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Basis Functions

Basis functions transform linear models into nonlinear ones…

…but it is often difficult to find a good basis transformation

Linear Regression
Classification

( Logistic Regression )



Learning Basis Functions

What if we could learn a basis function so that a simple linear 
model performs well…

…this is essentially what standard neural networks do…

Neural Net

Warped SpaceData Space

Ignore the circled points…I
reused these from the SVM slides



Neural Networks

• Flexible nonlinear transformations of data
• Resulting transformation is easily fit with a linear model
• Relatively efficient learning procedure scales to massive data
• Apply to many Machine Learning / Data Science problems

• Regression
• Classification
• Dimensionality reduction
• Function approximation
• Many application-specific problems



Neural Networks
Forms of NNs are used all over the place nowadays…

FB Auto Tagging Self-Driving Cars

Machine Translation

Creepy Robots



Rosenblatt’s Perceptron
In 1957 Frank Rosenblatt constructed 
the first (single layer) neural network 

known as a “perceptron”

He demonstrated that it is capable of 
recognizing characters projected onto a 

20x20 “pixel” array of photosensors

Despite recent attention, 
neural networks are fairly old



Rosenblatt’s Perceptron

Perceptron

• In Rosenblatt’s perceptron, the inputs are tied directly to output
• “Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)
• Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
• The perceptron is just logistic regression in disguise



Multilayer Perceptron

[ Source: http://neuralnetworksanddeeplearning.com ]

Input layer
perceptrons

Hidden layer
perceptrons

This is the quintessential Neural Network…
…also called Feed Forward Neural Net or Artificial Neural Net

Adding hidden layers 
allows NN to learn 
arbitrary functions

http://neuralnetworksanddeeplearning.com/


“Deep” Neural Networks

[ Source: Krizhevsky et al. (NIPS 2012) ]

Modern Deep Neural networks add many hidden layers

…and have many millions of parameters to learn



Handwritten Digit Classification

Classifying handwritten digits is the “Hello World” of NNs

Modified National Institute of 
Standards and Technology 

(MNIST) database contains 60k 
training and 10k test images

Each character is centered 
in a 28x28=784 pixel 

grayscale image



Multilayer Perceptron for MNIST Classification[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each image pixel is a
numer in [0,1] indicated

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk


Feedforward Procedure

Each node computes a 
weighted combination of nodes 

at the previous layer…

Then applies a nonlinear 
function to the result

Often, we also introduce
a constant bias parameter



Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

An early choice was the logistic function,

Later found to lead to slow learning and ridge 
functions like the rectified linear unit (ReLU),

Or the smooth Gaussian error linear unit (GeLU),
Gaussian CDF



Multilayer Perceptron

Final layer is typically a linear 
model…for classification this is 

a Logistic Regression

Recall that for multiclass 
logistic regression with K 

classes,

Vector of activations from
previous layer



[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Each parameter has some impact 
on the output…need to tweak 

(learn) all parameters 
simultaneously to improve 

prediction accuracy

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron

For each training example, 
predict label and adjust 

weights…

• How to score final layer output?
• How to adjust weights?



Training Multilayer Perceptron

Score based on difference between final layer and one-
hot vector of true class…

Input

[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

https://www.youtube.com/watch?v=aircAruvnKk


Training Multilayer Perceptron
Our cost function for ith input is error in terms of weights / biases…

13,002 Parameters
in this network

…minimize cost over all training data…

This is a super high-dimensional optimization (13,002 
dimensions in this example)…how do we solve it?

Gradient descent!



Training Multilayer Perceptron
Need to find zero derivative (gradient) solution…

Convex Cost Function

YAY!

Non-convex Cost Function

Boo!

High-Dimensional Non-convex

Super Boo!

Actually, the situation is much worse, since the cost is super 
(13,002) high dimensional…but we proceed as if…



Training the Multilayer Perceptron

Training the MLP is 
challenging…but it’s much easier 

than how Rosenblatt did it



Example

Play with a small multilayer perceptron on a 
binary classification task…

https://playground.tensorflow.org/

https://playground.tensorflow.org/


Computing the Derivative

So we need to compute derivatives of a super complicated 
function…

Dropped bias terms
for simplicity

Recall the derivative chain rule

Differentiate g with
respect to w

Derivative of f at its
argument g(w)

e.g. treat g(w) as a variable



Backpropagation
[ Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKk ]

Activation at final layer involves 
weighted combination of 

activations at previous layer…

Which involves a weighted 
combination of the layer before 

it…

And so on…

https://www.youtube.com/watch?v=aircAruvnKk


Backpropagation

Backpropagation is the procedure of repeatedly applying the 
derivative chain rule to compute the full derivative

Example

This is simply the derivative chain rule applied through the 
entire network, from the output to the input



Backpropagation

• Implementation-wise all we need is a function that computes 
the derivative of each nonlinear activation

• We can repeatedly call this function, starting at the end of the 
network and moving backwards

• In practice, neural network implementations use auto 
differentiation to compute the derivative on-the-fly

• Can do this efficiently on graphical processing units (GPUs) 
on extremely large training datasets



Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer 
perceptron that approximates f(x) with arbitrary accuracy.

• Specific cases for arbitrary depth (number of hidden layers) and 
arbitrary width (number of nodes in a layer)

• Not a constructive proof (doesn’t guarantee you can learn parameters)

• Corollary : The multilayer perceptron is a universal turing machine

• Also means it can easily overfit training data (regularization is critical)
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Some Drawbacks of Standard Deep Learning

• Predictions can be “brittle” (i.e. very discontinuous w.r.t. input)
• Fail to generalize outsize training data (regularization important)
• Difficult to tune learning procedure
• Unable to accurately quantify uncertainty over predictions
• Lack privacy (memorize training data)
• Lack interpretability (models are “black box”)
• Pose safety issues in critical applications



Regularization

With four parameters I can fit an elephant.  With five I 
can make him wiggle his trunk. - John von Neumann

Our example model has 13,002 
parameters…that’s a lot of elephants!  

Regularization is critical to avoid overfitting…

…numerous regularization schemes 
are used in training neural networks



Regularization : Weight Decay
In neural network speak, adding an L2 penalty is called weight decay

Learning sensitive to regularization strength and too expensive to do cross-validation



Regularization

• L1 regularization and L1+L2 (elastic net) regularization

• Dropout Each iteration randomly selects a small number of 
edges to temporarily exclude from the network (weights=0)

• Intuition Avoids predictions that are overly sensitive to any small 
number of edges

• Early stopping Just as it sounds…stop the network before 
reaching a local minimum…dumb-but-effective



Brittleness : Discontinuities in Predictions
Nearly imperceptible changes to input change prediction

Szegedy et al. “Intriguing properties of neural networks.” ICLR 2014

All images in right column predicted as “ostrich”

https://arxiv.org/pdf/1312.6199.pdf
https://arxiv.org/pdf/1312.6199.pdf


Safety Concerns

Variety of black-box 
physical attacks left-to-
right:
• Artistic graffiti
• Subtle graffiti
• Poster

Evtimov et al. “Robust Physical-World Attacks on ML Models.”  2017

Can reliably cause ANN 
to misclassify as 

intended target (e.g.
speed limit 45mph)

Does not require 
knowledge of network 

internals

https://arxiv.org/pdf/1312.6199.pdf
https://s3.observador.pt/wp-content/uploads/2017/08/08133934/1707-08945.pdf


Privacy Concerns

Large DNNs capable of memorizing training data…

Carlini et al. demonstrate that training 
data can be recovered from GPT-2, a 

large language model…

…this can be done in a black-box manner 
(i.e. without knowledge of network 

internals)

** Carlini et al. “Extracting training data from large language models.” USENIX 2021

https://www.usenix.org/system/files/sec21-carlini-extracting.pdf


Outline

• Artificial Neural Network (ANN) : A Review

• Shortcomings of Standard Deep Learning

• Motivating Bayesian Deep Learning



Uncertainty Quantification
• Many of the shortcomings of DL can be 

addressed by quantifying uncertainty

• Uncertainty comes in a variety of forms:
• Uncertainty that can be eliminated with more 

training data (epistemic)
• Uncertainty that is inherent in the stochastic 

process (aleotoric)

• Preliminary work aims to calibrate 
uncertainty in the prediction layer (e.g. 
softmax) via “network uncertainty 
calibration”

Guo et al. “On Calibration of Modern Neural Networks.” NeurIPS. 2017

(left) Before calibration (right) after 
calibration on CIFAR-100 image 

classification task

http://proceedings.mlr.press/v70/guo17a/guo17a.pdf


Probabilistic Perspectives on Deep learning

DNNs typically provide a deterministic mapping of inputs-to-predictions:

Prediction Input
Network Parameters: Weights, 
architecture, activation funcs

Can extend this to discriminative probability model relatively easily:

• E.g. use 2nd-to-last softmax layer as PMF (bad idea)
• Use networks to parameterize parametric density

ANN outputs



Bayesian Perspective on Deep Learning

Idea Treat parameters as random variables with prior               to define 
generative model:

Benefits
• Can compute posterior over all networks
• Or marginalize over network parameters
• Natural approach to quantify uncertainty over network and/or prediction
• Distinguish between epistemic and aleotoric uncertainty*
• There is always a prior…Bayesian methods just make it explicit

* Der Kiureghian and Ditlevsen. "Aleatory or epistemic? Does it matter?." Structural safety (2009)

* Kendall and Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurIPS. (2017)

Think of this 
as a prior 

over models

https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf


Point Estimate vs. Bayesian DL Correspondence

The learning process of 
Bayesian DL fundamentally 
differs from point estimate 

ANNs

Instead of minimizing a loss 
function, Bayesian DL does 

inference via MCMC, 
Variational, etc.

Online prediction often
requires inference (unless 

amortized inference is done)

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



Bayesian Neural Network

• Both standard ANN and BNN require functional model
• BNN additionally requires stochastic model (likelihoods, priors)
• Stochastic model depends on whether weights or nodes are random
• Either choice determines structure of the underlying PGM
• Simple examples based on Gaussian or Categorical outputs:

Stochastic Weights Stochastic Nodes



Bayesian Neural Network

Many different constructions, but all essentially a stochastic ANN

An ANN construction with parameters                  : 

Two main types of BNNs
• Add stochastic activations at 

nodes
• Make parameters random (add 

priors)

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial
for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



Bayesian Neural Network

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



Inference in a BNN

Given training data D={Dx,Dy} compute posterior over network params,

• Represents distribution over all possible networks based on training 
data

• In general restricted to a subclass, i.e. fixed architecture / activations
• Parameters are typically network weights
• Inference is intractable in general, need look at algorithms weve 

learned



Prediction in a BNN
When predicting we often marginalize over network parameters,

Given samples from 
posterior,

Can sample predictions in 
feedforward process,

Training Data

Training Labels

Marginal                   characterizes predictive uncertainty of the network.



Prediction in a BNN

Approach generates a set of predictions from an ensemble of networks,

Can use model averaging for a single prediction,

Sample covariance can be used to quantify predictive uncertainty,

Better uncertainty estimates are possible (e.g. predictive entropy)



Prediction in a BNN

One can also consider the empirical distribution over predictions,

The maximum a posteriori (MAP) prediction is then,

• Uncertainty given via the empirical entropy
• Straightforward for classification tasks
• Continuous (i.e. regression) predictions require density estimation



Generalizing Beyond Supervised Learning
Bayesian DL can effectively use unlabeled data and uncertain labels…

• Noisy Labels Annotations can be imprecise
• Semi-Supervised Use, both, labeled and unlabeled training data
• Augmentation Transformations of inputs that do not change label
• Meta-Learning Learn how to learn
• Self-Supervised Labels are directly obtained from inputs, but do not 

relate to the task…need to learn a proxy task



Active Learning in a BNN

…uncertainty over prediction 
allows us to be smart about 
what data we need to label

Data annotation is 
expensive…

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Source: Settles et al. “Active Learning Literature Survey.” Univ. of Wisc. Madison TR. (2010)



Variational Inference in a BNN

Recall variational inference minimizes Kullback-Leibler divergence,

• Where H is hidden (latent) and D is observed data
• is variational approximation of posterior P(H | D) 
• Can be done in a BNN using stochastic variational inference (SVI)
• Required gradients of variational objective w.r.t. parameters
• Problem Straightforward backpropagation of network to compute 

gradients doesn’t work with stochastic representation
• Need to adapt SVI approach for Bayesian DL



Gaussian Reparameterization

Suppose we want to sample a Gaussian RV,

But we only know how to sample a standard Gaussian RV,

Gaussians are closed under linear transformations so,

• Defines X as a deterministic transformation of Z
• Yields samples from the correct distribution
• Instance of general technique called the reparameterization trick



Bayes By Backprop

Reparameterization Trick
• Define nonvariational noise parameter
• Define deterministic transformation
• Transformed parameters are from variational distribution
• Allows use of standard backpropagation

Variational 
Bound



Scaling Up Inference in BNNs

• Learning in standard DNNs is expensive
• Inference in BNNs is even more costly
• Being only “approximately Bayesian” may be sufficient to 

achieve well-calibrated model (Kristiadi et al. 2020)

• Some simple approaches to be approximately Bayesian,
• Monte Carlo Dropout
• Bayes via Stochastic Gradient Descent (VI and MCMC methods)
• Limit inference to last few layers

• These methods scale to larger instances and yield better 
uncertainty calibration than non-Bayesian point estimates



Monte Carlo Dropout
Dropout
• Typically used as regularizer in training
• Each grad update randomly remove edges
• Ensures network not overly sensitive to 

small subset of edges

Monte Carlo Dropout
• Do dropout at prediction…generate ensemble of predictions by 

dropping a subset of edges for each
• Equivalent to VI with variational distribution for each weight as,



Bayesian DL Inference

Source: Jospin et al. “Hands-on Bayesian Neural Networks – A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)



Conclusions

Standard Deep Learning
• Works great much of the time if we only care about predictive accuracy
• Point estimate-based learning can be brittle, yield poor uncertainty 

calibration

Bayesian Deep Learning
• Combines DL models with Bayesian concepts and inference
• Directly represents uncertainty over network and predictions
• More robust predictive models than point estimates
• Significantly increases computational burden
• Some simple “approximately Bayesian” perform decently
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