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Office Hours

• Schedule
• Tuesdays, 3-4:30pm
• Thursdays, 11-12:30pm
• Some availability outside hours and in-person (MSG me on Piazza)

• Zoom link in D2L and on Piazza (Note: D2L schedule only shows 
Tuesday meeting)

• Some reasons to use office hours:
• Discuss upcoming paper presentation
• Discuss semester project ideas / details
• Discuss details of a paper / material that you didn’t understand
• Anything else course-related



Critical Reading Summaries

• Starting this Wednesday all readings will require critical 
summaries

• I have added a grade item to D2L for 1st half of summaries
• Nothing to hand in on D2L
• Append summaries to critical_summary.md in Github repo
• For full credit make sure to push summaries to Github regularly

• Short paragraph that answers the following:
• What are the strengths?
• What are the weaknesses (what would you improve)?
• What details did you have a hard time understanding?
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The Exponential Family
• Class of parametric distributions with PMF/PDF characterized by:

• Parameters
• Sufficient statistics of the random variable (RV)
• Other functions of the RV and parameters for normalization

• Includes many well-known discrete and continuous distributions: 
• Gaussian
• Bernoulli
• Binomial
• Multinomial
• Beta
• Gamma
• Poisson
• many many more…



The Exponential Family

With base measure and log-partition function:

Definition Let X be a RV with sufficient statistics                 .  An 
exponential family distribution with natural parameters             has 
PMF/PDF, 



Why the Exponential Family?

• Includes many popular probability distributions: Bernoulli (binary), Categorical, Poisson 
(counts), Exponential (positive), Gaussian (real), …

• Maximum likelihood (ML) learning is simple:  moment matching of sufficient statistics

• Bayesian learning is simple:  conjugate priors are available

• The maximum entropy interpretation:  Among all distributions with certain moments of 
interest, the exponential family is the most random (makes fewest assumptions)

vector of sufficient statistics (features) defining the family

vector of natural parameters indexing particular distributions



Gaussian (Normal) Distribution

PDF parameterized with mean (location)    
and variance (scale)     parameters,

PD
F
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Useful Properties
• Closed under additivity:

• Closed under linear functions (a and b constant):

We say . 



Example: Gaussian
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Bernoulli Distribution

Bernoulli A.k.a. the coinflip distribution on binary RVs

Where    is the probability of success (e.g. heads), and also the mean

Suppose we flip N independent coins                         , what is the 
distribution over their sum

Binomial Dist.
Num. “successes” out of N trials Num. ways to obtain k successes out of N

Binomial Mean: Sum of means for N indep. Bernoulli RVs



Log-Normalizer 
is Convex

Example: Bernoulli Distribution
Standard form of PMF for                  and                 :

Exponential Family Form:

Logistic Function:

Logit Function:



Categorical Distribution

Categorical Distribution on integer-valued RV

with parameter                         and Kronecker delta:

Can also represent X as one-hot binary vector,

or

where then

This representation is special case of the multinomial distribution



Example: Categorical Distribution
Categorical Distribution:  Single roll of a (possibly biased) die

Exponential family 
form is not unique

Exponential Family Form:

 A linear subspace of exponential family parameters gives the same
probabilities, because the features are linearly dependent: 

For any scalar constant c

Mapping for normalized parameters:



Minimal Exponential Families

In a minimal exponential family representation, the features must be 
linearly independent.  Example: 

In overcomplete exponential family representation, features and/or 
sufficient statistics are linearly dependent and multiple parameters give 
same distribution.  Example: 
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Conjugate Prior

• Given latent variable    and data    we are often interested in the 
posterior distribution

• The property of conjugacy ensures that our posterior distribution takes 
a closed-form

Definition We say that prior        is conjugate to likelihood             if and 
only if the posterior              belongs to the same functional family as the 
prior distribution.  

Remark If the above holds, then we also refer to        and              as a 
conjugate pair.  



Exponential Family Conjugacy

Theorem All likelihoods             in the exponential family have a 
conjugate prior        , which is an exponential family (possibly different) 

Proof Let             be iid from an expfam likelihood,

Let    have expfam prior with parameters                               and, 

with log-partition          and sufficient statistics vector

Then…



Exponential Family Conjugacy

Where posterior parameters are:

Def’n of
p & q

Collect terms

Def’n of p



Exponential Family Conjugacy

Where posterior parameters are:

Def’n of
p & q

Collect terms

Def’n of p



Exponential Family Conjugacy

Where posterior parameters are:

Def’n of
p & q

Collect terms

Def’n of p



Exponential Family Conjugacy

Where posterior parameters are:

Def’n of
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Collect terms

Def’n of p



Example: Beta-Bernoulli

Bernoulli A.k.a. the coinflip distribution on binary RVs

Beta distribution on                with               has PDF,

For N coinflips                   the posterior is,



Example: Beta-Bernoulli

After a single coinflip of heads (x=1) the posterior is…

The prior (red) is a fair coin,

After observing one flip, the posterior 
(blue) concentrates on heads,

What do you expect if we flip N=10 
times with 5 heads and 5 tails?



Example: Beta-Bernoulli
After a N=10 flips (5 heads, 5 tails) we have…

Posterior 
concentrates on fair 

coin      .



Other Conjugate Pairs

Likelihood Model Parameters Conjugate Prior
Normal Mean Normal
Normal Mean / Variance Normal-Inv-Gamma

Multivariate Normal Mean / Variance Normal-Inv-Wishart
Multinomial Probability vector Dirichlet

Gamma Rate Gamma
Poisson Rate Gamma

Exponential Rate Gamma

Wikipedia has a nice list of standard conjugate forms…

https://en.wikipedia.org/wiki/Conjugate_prior

https://en.wikipedia.org/wiki/Conjugate_prior
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Mean Parameters

We use natural parameters    in the exponential family canonical form,

Alternate set of mean parameters given by expected sufficient stats,
If family is minimal then there

is an invertible mapping between
mean/natural parameters

Example Gaussian                       with sufficient stats                         ,



Log-Partition Function

Derivatives of the log-partition (w.r.t. ) yield moments of sufficient stats

Example Gaussian                       with sufficient stats                         ,  
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Log-Partition Function

Derivatives of the log-partition (w.r.t. ) yield moments of sufficient stats

Example Gaussian                       with sufficient stats                         ,  



Maximum Likelihood Estimation for Exponential Families

Theorem          is a convex function of the natural parameters       

Proof The second derivative is a positive semidefinite covariance matrix

Important consequences for learning with exponential families:
 Finding gradients is equivalent to finding expected sufficient statistics, 

or moments, of some current model.  This is an inference problem!
 Convexity of log-partition implies parameter space is convex
 Learning is a convex problem:  No local optima!

At least when we have complete observations…



Maximum Likelihood Estimation for Exponential Families

Log-likelihood of observation     is given by,

Given N iid observations, the log-likelihood function equals:

At unique global optimum, the zero-gradient gives:



Maximum Likelihood Estimation for Exponential Families

Log-likelihood of observation     is given by,

Given N iid observations, the log-likelihood function equals:

At unique global optimum, the zero-gradient gives:

Moment matching conditions



Example:  Bernoulli Distribution
Bernoulli Distribution:  Single toss of a (possibly biased) coin  

Exponential Family Form:

Maximum Likelihood from L data:



Other Useful Properties

 Often closed under multiplication / division:

 Posterior predictive of conjugate pair typically closed-form

If             valid parameters If             valid parameters

 The maximum entropy distribution of data is in exponential family

 Kullback-Leibler (KL) divergence between two expfams closed-form

 Minimum KL(p||q) with q in expfam given by moment matching,
True for any distribution p



Summary

 Family of distributions with PMF/PDF of the form:

Base Measure Natural
Parameters

Sufficient
Statistics

 Log-Partition:

 Alternate mean parameters as expected sufficient statistics or 
derivatives of log-partition:



Summary

 Lots of useful properties
• Allows simultaneous study of many popular probability distributions:

Bernoulli (binary), Categorical, Poisson (counts), Exponential (positive), Gaussian (real), …
• Maximum likelihood (ML) learning is simple:  moment matching of sufficient statistics
• Bayesian learning is simple:  conjugate priors are available

Beta, Dirichlet, Gamma, Gaussian, Wishart, …
• The maximum entropy interpretation:  Among all distributions with certain moments of interest, 

the exponential family is the most random (makes fewest assumptions)
• Parametric and predictive sufficiency:  For arbitrarily large datasets, optimal learning is possible 

from a finite-dimensional set of statistics (streaming, big data)

 All exponential family likelihoods have conjugate priors
• Means posterior is same distribution as prior
• Inference reduces to computing posterior parameters
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