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Introduction

• Markov chain Monte Carlo (MCMC) originated with the classic paper 
of Metropolis et al (1953).

• To simulate the distribution of states for a system of idealized molecules
• Hamiltonian Monte Carlo (HMC): molecular simulation was 

introduced (Alder and Wainwright, 1959), in which the motion of the 
molecules was deterministic.

These approaches are asymptotically equivalent.



Applications

• Molecular simulation
• Lattice field theory simulations of quantum chromodynamics
• Neural network models



Elements of HMC

• Define a Hamiltonian function in terms of the probability distribution we wish to 
sample from.

• Position variables: the variables we are interested in
• Momentum variables: typically have independent Gaussian distributions.
• Simple updates using Metropolis updates.
• A new state is proposed by computing a trajectory according to Hamiltonian 

dynamics.
• The new state will have a high probability of acceptance.
• This bypasses the slow exploration of the state space that occurs when Metropolis 

updates are done using a simple random-walk proposal distribution



Hamiltonian Dynamics

• Has a physical interpretation
• Like puck that slides over a surface of varying height
The system consists of:

• Position of the puck given by two-dimensional vector q in 
2D space

• Momentum of the puck given by a two-dimensional 
vector p.

• The potential energy, U(q), of the puck is proportional to 
the height of the surface at its current position.

• Kinetic energy, K(p), is equal to |𝑝𝑝|2/(2m), where m is the 
mass of the puck.



Nonphysical MCMC applications of Hamiltonian 
dynamics

• The position will correspond to the variables of interest
• The potential energy will be minus the log of the probability density for these 

variables
• Momentum variables, one for each position variable, will be introduced artificially



Hamilton’s Equations
• Position vector q
• Momentum vector p
• Hamiltonian function H(q,p)
Partial derivatives describe motion over time t:
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Or we can combine p and q into z=(q,p) with 2D dimensional space:
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Is 2d × 2d matrix defined by identity and zero matrices.



Potential and Kinetic energy
Hamiltonian function can be written as:

H(q,p)=U(q)+K(p)

U(q): Potential energy will be defined to be minus the log probability density of the 
distribution for q that we wish to sample.

K(p): Kinetic energy, and is usually defined as 𝐾𝐾 𝑝𝑝 = 𝑝𝑝𝑇𝑇𝑀𝑀−1𝑝𝑝
2

M is mass matrix (positive-definite and symmetric, typically diagonal)
This form for K(p) corresponds to minus the log probability density (plus a constant) of the 
zero-mean Gaussian distribution with covariance matrix M.
With these Hamiltonian equations can be written as:
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A one-dimensional example

• q and p are scalars

• This corresponds to a Gaussian distribution for q with mean zero and variance one 
(will be discussed later)

• dynamics resulting from this Hamiltonian:
• Solutions (for some constant r and a): 



Properties of Hamiltonian Dynamics

• Reversibility
(q(t), p(t))     (q(t + s), p(t + s)) using 𝑇𝑇𝑠𝑠 mapping

(q(t + s), p(t + s))      (q(t), p(t)) using 𝑇𝑇−𝑠𝑠 mapping
This inverse mapping is obtained by simply negating the time derivatives in 
Equations:
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In the simple one-dimensional example, 𝑇𝑇−𝑠𝑠 is just a counterclockwise rotation by s 
radians, undoing the clockwise rotation of 𝑇𝑇𝑠𝑠.



Properties of Hamiltonian Dynamics

• Conservation of the Hamiltonian (keeps the Hamiltonian invariant)

Since: 𝑑𝑑𝑑𝑑𝑖𝑖
𝑑𝑑𝑑𝑑
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For Metropolis updates using a proposal found by Hamiltonian 
dynamics, which form part of the HMC method, the acceptance 
probability is one if H is kept invariant.



Properties of Hamiltonian Dynamics
• Volume preservation: Hamiltonian dynamics might stretch a region in one 

direction, as long as the region is squashed in some other direction so as to 
preserve volume

• Symplecticness: Volume preservation is also a consequence of Hamiltonian 
dynamics being symplectic. 

• Letting z = (q, p), and defining J, the symplecticness condition is that the Jacobian 
matrix, Bs, of the mapping Ts satisfies

• This implies volume conservation, since det(Bs
T ) det(J−1) det(Bs) = det(J−1) 

implies that det(Bs)2 is one



Discretizing Hamilton’s Equations

• For computer implementation, Hamilton’s equations must be approximated 
by discretizing time, using some small step size, ε. 

• Starting with the state at time zero, we iteratively compute (approximately) 
the state at times ε, 2ε, 3ε, etc.



Discretizing Hamilton’s Equations: Euler’s 
Method

• Perhaps the best-known way to approximate the solution to a system of 
differential equations is Euler’s method.

• Coming from: 



Discretizing Hamilton’s Equations: 
Modification Euler’s Method

• We simply use the new value for the momentum variables, pi, when computing the 
new value for the position variables, qi.



Discretizing Hamilton’s Equations: Leapfrog 
Method

• We start with a half step for the momentum variables
• then do a full step for the position variables, using the new values of the 

momentum variables
• finally do another half step for the momentum variables, using the new 

values for the position variables
• The leapfrog method preserves volume exactly,



Comparison: 

Results using three methods for 
approximating Hamiltonian dynamics, 
when: 

H(q, p) = q2/2 + p2/2. 

The initial state was q = 0, p = 1. 

The stepsize was ε = 0.3 for (a), (b), and 
(c), and ε = 1.2 for (d). 

Twenty steps of the simulated
trajectory are shown for each method, 
along with the true trajectory (in gray).



Local and Global Error

• The local error is the error after one step, that moves from time t to time t + ε.
• The global error is the error after simulating for some fixed time interval, s, which 

will require s/ε steps.
• The Euler method and its modification above have order 𝜺𝜺𝟐𝟐 local error and order ε

global error.
• The leapfrog method has order 𝜺𝜺𝟑𝟑 local error and order 𝜺𝜺𝟐𝟐 global error.
• Claim: This difference is a consequence of leapfrog being reversible, since any 

reversible method must have global error that is of even order in ε.



MCMC from Hamiltonian Dynamics

• Using Hamiltonian dynamics to sample from a distribution requires translating the 
density function for this distribution to a potential energy function and introducing 
“momentum” variables to go with the original variables of interest (now seen as 
“position” variables).

• We can simulate a Markov chain
• each iteration resamples the momentum
• Metropolis update with a proposal found using Hamiltonian dynamics



Probability and the Hamiltonian: Canonical 
Distributions

• The distribution we wish to sample can be related to a potential energy function via the concept 
of a canonical distribution from statistical mechanics.

• Given some energy function, E(x), for the state, x, of some physical system, the canonical 
distribution over states has probability or probability density function:

• T is the temperature of the system, and Z is the normalizing constant needed for this function to 
sum or integrate to one.

• For Hamiltonian:

• If H(q, p) = U(q) + K(p), since q and p are independent: 



The Hamiltonian Monte Carlo Algorithm

• We now have the background
• HMC can be used to sample only from continuous distributions on Rd for which 

the density function can be evaluated (perhaps up to an unknown normalizing 
constant).

• Assume that the density is nonzero everywhere.
• We must also be able to compute the partial derivatives of the log of the density 

function.
• These derivatives must therefore exist, except perhaps on a set of points with 

probability zero, for which some arbitrary value could be returned.



The Hamiltonian Monte Carlo Algorithm
• HMC samples from the canonical distribution for q and p defined by

• q has the distribution of interest, as specified using the potential energy function U(q).We 
can choose the distribution of the momentum variables, p, which are independent of q, as 
we wish, specifying the distribution via the kinetic energy function, K(p).

• Current practice with HMC is to use a quadratic kinetic energy:

• which leads p to have a zero-mean multivariate Gaussian distribution.
• The kinetic energy function producing this distribution (setting T = 1) is:



The Two Steps of the HMC Algorithm
• The first changes only the momentum

• new values for the momentum variables are randomly drawn from their Gaussian 
distribution

• independently of the current values of the position variables
• The second may change both position and momentum

• In the second step, a Metropolis update is performed, using Hamiltonian dynamics (e.g., 
leapfrog method) to propose a new state.

• Both steps leave the canonical joint distribution of (q, p) invariant, and hence their 
combination also leaves this distribution invariant.



The Two Steps of the HMC Algorithm 
(Cont.)

• Starting with the current state, (q, p), Hamiltonian dynamics is simulated for L steps using 
the leapfrog method (or some other reversible method that preserves volume), with a step-
size of ε.

• Here, L and ε are parameters of the algorithm, which need to be tuned to obtain good 
performance.

• The momentum variables at the end of this L-step trajectory are then negated, giving a 
proposed state (𝑞𝑞∗, 𝑝𝑝∗).

• This proposed state is accepted as the next state of the Markov chain with probability: 

• If the proposed state is not accepted (i.e., it is rejected), the next state is the same as the 
current state



Ergodicity of HMC

• The HMC algorithm will also be “ergodic”
• It will not be trapped in some subset of the state
• Hence will asymptotically converge to its (unique) invariant distribution



Illustrations of HMC and Its Benefits: 
Trajectories for a Two-Dimensional Problem

• Position variables: Consider sampling from a distribution for two variables that is 
bivariate Gaussian.

• With means of zero, standard deviations of one, and correlation 0.95.
• Momentum variables: defined to have a Gaussian distribution 
• With means of zero, standard deviations of one, and zero correlation

• See the results in next slide



A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a 
step-size of 0.25. The ellipses plotted are one standard deviation from the means. The initial state had 
q = [−1.50,−1.55]𝑇𝑇and p = [−1, 1]T.

Notice that this trajectory does not resemble a random walk. Instead, starting from the lower
left-hand corner, the position variables systematically move upward and to the right, until they
reach the upper right-hand corner, at which point the direction of motion is reversed. The
consistency of this motion results from the role of the momentum variables.



Compare with random walk

• Same example but with 
stronger correlation of 
0.98.

• Compare with random-
walk

• The HMC rejection rate 
for these trajectories was 
0.09.

• The rejection rate for these 
random-walk proposals 
was 0.37.



The Benefit of Avoiding Random-Walks

• Avoidance of random-walk behavior, as illustrated above, is one major benefit of 
HMC.

• Claim: Because the random-walk Metropolis proposals have no tendency to move
consistently in the same direction, we would need around 100 iterations of
random-walk Metropolis in which the proposal was accepted to move to a nearly
independent state.



Tuning HMC

One practical impediment to the use of Hamiltonian Monte Carlo is the need to 
select suitable values for 
• The leapfrog step-size, ε, 

• Too large a step-size will result in a very low acceptance rate for states proposed by simulating 
trajectories.

• Too small a step-size will either waste computation time

• The number of leapfrog steps, L, which together determine the length of the 
trajectory in fictitious time, εL.

• Setting the trajectory length by trial and error therefore seems necessary.

• Claim: Tuning HMC is more difficult in some respects than tuning a simple 
Metropolis method.



Scaling with Dimensionality

• For problems in which the dimensionality is moderate to high, another benefit of
HMC over simple random-walk Metropolis methods is a slower increase in the
computation time needed as the dimensionality increases.



Thank you
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