 0, P0 = 100 and β0 = 0.25. The variance of the clutter

distribution is σ2
0 = 10, and of the target distribution σ2

1 = 1. We sample N = 30

observations for each trial instance.

A good initialization of the multipliers is critical to performance of MoM. We

generate 10 initializations by running 5 iterations of EP, each with a different ran-

dom message update schedule, compute the corresponding Lagrange multipliers for
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each, and use the one with the lowest value of the augmented Lagrangian. Simi-

larly, we measure EP’s performance by the best performing of 10 longer runs. Both

methods are run for a maximum of 1000 iterations, and true marginals are computed

numerically by finely discretizing the scalar target x.

We sample 500 random instances and report average L1 error with respect to

true marginals in Figure 5.7(c,top). We see a significant improvement in the ma-

jority of runs. Similarly, the augmented Lagrangian comparison is shown in Fig-

ure 5.7(c,bottom) and MoM often finds a better penalized free energy. While MoM

and EP can both suffer from local optima, MoM avoids non-convergence and the

output of invalid (negative variance) marginal distributions. Median wall clock time

for EP is 0.59 seconds, and 9.80 seconds for MoM. The 25% and 75% percentiles are

0.42 and 0.84 seconds for EP and 0.51 and 49.19 seconds for MoM.

5.3 Discussion

We began this chapter by developing a family of target tracking algorithms which are

significantly more accurate than baseline methods (Sec. 5.1). Contrary to standard

target tracking approaches, which make explicit choices for the distribution of false

detections, our method allows flexibility in underlying observation model. This flexi-

bility enables a tradeoff between accuracy and computation with a common approach

to inference based on expectation propagation.

Although the underlying EP inference remains similar across models, we observe

different stability and convergence behavior when varying model complexity. Moti-

vated by these degeneracies we investigate an approach for directly minimizing the

Bethe variational problem underlying EP message passing (Sec. 5.2). Our approach

is unique in that we do not relax the constraint on normalizability of the marginals,

rather we explicitly enforce it at all points in the optimization. This method directly

avoids the creation of degenerate distributions — for example with negative variance

— which frequently occur in more greedy approaches for minimizing the Bethe free

energy. Moreover, we obtain convergence guarantees under broadly applicable as-

sumptions, thereby avoiding one practical limitation of EP. We further note that our

optimization of the Bethe variational problem is not specific to the models we have

chosen to investigate, but rather can be extended to arbitrary MRFs.



Chapter 6

Contributions and Suggestions

The applications we explore in this thesis span a broad range from signal processing

and computer vision to computational biology. The statistical inference algorithms

we develop, though, generalize easily to other problem domains. In this chapter we

review the main contributions of this thesis and conclude with a discussion of further

research directions.

6.1 Discussion of Contributions

A ubiquitous adoption of probabilistic graphical models by the machine learning

community has led to models of ever-increasing complexity. These models capture the

statistics of complicated processes, but they pose a challenge for statistical inference

algorithms. In this thesis we develop inference algorithms that can flexibly adapt to

models of arbitrary complexity. We develop techniques for both marginal posterior

and MAP, and explore them in a variety of contexts.

Much of our contribution is outlined in Chapter 3, where we develop particle-

based MAP inference for continuous MRFs. Our primary contribution is a method

which maintains solutions at multiple local modes of the distribution, thereby remain-

ing robust to initialization and model mismatch. We formulate the Diverse Particle

Max-Product (D-PMP) algorithm along with variations of existing particle-based ap-

proximations to max-product BP.

Articulated physical models are convenient for demonstrating the need for solution

diversity. The local nature of the model definition gives rise to global ambiguities. In

models of human pose estimation, for example, image likelihoods can be noisy and

uninformative. Solution hypotheses can easily be visualized and qualitatively assessed

for consistency. Interpreting these ambiguities can be difficult for models of other

types of phenomena, but as we highlight in the optical flow experiments of Chapter 3

81
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they are still very important. While estimates of optical flow are unambiguous in

homogeneous regions, they can pose challenges around object boundaries and in the

presence of significant occlusion. In this setting D-PMP is competitive against a

highly engineered method which has been tuned to the particular dataset we consider.

A different notion of diversity arises in the context of protein structure prediction,

which we explore in Chapter 4, whereby the underlying physical system does not

exist in thermal equilibrium. As a result it is widely accepted that proteins often

assume multiple stable conformations, often resulting in different functions. Most

approaches capture multiple conformations indirectly, by running parallel inference

chains from random initializations. Moreover, the high dimensionality of the latent

space necessitates discretization, for example via rotamer libraries used in side chain

prediction. By contrast, D-PMP both minimizes the continuous energy model and

preserves multiple stable configurations in the particle set. Using this approach D-

PMP yields results that are more accurate than highly engineered methods based on

simulated annealing Monte Carlo.

The second half of this thesis develops variational methods for marginal inference.

Chapter 5 begins with an exploration of variational approximations in time-series

models. Through the application of target tracking, in the presence of false detections,

we investigate efficacy of EP inference for various observation models. Using this

approach we are able to generalize several existing tracking methods in the literature,

and develop novel methods.

In our target tracking investigation we observe classic degeneracies whereby EP

produces unnormalizable marginal approximations, or does not converge at all. Mo-

tivated by these failures we investigate the Bethe variational optimization underlying

EP and BP. Using techniques from nonlinear optimization we develop an approach

which directly minimizes the Bethe free energy. In continuous models this approach

directly enforces normalizability constraints, and so is guaranteed to produce sensible

marginal approximations. The method is also guaranteed to converge, under mild

assumptions, and in discrete MRFs we observe that it often produces more accu-

rate marginal estimates than loopy BP when message passing convergence cannot be

achieved.

6.2 Suggestions for Future Research

The following subsections present a concise list of future directions which build on

the work presented in this thesis. We briefly discuss how our methods can be ap-

plied to learn hyperparameters in structured models, to exploit solution diversity in

continuous models, and to improve the state-of-the-art in estimating protein folding.
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6.2.1 Exploiting Solution Diversity

Reranking plausible hypotheses is a popular technique for boosting model accuracy by

incorporating high-order potentials, which cannot be included in a tractable model.

Such external reasoning is responsible for state-of-the-art results in natural language

parsing [31, 34], machine translation [66], image segmentation and human pose es-

timation [131, 175]. In protein structure prediction too, reranking solutions from

competing algorithms accounts for the leading results in biennial competitions [118].

Exact methods for generating the M-best MAP solutions scale exponentially with

tree width [102, 121, 144, 138]. However, approximations have been proposed based

on successive calls to MP inference [180], LP relaxations [59] or sampling [15, 164].

The diverse particle selection methods proposed in Chapter 3 preserve diversity

among particles, but the M -best MAP solutions often remain similar. The diverse

M-best MAP instead yields a set of high probability solutions with enforced dissim-

ilarity [17]. At present current investigations of diverse M-best MAP solutions have

been limited to discrete MRFs. An interesting line of work exists to explore the con-

nections between diverse particle sets on continuous MRFs and diverse solution sets

on the particle discretization.

6.2.2 Structured Learning of Continuous MRFs

Increasing model complexity results in large numbers of parameters that must be

learned. Structured support vector machines (S-SVMs) offer one approach for train-

ing discrete MRFs by extending the max-margin property of classical SVMs to multi-

variate discrete outputs. Additionally, S-SVM is formulated as a convex optimization

with a similar structure to classical SVMs.

The S-SVM framework, however, does not extend straightforwardly to MRFs over

continuous-valued random variables, such as the ones we consider in this thesis. Re-

cent work in Bayesian optimization takes a different approach by performing Gaussian

process regression on the performance function of the algorithm [152]. This approach

lacks the generalization properties that max-margin learning affords.

Structured SVM optimization based on subgradient [98] or cutting plane [86] ap-

proaches generally invoke an oracle which solves a modified MAP problem. Repeated

D-PMP inference approximates continuous S-SVM learning via a succession of dis-

cretization of the S-SVM sub-problems. In this way S-SVM can be elegantly extended

to the continuous domain while maintaining generalization attributes similar to those

in the discrete setting.
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6.2.3 Particle Representations for Protein Folding

The success of D-PMP inference for protein side chain prediction (see Chapter 4) sug-

gests further gains can be realized by extending particle max-product to full protein

folding. Estimating the protein backbone is a significantly more complex problem, yet

state-of-the-art protein folding algorithms rely on simulated annealing optimization

similar to those in the simpler side chain prediction task.

Estimation of the protein backbone introduces several complications not present

in side chain prediction. Firstly, a particle representation must be chosen which mini-

mizes the number of degrees of freedom but that is sufficiently expressive. Traditional

dihedral angle representations require a state-space that spans multiple neighboring

residues, thereby constraining exploration. Secondly, the fixed backbone in side chain

prediction allows us to specify MRF edges based on proximity between residues, but

these relative distances continually evolve as backbone estimates are refined. An anal-

ogous representation for protein folding would require a dynamic MRF topology that

is updated with each stage of inference.



Appendix A

Derivations and Proofs

A.1 Gradient Calculations for Bethe Minimization

Section 5.2.3 provides an overview of augmented Lagrangian methods for minimizing

Bethe free energies. The main text formulates the objective, Lagrangian, and projec-

tion operators for MRFs with discrete, Gaussian, and Gaussian mixture potentials.

This appendix details gradients of the augmented Lagrangian in these models, which

are necessary for implementation.

A.1.1 Discrete Markov Random Fields

Recall the Bethe free energy for a discrete pairwise MRF is given by,

FB(τ ;ψ) =
∑

(s,t)∈E

∑
xs

∑
xt

τst(xs, xt)[log τst(xs, xt)− logψst(xs, xt)]

−
∑
s∈V

∑
xs

(ns − 1)τs(xs)[log τs(xs)− logψs(xs)],

where τs and τst are the marginal mean parameters for node and edge marginals,

respectively, and ns = |Γ(s)| the number of neighbors for node s. Normalization and

marginalization constraints are given by,

Cs(τ) = 1−
∑
xs

τs(xs), Cts(xs; τ) = τs(xs)−
∑
xt

τst(xs, xt).

Let λs be the Lagrange multiplier penalizing the normalization constraint and λts the

multiplier for marginalization. Combining the Bethe free energy and constraints we

85
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specify the augmented Lagrangian with quadratic penalty parameter c ≥ 1:

Lc(τ, λ;ψ) = FB(τ ;ψ) +
∑

(s,t)∈E

[∑
xs

λts(xs)Cts(xs; τ) +
∑
xt

λst(xt)Cst(xt; τ)

]

+
∑
s∈V

λsCs(τ) +
c

2

∑
s∈V

Cs(τ)2 +
c

2

∑
(s,t)∈E

[∑
xs

Cts(xs; τ)2 +
∑
xt

Cst(xt; τ)2

]
.

The gradients can be expressed more compactly by first defining the discrete BP fixed

points given by [183],

τBPs (xs;λ) = ϕs(xs) exp

 1

ns − 1

∑
t∈N(s)

λts(xs)

 (A.1)

τBPst (xs, xt;λ) = φst(xs, xt) exp
{
λts(xs) + λst(xt)

}
. (A.2)

The gradients then take the intuitive form,

∂Lc
∂τs(xs)

= (ns − 1)
[

log τBPs (xs)− log τs(xs)− 1
]
− λs + c [Cts(xs; τ)− Cs(τ)]

∂Lc
∂τst(xs)

= log τst(xs, xt) + 1− log τBPst (xs, xt)− c
[
Cts(xs; τ) + Cst(xt; τ)

]
.

The above formulation implies that any zero-gradient must not only satisfy the con-

straints, but also be of the form defined by BP fixed-point equations.

A.1.2 Gaussian Markov Random Fields

The Gaussian Bethe free energy is formulated in (5.17), and is unbounded below

for some models. To enforce boundedness the augmented Lagrangian introduces an

additional penalty on log-variance with parameter κ ≥ 1:

Lc(V,Σ, λ) = FGB(V,Σ) +
∑
s

∑
t∈N(s)

λts [Vs − Vts]

+
κ

2

∑
s

∑
t∈N(s)

[log Vs − log Vts]
2 +

c

2

∑
s

∑
t∈N(s)

[Vs − Vts]2 .

The derivative w.r.t. the node variance is given by,

∂L
∂Vs

=
ns − 1

2

V −1
s − As −

1

ns − 1

∑
t∈N(s)

λst


+ c

∑
t∈N(s)

[Vs − Vts] + κ
∑
t∈N(s)

[log Vs − log Vts]V
−1
s . (A.3)
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Let the pairwise marginal covariance take the form Σst =
(
Vts Pst
Pts Vst

)
. Component

derivatives of the pairwise covariance are then,

∂L
∂Vts

=
1

2

[
As + λst − |Σst|−1Vst

]
+ c[Vts − Vs] + κ[log Vts − log Vs] (A.4)

∂L
∂Pst

= Jst + |Σst|−1Pst. (A.5)

A.1.3 Discrete Mixtures of Gaussian Potentials

The full joint distribution of the clutter model [114] is,

p(x, z) = ϕ0(x)
n∏
i=1

ψ0(zi)ϕi(x, zi; yi)

= N(x | µ0, P0)
n∏
i=1

(1− β0)1−ziβzi0 N(yi | 0, σ2
0)1−ziN(yi | x, σ2

1)zi . (A.6)

Here β0 is the Bernoulli prior mean parameter, x ∈ R the continuous latent state,

zi ∈ {0, 1} is the discrete clutter indicator, and observations yi ∈ R. Using the chain

rule for entropy H(X,Z) = H(Z) + H(X | Z) we compute the (negative) Bethe

entropy as,

−H(X,Z) = −
n∑
i=1

(H(Zi) +H(X | Zi)) (A.7)

=
∑
i

((1− βi) log(1− βi) + βi log βi)−
∑
i

((1− βi)
1

2
log 2πeVi0 + βi

1

2
log 2πeVi1)

Let the marginal approximations be conditional Gaussian qi and Gaussian q0 distri-

butions. The Bethe free energy is given by,

FCGB(m,V, β) =
n∑
i=1

Ei[log qi(x, zi)− log φi(x, zi)]− (n− 1)Ei[log q0(x)− logϕ0(x)],

Expanding terms:

FCGB(m,V, β) = (N − 1)
1

2
log V0 − (N − 1)

1

2
(V0 +m2

0)P−1
0 + (N − 1)m0P

−1
0 µ0(A.8)∑

i

(1− βi)
{

log(1− βi)−
1

2
log Vi0 − γi0 +

1

2
(Vi0 +m2

i0)P−1
0 −mi0P

−1
0 µ0 − log(1− β0)

}
+

∑
i

βi

{
log βi −

1

2
log Vi1 − γi1 +

1

2
(Vi1 +m2

i1)(P−1
0 + σ−2

1 )−mi1(P−1
0 µ0 + σ−2

1 yi)− log β0

}
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with the shorthand notation φi(x, zi) = ϕ0(x)ψ0(zi)ϕi(x, z; yi) and γij = logN(yi |
0, σ2

j ). Note that while the free energy is bounded on the set of expectation con-

straints [114] the entropy term log V0 means that the free energy is unbounded below

off of the constraint set as V0 →∞ at an exponential rate. Such an objective can be

problematic for MoM optimization and so we add an additional penalty,

FCGB(m,V, β) +
κ

2

∑
i

| log V0 − log V̄i|2,

for some fixed κ ≥ 1 where the Gaussian mixture variance is denoted,

V̄i = (1− βi)Vi0 + βiVi1 + (1− βi)(mi0 − m̄i)
2 + βi(mi1 − m̄i)

2

m̄i = (1− βi)mi0 + βimi1.

This added term is quadratic in log V0, thus bounding the objective off of the con-

straint set. The augmented Lagrangian is,

Lc(m,V, β) = F(m,V, β) +
κ

2

∑
i

[log V0 − log V̄i]
2 +

∑
i

ηi[m0 − m̄i] +
∑
i

λi[V0 − V̄i]

+
c

2

∑
i

[m0 − m̄i]
2 +

c

2

∑
i

[V0 − V̄i]2

Gradients of the Gaussian marginal moments are,

∂Lc
∂V0

= (N − 1)
1

2
V −1

0 − (N − 1)
1

2
P−1

0 +
∑
i

λi + c
∑
i

[V0 − V̄i] + κV −1
0

∑
i

[log V0 − log V̄i]

∂Lc
∂m0

= −(N − 1)moP
−1
0 + (N − 1)P−1

0 µ0 +
∑
i

ηi + c
∑
i

(m0 − m̄i).

Gradients of the mixture variances,

∂Lc
∂Vi0

= (1− βi)
{

1

2
P−1

0 − 1

2
V −1
i0 − λi − c(V0 − V̄i)− κ(log V0 − log V̄i)V̄

−1
i

}
∂Lc
∂Vi1

= βi

{
1

2
(P−1

0 + σ−2
1 )− 1

2
V −1
i1 − λi − c(V0 − V̄i)− κ(log V0 − log V̄i)V̄

−1
i

}
.

Gradients of the mixture means,

∂Lc
∂mi0

= (1− βi)
{
mi0P

−1
0 − P−1

0 µ0 − ηi − c(m0 − m̄i)

+ 2βi(mi1 −mi0)
[
λi + c(V0 − V̄i) + κ(log V0 − log V̄i)V̄

−1
i

] }
∂Lc
∂mi1

= βi

{
mi1(P−1

0 + σ−2
1 )− P−1

0 µ0 − σ−2
1 yi − ηi − c(m0 − m̄i)

2(1− βi)(mi0 −mi1)
[
λi + c(V0 − V̄i) + κ(log V0 − log V̄i)V̄

−1
i

] }
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For the mixture weights we first introduce some shorthand notation,

ξi0(m,V, β) = log(1− βi)−
1

2
log Vi0 − γi0 +

1

2
(Vi0 +m2

i0)P−1
0 −mi0P

−1
0 µ0

ξi1(m,V, β) = log βi −
1

2
log Vi1 − γi1 +

1

2
(Vi1 +m2

i1)(P−1
0 + σ−2

1 )−mi1(P−1
0 µ0 + σ−1

1 yi),

we similarly define shorthand for partials of the mean and variance constraints,

m′ =
∂Cmean

i

∂βi
= mi0 −mi1

V ′ =
∂Cvar

i

∂βi
= Vi0 − Vi1 + (mi0 − m̄i)

2 − (mi1 − m̄i)
2

− 2 ∗ (mi0 −mi1)((1− βi)(mi0 − m̄) + βi(mi1 − m̄i))

and the derivative w.r.t. the mixture weights is given by,

∂Lc
∂βi

= −ξi0(m,V, β) + ξi1(m,V, β)

+m′(ηi + c(m0 − m̄i)) + V ′(λi + c(V0 − V̄i) + cV̄ −1
i (log V0 − log V̄i))

A.2 Diverse Particle Selection Proofs

The sections below provide detailed proofs for propositions in Chapter 3. We first

show that diverse particle selection of Sec. 3.2 corresponds to a monotonic submodular

maximization subject to cardinality constraints. We then shown that the sum of

reweighted message differences provides an upper bound on pseudo-max-marginal

distortion.

A.2.1 Proof of Prop. 3.2.2

Recall that the message vector over any particle subset is m̂ts(z), where the indicator

vector z ∈ {0, 1}αN controls particle selection. Recall from Section 3.2 that particles

are selected for node t ∈ V to minimize total error w.r.t. the augmented message

vector mts, given by the IP:

minimize
z

∑
s∈Γ(t)

αN∑
a=1

(
mts(a)ρts − m̂ts(a; z)ρts

)
(A.9)

subject to ‖z‖1 ≤ N, z ∈ {0, 1}αN .
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We drop subscripts and constant terms to yield an equivalent maximization:

maximize
z:‖z‖1≤N

∑
a

Fa(z) =
∑
a

[
max

1≤b≤N
z(b)M(a, b)

]
. (A.10)

Note that we have dropped subscripts to simplify notation, and the message founda-

tion matrix is a compact representation of quantities involved in message calculations,

M(a, b) = ψt(x
(b)
t )ψst(x

(a)
s , x

(b)
t )

1
ρst

∏
u∈Γ(t)\smut(b)

ρut

mst(b)1−ρst .

Let y, z ∈ {0, 1}αN be particle selections and y ⊆ z such that (y(b) = 1)⇒ (z(b) = 1).

For some candidate particle b:

y(b) =

{
1, if b = b

y(b), o.w.
z(b) =

{
1, if b = b

z(b), o.w.

The margins are given by direct calculation:

Fa(y)− Fa(y) = max(0,M(a, b)− m̂(a; y))

Fa(z)− Fa(z) = max(0,M(a, b)− m̂(a; z)).

Since y ⊆ z we have that Fa is submodular,

Fa(y)− Fa(y) ≥ Fa(z)− Fa(z).

A sum of submodular functions is submodular, and monotonicity holds since m̂(y) ≤
m̂(z).

A.2.2 Proof of Prop. 3.2.1

To simplify we ignore normalization terms and drop dependence on z so m̂(z) = m̂.

The proof is by induction on the number of neighbors, for the base case let Γ(s) =

{i, j}:

‖νs − ν̂s‖1 ≤ . . .∑
xs

[
(mis(xs)

ρis − m̂is(xs)
ρis)mjs(xs)

ρjs + (mjs(xs)
ρjs − m̂js(xs)

ρjs)m̂is(xs)
ρis
]

≤
∑
xs

[
(mis(xs)

ρis − m̂is(xs)
ρis) + (mjs(xs)

ρjs − m̂js(xs)
ρjs)
]

The first inequality drops ψs ∈ [0, 1], and |·| since m̂ts � mts, and the second inequality

holds since m, m̂ ∈ [0, 1]. For the inductive step let Γ(s) = {t1, . . . , tn} and assume:

‖ν\ns − ν̂\ns ‖1 ≤
∑
i 6=n
‖mtis − m̂tis‖

ρtis
1
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where ν
\n
s (xs) is the product of all messages except mtns:

‖νs − ν̂s‖1 ≤ ‖mtns − m̂tns‖
ρtns
1 + ‖ν\ns − ν̂\ns ‖1

≤
n∑
i=1

‖mtis − m̂tis‖
ρtis
1 .
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[30] O. Cappé, S. J. Godsill, and E. Moulines. An overview of existing methods and

recent advances in sequential monte carlo. Proceedings of the IEEE, 95(5):899–

924, 2007.

[31] E. Charniak and M. Johnson. Coarse-to-fine n-best parsing and maxent discrim-

inative reranking. In Proceedings of the 43rd Annual Meeting on Association

for Computational Linguistics, pages 173–180. Association for Computational

Linguistics, 2005.

[32] M. Chertkov and V. Y. Chernyak. Loop calculus helps to improve belief prop-

agation and linear programming decodings of low-density-parity-check codes.

Proceedings of the Allerton Conference on Control, Communication and Com-

puting, 2007.

[33] S. Chung, G. D. Forney, T. J. Richardson, and R. Urbanke. On the design of

low-density parity-check codes within 0.0045 db of the Shannon limit. Commu-

nications Letters, IEEE, 5(2):58–60, 2001.



95

[34] M. Collins and T. Koo. Discriminative reranking for natural language parsing.

Computational Linguistics, 31(1):25–70, 2005.

[35] S. Cooper, F. Khatib, A. Treuille, J. Barbero, J. Lee, M. Beenen, A. Leaver-Fay,
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[70] V. Granville, M. Křivánek, and J. Rasson. Simulated annealing: A proof of

convergence. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, 16(6):652–656, 1994.

[71] M. Hassner and J. Sklansky. The use of Markov random fields as models of

texture. Computer Graphics and Image Processing, 12(4):357–370, 1980.



98

[72] T. Heskes. On the uniqueness of loopy belief propagation fixed points. Neural

Computation, 16(11):2379–2413, 2004.

[73] T. Heskes and O. Zoeter. Expectation Propagation for approximate inference in

dynamic Bayesian networks. Uncertainty in Artificial Intelligence, 18:216–223,

2002.

[74] Tom Heskes, Wim Wiegerinck, Ole Winther, and Onno Zoeter. Approximate

inference techniques with expectation constraints. Journal of Statistical Me-

chanics: Theory and Experiment, page 11015, 2005.

[75] D. Hogg. Model-based vision: a program to see a walking person. Image and

Vision computing, 1(1):5–20, 1983.

[76] Lisa Holm and Chris Sander. Fast and simple monte carlo algorithm for side

chain optimization in proteins: Application to model building by homology.

Proteins: Structure, Function, and Genetics, 14(2):213–223, 1992.
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