Computer
Science

CSC696H: Advanced Topics in
Probabilistic Graphical Models

Bayesian Deep Learning

Prof. Jason Pacheco

Outline

* Artificial Neural Network (ANN) : A Review
» Shortcomings of Standard Deep Learning

* Motivating Bayesian Deep Learning

Outline

* Artificial Neural Network (ANN) : A Review

Basis Functions

Basis functions transform linear models into nonlinear ones...

Classification

Linear Regression (Logistic Regression)
y=wlz y = o(w!x)
y =w' ¢() y =o(w’ ¢(x))

...but it is often difficult to find a good basis transformation

Learning Basis Functions

What if we could learn a basis function so that a simple linear
model performs well...

Data Space Warped Space
— % —— | Neural Net : ..
T a—— . . ’ ’
o
W

Ignore the circled points...|
reused these from the SVM slides

...this is essentially what standard neural networks do...

Neural Networks

* Flexible nonlinear transformations of data
* Resulting transformation is easily fit with a linear model
* Relatively efficient learning procedure scales to massive data

* Apply to many Machine Learning / Data Science problems
* Regression
» Classification
* Dimensionality reduction
* Function approximation
* Many application-specific problems

Neural Networks

Forms of NNs are used all over the place nowadays...

-

Wha's in These Photas?

Phy
 shetas sutorstcally 2 you can swekiy aseland nay franes
- E
B! g B Jor o [3 g

e x
ﬂ
NS R—— =

2% Chat (OFine)

FB Auto Tagging Self-Dri_ig Cars

— Machine Translation

DETECT LANGUAGE ENGLISH SPANISH FRENCH v Pl SPANISH ENGLISH ARABIC v
Hello world! X jHola Mundo! 2, w
) 12 / 5000 v D] |_|:| 7z <

Send feedback

Rosenblatt's Perceptron

Despite recent attention, In 1957 Frank Rosenblatt constructed

neural networks are fairly old the first (single layer) neural network
known as a “perceptron”

perceptron

N

He demonstrated that it is capable of
recognizing characters projected onto a
20x20 “pixel” array of photosensors

Rosenblatt's Perceptron

FIG. 1 — Organization of a biological brain. (Red areas indicate
active cells, responding to the letter X.)

Perceptron

Association
Mosaic of Projection area System Response
Sensor ¥y (In some models) (A-units) Units
Points

Ry |==———== Output Signal * O- w ;2: —|_b
: :.o.) .,“,::... 1 utput Signa ﬂ 1
:'.Oa q? e 0 K
e , 0 % * - 0.
o L o. ' o ,-ﬂ.. :.
,eo.'_‘.-. _foo': gy
o - ", L r '. N R2
Sy L o p’-.tﬂ"‘ ol
T : : tput
L
e 1 Lo O output
- C
o it £L o |
I
Topographic Random L
Connecf tions Connections R
—— e —_—— Feedback
Circuits .
—_— :’]_‘.;
.w—"‘-” L

FIG. 2 — Organization of a perceptron.

In Rosenblatt’'s perceptron, the inputs are tied directly to output

“Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanics” (1962)

Criticized by Marvin Minsky in book “Perceptrons” since can only learn linearly-separable functions
The perceptron is just logistic regression in disguise

Multilayer Perceptron

Hidden layer
perceptrons

Input layer l

perceptrons l

Adding hidden layers
allows NN to learn
arbitrary functions

output

This is the quintessential Neural Network...
...also called Feed Forward Neural Net or Artificial Neural Net

[Source: http://neuralnetworksanddeeplearning.com]

http://neuralnetworksanddeeplearning.com/

Modern Deep Neural networks add many hidden layers

o [

48

“Deep” Neural Networks

Max
pooling

128

’ 4

-
- e R
Ea s
, C oy
- D . S
P ERl
woo P
W T P
e S
ML e ’
s, Ta :
o
wEagl g
- Plal o
™ - - ¥
. oo s
> P

192

192

- - EL
. W - Y
b - AN
. . . i
- - e
- - u Wia
- ’ L Y
- » b
-

13

13

1.9
L3

Max
pooling

192

N _"_'_ 13}'_—;*..

13

[as]

>oag \dense

dense

192

128 Max
pooling

20438

dense

...and have many millions of parameters to learn

[Source: Krizhevsky et al. (NIPS 2012)]

2048

1000

Handwritten Digit Classification

Classifying handwritten digits is the "Hello World” of NNs

O H [/ [q] (Al]3] 1] [4] [3] Each character is centered
13 el 1] 72 [(£ 65 M In a 28x28=784 pixel
977412 ¢Y 327 » grayscale image
L E] (7110 5160 =+ (&[]

& 7] 19 % 9] (8] s] 8] 13 [

027 210944

#1684 6 7] Q[0 [1

7zl 0l el 38”2/ 7[5

g 867 3R g0 e

2l 4l 6l [g] 0 [7] 8 3] [/] 5]

Modified National Institute of

Standards and Technology

(MNIST) database contains 60k
training and 10k test images

aircAruvnKk]

[Source : 3Blue1Brown : hitps://www.youtube.com/watch?v

7

©
© O
» ©
— O
(D)
x 2
S =,
e1
©
o &
S

Each
numer in

by highlighted color

https://www.youtube.com/watch?v=aircAruvnKk

Feedforward Procedure

Each node computes a
weighted combination of nodes
at the previous layer...

W1T1 + W22 + ... + Wnpy

Then applies a nonlinear
function to the result

o(wir1 +woxs + ...+ wpxy, + b)

Often, we also introduce /

a constant bias parameter

Nonlinear Activation functions

We call this an activation function and typically write it in vector form,

a(wlxl WoXo + ...+ Wy

An early choice was the logistic function,
1

b) = o(w!x + b)

14

<

T p— 0:5
o(w' x+b) = 1 + e—(wTaz+b) J
Later found to lead to slow learning and ridge R BRI
functions like the rectified linear unit (ReLU), R

o(w’z + b) = max(0,w’ z + b)

Or the smooth Gaussian error linear unit (GeLU),

vV = wTiC + b U('U) — ’U(I)('U) ¢ Gaussian CDF

2.0 A

1.5

1.0 A

0.5 A1

0.0 A

Multilayer Perceptron

Final layer is typically a linear
model...for classification this is
a Logistic Regression

1
O-(UJT;C -+ b) — | n 6—(wT;U—|—b)

\ Vector of activations from

previous layer

Recall that for multiclass
logistic regression with K
classes,

p(Class = k |) o o(wi = + by)

[Source : 3Blue1Brown :

T84 x16+4+16x16 + 16x10
weights

16 +16 + 10
biases

13,002

Each parameter has some impact
on the output...need to tweak
(learn) all parameters
simultaneously to improve
prediction accuracy

(84

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

For each training example,
predict label and adjust
weights...

PO TR DS IW
R~NNSIMN QNN
=N AHONO
MBS NORY
| S YESSICEL O SIS S
NN [QRS

INRSINN N[QS8]he)
au{ SIS 1S
QO AR QNN

XTrain

Wrong!

elo)elelo)e]0)0

~ N
o <A Yo
n/.
i
-
o
-
-
— O BN O
| -
0 B
< ™M . =<t mmm
— D
sl o) S O o
< 2
N~ - “— -
© 7
!)
- N ©
@ O O
Tr b e
= =
o o ©
1T I
e O

Training Multilayer Perceptron

Score based on difference between final layer and one-

hot vector of true class...

Input

[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk]

(0.43 — 0.00)
(0.28 — mu})
(0.19 — 0.00)
(() 88 — 100)

+
+
+
+

(.01 — '-..f.(..lt._;) 2
(0.64 — 0.00)*+
(0.86 — ().0(_})2_’_
(0.99 — 0.00)*+
(0.63 — 0.0))?

https://www.youtube.com/watch?v=aircAruvnKk

Training Multilayer Perceptron

Our cost function for it input is error in terms of weights / biases...

Costi(w1,...,Wn,b1,...,by,)

\. J
Y

13,002 Parameters
in this network

..minimize cost over all training data...
min £(w, b) Zcost (W1, ..., W, b1, ..., by)

w,b

This is a super hlgh-dlmensmnal optimization (13,002
dimensions in this example)...how do we solve it?

Gradient descent!

Training Multilayer Perceptron

Need to find zero derivative (gradient) solution...

Convex Cost Function Non-convex Cost Function High-Dimensional Non-convex
| f(x) =x sin (x?) 41
\ A= (-2,251)

fal

2_

YAY! Super Boo!

Actually, the situation is much worse, since the cost is super
(13,002) high dimensional...but we proceed as if...

Training the Multilayer Perceptron

Training the MLP is
challenging...but it's much easier
than how Rosenblatt did it

o=
'l'-"*_

=

e

™

oo

a3
H

) W=y

:!.I.'

[e—
i
By =k e T

]

Example

Play with a small multilayer perceptron on a
binary classification task...

https://playground.tensorflow.org/

https://playground.tensorflow.org/

Computing the Derivative

So we need to compute derivatives of a super complicated
function...

d d
_ E . D d bias term
dwﬁ(w) i dw Costi(w) rofopresimIpa;iscitf/Ir)

Recall the derivative chain rule

d d
T Halw) = = Fg(w) (gtw)
\ v J —

Derivative of f atits Differentiate g with

argument g(w) respect to w
e.g. treat g(w) as a variable

Backpropagation
[Source : 3Blue1Brown : https://www.youtube.com/watch?v=aircAruvnKKk]

Activation at final layer involves
weighted combination of
activations at previous layer...
o(w! x)

Which involves a weighted
combination of the layer before
it...

o (wy, o (wy,_17))

And so on...

o (W 0 (wy, 10 (wy_50(...)))

https://www.youtube.com/watch?v=aircAruvnKk

Backpropagation

Backpropagation is the procedure of repeatedly applying the
derivative chain rule to compute the full derivative

Example
d

——0o(z) =0(2)(1 - 0(2))1

d d
T0(0(2)) = o (0(2)) (1 = o (0(2))) -0 (2)

This is simply the derivative chain rule applied through the
entire network, from the output to the input

Backpropagation

* Implementation-wise all we need is a function that computes
the derivative of each nonlinear activation

* We can repeatedly call this function, starting at the end of the
network and moving backwards

* [n practice, neural network implementations use auto
differentiation to compute the derivative on-the-fly

» Can do this efficiently on graphical processing units (GPUSs)
on extremely large training datasets

Universal Approximation Theorem

(Informally) For any function f(x) there exists a multilayer
perceptron that approximates f(x) with arbitrary accuracy.

» Specific cases for arbitrary depth (number of hidden layers) and
arbitrary width (number of nodes in a layer)

* Not a constructive proof (doesn’'t guarantee you can learn parameters)
« Corollary : The multilayer perceptron is a universal turing machine

* Also means it can easily overfit training data (regularization is critical)

Outline

* Shortcomings of Standard Deep Learning

Some Drawbacks of Standard Deep Learning

 Predictions can be “brittle” (i.e. very discontinuous w.r.t. input)

* Fail to generalize outsize training data (regularization important)
* Difficult to tune learning procedure

« Unable to accurately quantify uncertainty over predictions
 Lack privacy (memorize training data)

 Lack interpretability (models are “black box™)

* Pose safety issues in critical applications

Regularization

With four parameters | can fit an elephant. With five |
can make him wiggle his trunk. - John von Neumann

w = arg min Cost(w) + « - Regularizer(Model)

w

Our example model has 13,002
parameters...that’'s a lot of elephants!
Regularization is critical to avoid overfitting...

...numerous regularization schemes
are used in training neural networks

Regularization : Weight Decay
In neural network speak, adding an L2 penalty is called weight decay

w = arg min Cost(w) + %HWHQ
w

alpha 0.10 alpha 0.32 alpha 1.00 alpha 3.16 alpha 10.00

alpha 3.16 alpha 10.00

alpha 10.00

Learning sensitive to regularization strength and too expensive to do cross-validation

Regularization

* L1 regularization and L1+L2 (elastic net) regularization

* Dropout Each iteration randomly selects a small number of
edges to temporarily exclude from the network (weights=0)

* Intuition Avoids predictions that are overly sensitive to any small
number of edges

» Early stopping Just as it sounds...stop the network before
reaching a local minimum...dumb-but-effective

Brittleness : Discontinuities in Predictions
Nearly imperceptible changes to input change prediction

N 2 iR - 1D 208 Jooy; =

All images in right column predicted as “ostrich”

Szeqgedy et al. “Intriquing properties of neural networks.” ICLR 2014

https://arxiv.org/pdf/1312.6199.pdf
https://arxiv.org/pdf/1312.6199.pdf

Safety Concerns

Variety of black-box
physical attacks left-to-
right:

« Artistic graffiti

« Subtle graffiti

» Poster

Can reliably cause ANN
to misclassify as
intended target (e.g.
speed limit 45mph)

Does not require
knowledge of network
internals

Evtimov et al. “Robust Physical-World Attacks on ML Models.” 2017

https://arxiv.org/pdf/1312.6199.pdf
https://s3.observador.pt/wp-content/uploads/2017/08/08133934/1707-08945.pdf

Privacy Concerns

Large DNNs capable of memorizing training data...

Prefix
East Stroudsburg Stroudsburg...]

!

[GPT-2]

[Memorized text W l

Corporation Seabank Centre
Marine Parade Southport

Peter

. Com

n B gt |
Fax: +J}l§ 7 5 ollije

. >

Figure 1: Our extraction attack. Given query access to a
neural network language model, we extract an individual per-
son’s name, email address, phone number, fax number, and
physical address. The example in this figure shows informa-
tion that 1s all accurate so we redact it to protect privacy.

Carlini et al. demonstrate that training
data can be recovered from GPT-2, a
large language model...

..this can be done in a black-box manner

(i.e. without knowledge of network
internals)

** Carlini et al. “Extracting training data from large lanquage models.” USENIX 2021

https://www.usenix.org/system/files/sec21-carlini-extracting.pdf

* Artificial Neural Network (ANN) : A Review
* Shortcomings of Standard Deep Learning

* Motivating Bayesian Deep Learning

Uncertainty Quantification

* Many of the shortcomings of DL can be
addressed by quantifying uncertainty

* Uncertainty comes in a variety of forms:
« Uncertainty that can be eliminated with more
training data (epistemic)
* Uncertainty that is inherent in the stochastic
process (aleotoric)

* Preliminary work aims to calibrate
uncertainty in the prediction layer (e.qg.
softmax) via “network uncertainty
calibration”

Accuracy

<
o

<

@
b

0.0

Uncal. - CIFAR-100 Iso. Reg. - CIFAR-100
ResNet-110 (SD) ResNet-110 (SD)
Bl Outputs Bl Outputs :

Gap 1 Gap

0.0 02 04 06 08 1.0 00 02 04 06 08 1.0

(left) Before calibration (right) after
calibration on CIFAR-100 image
classification task

Guo et al. “On Calibration of Modern Neural Networks.” NeurlPS. 2017

http://proceedings.mlr.press/v70/guo17a/guo17a.pdf

Probabillistic Perspectives on Deep learning

DNNs typically provide a deterministic mapping of inputs-to-predictions:

Prediction = U/ — f@(ﬂj;_ Input

t Network Parameters: Weights,
architecture, activation funcs

Can extend this to discriminative probability model relatively easily:

p(y | x,0)
« E.g. use 2"d-to-last softmax layer as PMF (bad idea)
» Use networks to parameterize parametric density

ply | 2,6) = Ny | o (w), Zy(w)

ANN outputs

Bayesian Perspective on Deep Learning

Idea Treat parameters as random variables with prior 6 ~ p(6) to define

generative model. T
p(97 y ‘ 'CU) Think of thi
Benefits as a prior

over models

« Can compute posterior over all networks p(6 |)

- Or marginalize over network parameters p(y |) = [p(0,y | =) df

« Natural approach to quantify uncertainty over network and/or prediction
* Distinguish between epistemic and aleotoric uncertainty®

* There is always a prior...Bayesian methods just make it explicit

* Der Kiureghian and Ditlevsen. "Aleatory or epistemic? Does it matter?." Structural safety (2009)

* Kendall and Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurlPS. (2017)

https://www.sciencedirect.com/science/article/pii/S0167473008000556
https://proceedings.neurips.cc/paper/2017/file/2650d6089a6d640c5e85b2b88265dc2b-Paper.pdf

Point Estimate vs. Bayesian DL Correspondence

Point Estimate Neural Network

Architecture

)

Supervision (§I1V-D)

N Y Y

Loss (§ll)

)7/'

Bayesian Neural Network

Functional model

Stochastic model (§1V)

J—— Likelihood (§IV-A) p(y|x, 6)

Regularization

Penalization in Loss (§IV-C3)

Dropout

\

\

Training

Gradient Descent Algorithms
(e.g. SGD, Adam, ...)

Backpropagation

k Prior (§IV-C) p(6)

P

Inference (§V-A)

"

MCMC (§V-A)

Variational Inference

MC-Dropout (§V-E1)

"y

Stochastic Variational
Inference (§V-B)

Bayes-by-backprop (§V-C)

.

)

A

The learning process of
Bayesian DL fundamentally
differs from point estimate
ANNSs

Instead of minimizing a loss
function, Bayesian DL does
inference via MCMC,
Variational, etc.

Online prediction often
requires inference (unless
amortized inference is done)

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Bayesian Neural Network

Bayesian Neural Network Stochastic Weights Stochastic Nodes

Functional model J

Likelihood (§IV-A) p(y|x,) Y § NN N § R B
AN

Iy ot
Prior (§IV-C) p(#) \f/\\/rfﬂ;\f/x\\f W /

/ 1 |D

! AN
% Stochastic model (§1V)) ?Hﬂlﬂ Hil E /‘\
D
L

» Both standard ANN and BNN require functional model

« BNN additionally requires stochastic model (likelihoods, priors)

« Stochastic model depends on whether weights or nodes are random
* Either choice determines structure of the underlying PGM

« Simple examples based on Gaussian or Categorical outputs:

0 ~p(0) =N(p,X), 6 ~ p(0) =N(p,X),
y ~ p(ylx,0) = N(Pg(x), X) y ~ p(y|x,) = Cat(Pg(x))

Bayesian Neural Network

Many different constructions, but all essentially a stochastic ANN

An ANN construction with parameters 6 = (W, b) :

l(] — &y [
l;=s,(Wil,_1 + b;) Vie[l,n] | o H \ _/\H/‘<I>‘—~H/‘_I

Y= in \ /\\//\\//\ L \ /\\//\\//\ |
......................)N I.J\H/I|
\//\\ //\\ //\\/ \//\\ VAV,

Two main types of BNNs

* Add stochastic activations at
nodes Fig. 3: (a) Point estimate neural network, (b) stochastic neural
e Make para meters random (a dd network with a probability distribution for the activations, and
. (¢) stochastic neural network with a probability distribution
priors) .
over the weights.

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial
for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Bayesian Neural Network

(" Stochastic model) 4 Inference (training) N\
Prior | (Variational posterior 7 MCMC [Variational inference
p(0) (if needed) Ve sV *

p(ylz,0) q4(0) 2 | Gibbs samplin ’

\ / 2 | Metropolis ﬁasgtli’ng Bayes by backprop,

S | HMC. NUTS * || probabilistic

Functional model S ’ g backpropagation ..

y = o () o :
=
'S MC-Dropout,
c%' gg(I_JEST Deep ensembles,
Training data 0 T KFAC, SWAG ...
&
D = {(z1,91), - (®n,y,,)} C S >~ //
(a) (b)

Posterior
p(8|D)

Marginal
p(ylz, D)

|

Input
I

|

Fig. 2: Workflow to design (a), train (b) and use a BNN for predictions (c).

(c)

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Inference in a BNN

Given training data D={Dx,Dy} compute posterior over network params,

_ p(Dy|Dz,0)p(6)
p(Q‘D) — fg p(Dy‘Dm,Q,)p(BI)dQI X p(Dy‘Dmag)p(e)'

* Represents distribution over all possible networks based on training
data

* In general restricted to a subclass, i.e. fixed architecture / activations
« Parameters are typically network weights

* Inference is intractable in general, need look at algorithms weve
learned

Prediction in a BNN

When predicting we often marginalize over network parameters,

p(yle, D) = /p(y|$,9')p(9'|D)d9'.

0

Marginal p(y | «, D) characterizes predictive uncertainty of the network.

Given samples from
posterior,

0; ~ p(0|D);

Can sample predictions in
feedforward process,

Y, = (I)Bi (CIZ),

Algorithm 1 Inference procedure for a BNN.

p(Dy’Dwa 0)p(0)
Define p(0|D) = ;
e PO = 1D, (D, 0)p(0) 67

for i =0 to IV do —— Training Data

Draw 6; ~ p(8|D);

Yy, = Do, (zc), Training Labels
end for
return Y = {y;|i € [0,N)}, © ={0;|i € [0,N)};

Prediction in a BNN

Approach generates a set of predictions from an ensemble of networks,
Y ={y;li €[0,N)}, ©={0;]i € [0, N)};

Can use model averaging for a single prediction,

. 1
Y = 0] Z Py, ().

0,c0
Sample covariance can be used to quantify predictive uncertainty,
1 R R
Z:’!J|CB,D — M—_l Z ((I)B@ (ZB) T y) ((1)97, (iB) T y)T '
0,c0

Better uncertainty estimates are possible (e.qg. predictive entropy)

Prediction in a BNN

One can also consider the empirical distribution over predictions,

R 1
P = 0] Z Pg. ().

0;,cO

The maximum a posteriori (MAP) prediction is then,

Y = argmaxp; € p.

* Uncertainty given via the empirical entropy
 Straightforward for classification tasks
« Continuous (i.e. regression) predictions require density estimation

Generalizing Beyond Supervised Learning

Bayesian DL can effectively use unlabeled data and uncertain labels...

=\ :

) D .

®® © &) ®|e
(4 9\.
/ 72N 0) A]
Y @) }‘?/ ~ @< (1) >€y
D ’
@ : & o
(a) Noisy labels (b) Semi-supervised learning (¢) Data augmentation (d) Meta-learning (e) Self-supervised learning

* Noisy Labels Annotations can be imprecise

« Semi-Supervised Use, both, labeled and unlabeled training data
 Augmentation Transformations of inputs that do not change label
* Meta-Learning Learn how to learn

» Self-Supervised Labels are directly obtained from inputs, but do not
relate to the task...need to learn a proxy task

Active Learning in a BNN

e e moss { ‘ machine learning ‘) Algorithm 2 Active learning loop with a BNN.
f» X while U/ 4 @ and X, p < threshold and €' < MaxC

do

S Draw © = {0; ~ p(6|D)|i € [0.N)}:
for z € U do |
Yyle.D = 61 > 6.co (Po,(x) —7) (Do, (x) —Y)":
4 if Emm___ﬂ > >

labeled
training set
S

-

oracle (e.g., human annotator) sefect queries ylemaz, D then
| . . Lomar — L1
Data annotation is end if
expensive... end for

Dy = Dy U{Tma }:
...uncertainty over prediction E?y:{ _;D\y{{i {U;wlet:s.m)}
allows us to be smart about i1

what data we need to label end while

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Source: Settles et al. “Active Learning Literature Survey.” Univ. of Wisc. Madison TR. (2010)

Variational Inference in a BNN

Recall variational inference minimizes Kullback-Leibler divergence,

DKL(%HP(H,D)) :/quﬁ(H')log Pq(q}(]{{,l)))

dH'

* Where H is hidden (latent) and D is observed data

* q4(H)is variational approximation of posterior P(H | D)

» Can be done in a BNN using stochastic variational inference (SVI)
* Required gradients of variational objective w.r.t. parameters ¢

* Problem Straightforward backpropagation of network to compute
gradients doesn’t work with stochastic representation

* Need to adapt SVI approach for Bayesian DL

Gaussian Reparameterization

Suppose we want to sample a Gaussian RV,
X ~ N(p,0%)
But we only know how to sample a standard Gaussian RV,
Z ~N(0,1)
Gaussians are closed under linear transformations so,
X=p+0Z ~N(u,o°)

* Defines X as a deterministic transformation of Z
* Yields samples from the correct distribution
* Instance of general technique called the reparameterization trick

Bayes By Backprop

Algorithm 5 Bayes-by-backprop algorithm.

b = @y:

for : =0 to NV do
Draw & ~ q(¢);

Variational 0 =1(c, d); 1 - -
Bound > [(0,) =log(qs(0)) — log(p(Dy|Dz, 8)p(0)):

Ay f = backprop, (f):
¢ =¢—alsf;

end for

Reparameterization Trick

 Define nonvariational noise parameter ¢ ~ ¢(¢)

* Define deterministic transformation 6 = ¢(e, ¢)

* Transformed parameters are from variational distribution 6 ~ ¢
 Allows use of standard backpropagation

Scaling Up Inference in BNNs

* Learning in standard DNNs is expensive
* Inference in BNNs is even more costly

* Being only “approximately Bayesian™ may be sufficient to
achieve well-calibrated model (kristiadi et al. 2020)

« Some simple approaches to be approximately Bayesian,

* Monte Carlo Dropout
« Bayes via Stochastic Gradient Descent (VI and MCMC methods)
 Limit inference to last few layers

* These methods scale to larger instances and yield better
uncertainty calibration than non-Bayesian point estimates

Monte Carlo Dropout

Dropout
* Typically used as regularizer in training
« Each grad update randomly remove edges

* Ensures network not overly sensitive to
small subset of edges

a) Standard Neural Net (b) After applying dropout.

Monte Carlo Dropout

* Do dropout at prediction...generate ensemble of predictions by
dropping a subset of edges for each

« Equivalent to VI with variational distribution for each weight as,

zi.j ~ Bernoulli(p;),

Bayesian DL Inference

Benefits (

Limitations
Requires to store a very

\ (Use cases \

Small and average

MCMC (V.A) Directly samples the posterior large number of samples models
Classic methods State of the art samplers limit Do not scale well Small and critical §?
(HMC, NUTS)(§V-A) autocorrelation between samples to large models models g_
. _ o
SGLD and derivates Provide a well behaved Focus on a single mode Models with larger Q
(§V-E2a) Markov Chain with minibatches of the posterior datasets g
] Help a MCMC method explore Requires a new burn-in Combined with =3
Warm restarts (§V-E2a) different modes of the posterior sequence for each restart a MCMC sampler i
e . The variational distribution is C Large scale)
Variational inference (V.B) easy to sample Is an approximation models
Bayes by backprop (§V-C) Fit any parametric distribution Noisy gradient descent Large scale
as posterior models 0
=2
Monte Carlo-Dropout Can transform a model : Dropout based o3
(§V-E1) using dropout into a BNN Lack expressive power models g
L . . _ o
Laplace approximation By analyzing standard SGD Focus on a single mode Unimodals 3
(§V-E2b) get a BNN from a MAP of the posterior large scale models g’.
: [1°)
Deep ensembles Help focusing on different Cannot detect local Mug'mOdﬁ!S n;odg;:]s Qo
(§V-E2b) modes of the posterior uncertainty if used alone and combined wi
_ other VI methods)

Source: Jospin et al. “Hands-on Bayesian Neural Networks — A Tutorial for Deep Learning Users.” IEEE Comp. Intell. Mag. (2022)

Conclusions

Standard Deep Learning
* Works great much of the time if we only care about predictive accuracy

 Point estimate-based learning can be brittle, yield poor uncertainty
calibration

Bayesian Deep Learning

« Combines DL models with Bayesian concepts and inference
* Directly represents uncertainty over network and predictions
* More robust predictive models than point estimates

» Significantly increases computational burden

« Some simple “approximately Bayesian” perform decently

	CSC696H: Advanced Topics in�Probabilistic Graphical Models
	Outline
	Outline
	Basis Functions
	Learning Basis Functions
	Neural Networks
	Neural Networks
	Rosenblatt’s Perceptron
	Rosenblatt’s Perceptron
	Multilayer Perceptron
	“Deep” Neural Networks
	Handwritten Digit Classification
	Multilayer Perceptron for MNIST Classification
	Feedforward Procedure
	Nonlinear Activation functions
	Multilayer Perceptron
	Slide Number 17
	Training Multilayer Perceptron
	Training Multilayer Perceptron
	Training Multilayer Perceptron
	Training Multilayer Perceptron
	Training the Multilayer Perceptron
	Example
	Computing the Derivative
	Backpropagation
	Backpropagation
	Backpropagation
	Universal Approximation Theorem
	Outline
	Some Drawbacks of Standard Deep Learning
	Regularization
	Regularization : Weight Decay
	Regularization
	Brittleness : Discontinuities in Predictions
	Safety Concerns
	Privacy Concerns
	Outline
	Uncertainty Quantification
	Probabilistic Perspectives on Deep learning
	Bayesian Perspective on Deep Learning
	Point Estimate vs. Bayesian DL Correspondence
	Bayesian Neural Network
	Bayesian Neural Network
	Bayesian Neural Network
	Inference in a BNN
	Prediction in a BNN
	Prediction in a BNN
	Prediction in a BNN
	Generalizing Beyond Supervised Learning
	Active Learning in a BNN
	Variational Inference in a BNN
	Gaussian Reparameterization
	Bayes By Backprop
	Scaling Up Inference in BNNs
	Monte Carlo Dropout
	Bayesian DL Inference
	Conclusions

