

CSC696H: Advanced Topics in Probabilistic Graphical Models

Implicit Model Inference

Prof. Jason Pacheco

Administrative Items

- I will be on travel the rest of this week
- No office hours this week
- There is class on Wednesday
- Caleb Dahlke will be helping out with discussion Wednesday
- Moyeen presenting ABC paper (Sunnaker et al. 2013)

Motivation for Monte Carlo Methods

- Now consider computing the expectation of a function f(z) over p(z).
- Recall that this looks like $E_{p(z)}[f] = \int f(z)p(z)dz$
- How can we approximate or estimate E[f]?

A bad plan...

Discretize the space where z lives into L blocks

Then compute
$$E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} p(z) f(z)$$

Scales poorly with dimension of Z

A better plan...

Given independant samples $z^{(l)}$ from p(z)

Estimate
$$E_{p(z)}[f] \cong \frac{1}{L} \sum_{l=1}^{L} f(z)$$

Motivation for Monte Carlo Methods

- Real problems are typically complex and high dimensional.
- Suppose that we *could* generate samples from a distribution that is proportional to one we are interested in.
- Typically we want posterior samples,

$$p(z \mid \mathcal{D}) = \frac{p(z)p(\mathcal{D} \mid z)}{p(\mathcal{D})} \propto \widetilde{p}(z) \longleftarrow \begin{array}{c} \text{Unnormalized} \\ \text{posterior} \end{array}$$

• Typically, $\widetilde{p}(z)$ is easier to evaluate (though not always)

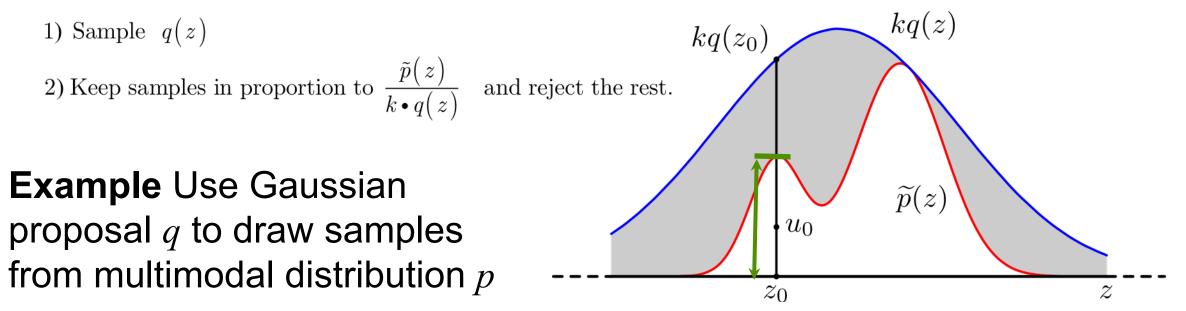
Recall: Rejection Sampling

Assume

- Access to easy-to-sample distribution q(z) -
- Constant k such that $\widetilde{p}(z) \leq k \cdot q(z)$

Proposal Distribution Where we can use one of methods on previous slides to sample efficiently

Algorithm

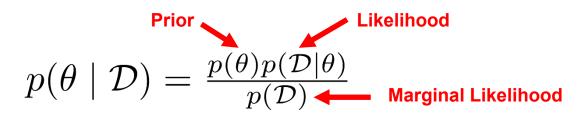


A Basic Monte Carlo Rejection Sampler

Goal: Given data \mathcal{D} sample latent θ from posterior,

 $\theta \sim p(\theta \mid \mathcal{D})$

Recall, **Bayes' Rule**:



A trivial Monte Carlo rejection sampler:

A1: Generate $\theta \sim p(\theta)$ from prior A2: Accept θ with probability $h = p(\mathcal{D} \mid \theta)$ A3: Return to A1

A Basic Monte Carlo Rejection Sampler

A1: Generate $\theta \sim p(\theta)$ from prior A2: Accept θ with probability $h = p(\mathcal{D} \mid \theta)$ A3: Return to A1

- It's trivial to show that this has the correct target distribution, $\theta \sim p(\theta \mid \mathcal{D})$
- Special case of a Rejection Sampler with proposal $\theta \sim p(\theta)$
- In general, find an upper bound $c \ge p(\mathcal{D} \mid \theta)$ and accept with prob. h/c

What are some issues with this sampler?

Problem 1: The prior is not a good proposal in general, since it is often very different from the posterior:

 $p(\theta) \neq p(\theta \mid \mathcal{D})$

Problem 2: To compute the acceptance we need to be able to *evaluate the likelihood*:

 $h = p(\mathcal{D} \mid \theta)$

Main Point: Many likelihood models are easily defined via simulation but cannot be explicitly evaluated.

- Easy to simulate new data: $\mathcal{D}' \sim p(\cdot \mid \theta)$
- Can't evaluate likelihood at specific data / parameter: $p(\mathcal{D} \mid \theta)$

Implicit vs. Explicit Models

Typically we know, both, the **prior** and **likelihood** of the joint,

 $p(\theta, \mathcal{D}) = p(\theta)p(\mathcal{D} \mid \theta)$

- We call this an **explicit model**
- An implicit model lacks a closed-form joint
- Models are usually implicit because we don't know the likelihood

Two common reasons for implicit likelihood:

1) Need to integrate nuisance variables,

Can address this with standard inference

$$p(\mathcal{D} \mid \theta) = \int p(\theta, \eta) p(\mathcal{D} \mid \eta, \theta) \, d\eta$$

2) Likelihood is based on simulation Topic of this paper

Example: Mass-Spring Simulation

Represents *mass* and *elasticity* of a soft body using:

- A, B : Two mass points
 - κ_s : Spring stiffness
 - L_0 : Rest length
 - κ_d : Damping factor

Subset of these represent parameters θ

Simulate by using Hooke's Law:

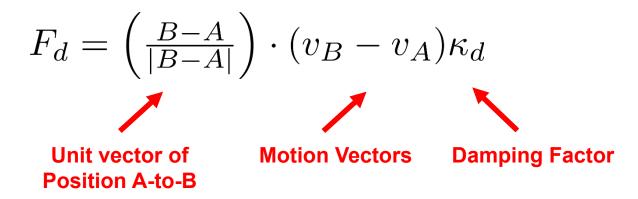
$$F_s = \kappa_s \left(|B - A| - L_0 \right)$$

Force on Spring Deviation from rest length

YT: Gonkee: <u>https://youtu.be/kyQP4t_wOGI</u>

Example: Mass-Spring Simulation

Need to add *damping force* to avoid never-ending simulation,



Total force is sum of spring and damping forces,

 $F_t = F_s + F_d$

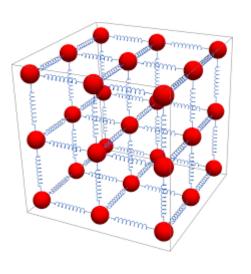
Can easily simulate this in CPU using numerical integration, e.g. Euler's method,

$$v(t) = v(t-1) + \frac{F_t \Delta t}{m} \qquad x(t) = x(t-1) + v(t)\Delta t$$

YT: Gonkee: <u>https://youtu.be/kyQP4t_wOGI</u>

Example: Lattice-Spring Model

Extend mass-spring to multiple masses / springs



- Simulating data \mathcal{D} from parameters θ is easy
- Can simulate complicated physics like

<u>Soft-body Tetris</u>

- Simple setting is deterministic
- Simulation is **much easier** than writing down a function tying inputs to outputs,

 $\mathcal{D} = f(\theta)$

 Can easily add noise to make random, but can't write down likelihood,

$$p(\mathcal{D} \mid \theta)$$

Likelihood-Free Monte Carlo

B1: Generate $\theta \sim p(\theta)$ from prior B2: Simulate \mathcal{D}' from model with input θ B3: Accept θ if $\mathcal{D}' = \mathcal{D}$; Return to B1

- Unlike rejection sampler, never need to evaluate likelihood
- Probability of acceptance is proportional to $p(\mathcal{D})$
- Prohibitively low acceptance for high-dimensional data
- Idea Make acceptance criteria weaker... accept within some distance:

 $\rho(\mathcal{D}, \mathcal{D}') \leq \epsilon$

Likelihood-Free Monte Carlo

C1: Generate $\theta \sim p(\theta)$ from prior C2: Simulate \mathcal{D}' from model with input θ C3: Calculate distance $\rho(\mathcal{D}', \mathcal{D})$ C4: Accept θ if $\rho(\mathcal{D}', \mathcal{D}) \leq \epsilon$; Return to C1

- Will have higher acceptance than Algorithm B
- Target distribution is approximation of true posterior,

$$p(\theta \mid \rho(\mathcal{D}, \mathcal{D}') \le \epsilon) \approx p(\theta \mid \mathcal{D})$$

- This still won't work in high-dimensional data...too many rejections
- Idea Test a statistic S instead...

Likelihood-Free Monte Carlo

D1: Generate $\theta \sim p(\theta)$ from prior D2: Simulate \mathcal{D}' from model with input θ D3: Compute statistic S' of \mathcal{D}' D4: Calculate distance $\rho(S', S)$ D5: Accept θ if $\rho(S', S) \leq \epsilon$; Return to D1

- Typically higher acceptance rate than Algorithm C
- Target distribution is an even rougher approximation of true posterior, $p(\theta \mid \rho(S,S') \leq \epsilon) \approx p(\theta \mid \mathcal{D})$
- Finding statistics that make this a good approximation is hard
- Standard statistics: mean, median, min, max, etc.

Likelihood-Free Inference So Far

Draw sample from prior $\theta \sim p(\theta)$:

- Basic rejection sampling, requires likelihood (Alg. A)
- Accept sample only if simulated data matches real (Alg. B)
- Accept sample if data are close enough (Alg. C)
- Accept sample if *statistics* are close enough (Alg. D)

- Prior distribution is bad proposal in general
- Posterior is typically very different from prior
- ➢ Need a better proposal...

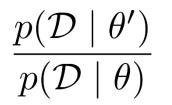
Metropolis-Hastings MCMC

E1: Propose move $\theta' \sim q(\theta' \mid \theta)$ E2: Calculate, $h = \min\left(1, \frac{p(\mathcal{D}\mid\theta')p(\theta')q(\theta\mid\theta')}{p(\mathcal{D}\mid\theta)p(\theta)q(\theta'\mid\theta)}\right)$ E3: Move to θ' with probability h, else stay at θ ; Return to E1

- MCMC gradually adjusts proposal towards posterior
- Stationary distribution of Markov chain is the true posterior
- But, M-H acceptance ratio requires evaluation of likelihood ratio

Approximating the Likelihood Ratio

M-H acceptance requires computing the likelihood ratio:



- Approximate each term by simulating B datasets, $\mathcal{D}_1, \ldots, \mathcal{D}_B$
- Then compute the empirical mean:

$$\hat{p}(\mathcal{D} \mid \theta) = \frac{1}{B} \sum_{j=1}^{B} I(\mathcal{D}_j = \mathcal{D})$$

- Where I(.) is the Kroenecker delta
- A trivial case is when B=1

MCMC Without Likelihoods

F1: Propose move $\theta' \sim q(\theta' \mid \theta)$ F2: Generate \mathcal{D}' using inputs θ' F3: If $\mathcal{D}' = \mathcal{D}$ goto F4 otherwise stay at θ F4: Calculate. $h = \min\left(1, \frac{p(\theta')q(\theta|\theta')}{p(\theta)q(\theta'|\theta)}\right)$ F5: Move to θ' with probability h, else stay at θ ; Return to F1

Theorem in paper proves stationary distribution is still true posterior

MCMC Without Likelihoods

- Just as in Algorithm B almost all samples will be rejected
- Especially if data are high-dimensional...

To improve acceptance rate, continue if data is *close enough:*

F3': If $\rho(\mathcal{D}, \mathcal{D}') \leq \epsilon$ goto F4 otherwise stay at θ

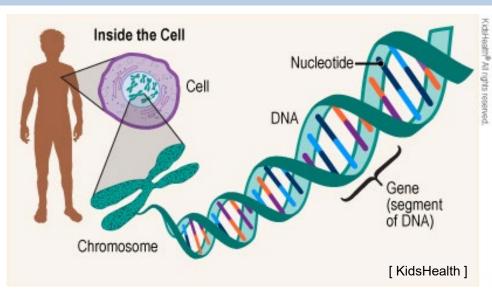
Or close enough with respect to a *statistic*:

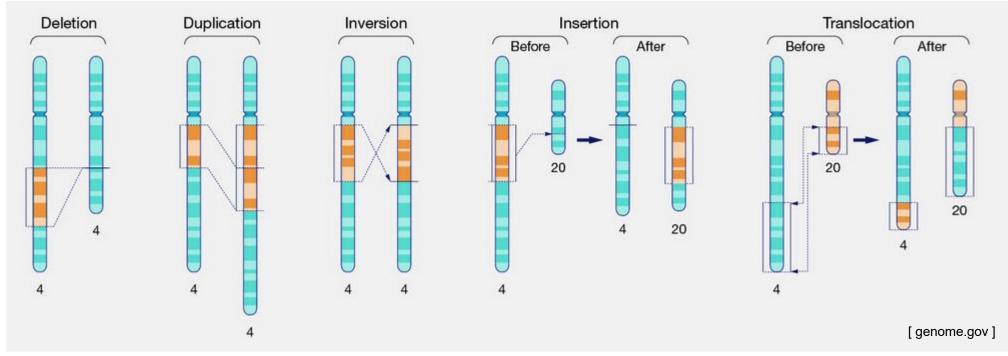
F3": If $\rho(S, S') \leq \epsilon$ goto F4 otherwise stay at θ

These are same changes made to rejection sampling, but for Metropolis-Hastings

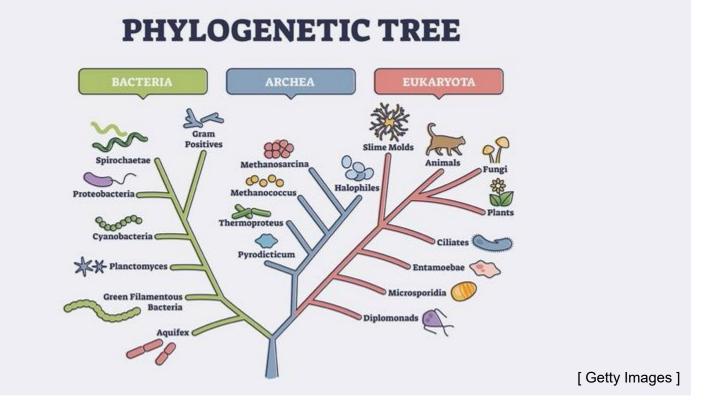
Basics of DNA and Mutations

- Double-helix of nucleotide strands
- 4 nucleotides (A, C, G, T)
- Pairings A-T, G-C form double helix
- Replication of DNA can cause mutations
- Usually, mutations caught and discarded

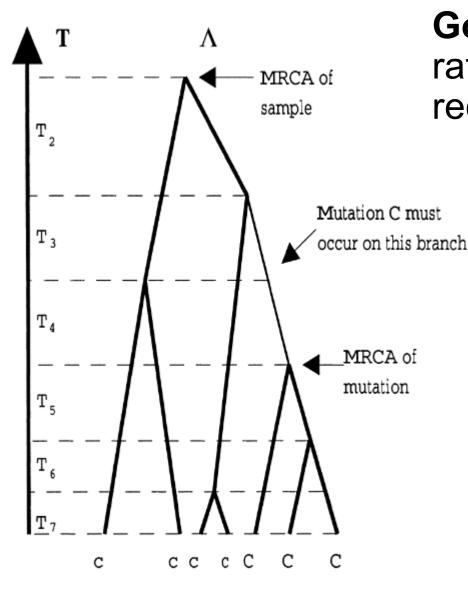




Population Genetics



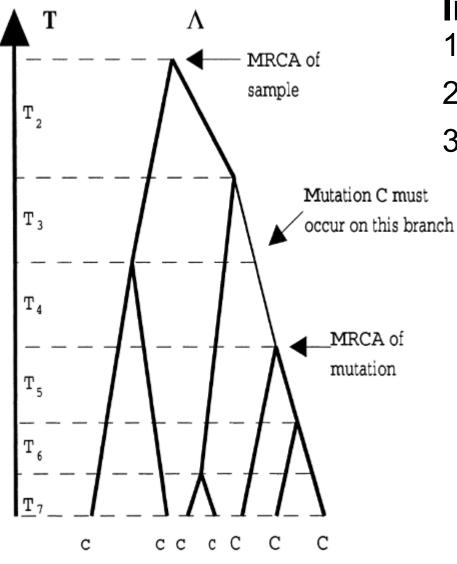
- Sometimes mutations persist and are inherited by later generations
- This leads to divergence of populations
- Then to different species, etc.
- Question Given some DNA samples, what is the most recent ancestor?



Goal Given DNA samples determine mutation rates, times of mutation events, and most recent common ancestor (MRCA)

Coalescent Model (Simple Version)

- Assumes random mating of population size N
- Sample n < N sequences at present day
- Run time backward in units of N/σ^2 generations where σ^2 is variance of num. of offspring in 1 generation
- At time T_j sample has j ancestors
- $T_j \sim \text{Exponential}(j(j-1)/2)$
- Stop when a single line of ancestry remains



Implementing Algorithm F

1) Propose mutation rate

- 2) Generate new tree topology Λ and set of mutations
- 3) Compare to samples do M-H acceptance

Naïve implementation leads to low acceptance...

- Augment state-space with tree topology $\Lambda\,$ and times of coalescence on the topology
- Intuition Including more information in state space allows more local moves in that space and improves acceptance rate
- I.e. when we find a good state we make small changes that are even better
- Tradeoff Larger state space, smaller moves

Additional algorithm details...

- Characterize mutations by:
 - Time they occur (i.e. branch they happen on)
 - Their location on the genome
- Include number of mutations between two coalescent events
- Location of mutations chosen uniformly among tree branches during simulation

Marjoram et al. (2003) claim this is the least information needed to see reasonable acceptance

Update Process (proposal step in M-H)

- Update topology of tree (details in Markovstova et al. [2000])
- Update times between coalescent events by adding Gaussian noise
- Update mutation rate by adding uniform random noise
- New mutation rate and times define Poisson RV of number of mutations between pairs of coalescence events
- For new mutation choose location in genome and tree uniformly
- If number of mutations decreases randomly select some mutations and erase them

Dataset / Methodology

- Sample n=63 sequences
- From Nuu-chah-nulth (Nootka) indigenous people of Pacific NW
- Sequences are 360 base pairs (bp) long
- Observed base frequencies $(\pi_A, \pi_G, \pi_C, \pi_T) = (0.330, 0.112, 0.337, 0.221)$
- H=28 distinct sequences (haplotypes)
- V=26 base positions showing variation
- Inference on (rescaled) mutation param θ and height of tree T
- Using Algorithm F, with previously discussed modifications

Table 1. Comparison of the three approaches using S = V, $\varepsilon = 2$

	Rejection*	Estimated likelihood [†]	No likelihood‡
Acceptance rate	3.0%	50.6%	15.1%
TMRCA T			
1st quartile	1.07	1.11	1.08
Mean	1.74	1.82	1.75
Median	1.48	1.55	1.53
3rd quartile	2.14	2.23	2.19
Mutation rate θ			
1st quartile	0.015	0.014	0.015
Mean	0.019	0.019	0.019
Median	0.018	0.018	0.018
3rd quartile	0.023	0.022	0.022

*Algorithm D; based on 2,000 observations. Estimated SEM of T = 0.02. *Based on likelihoods estimated from B = 1,000 simulations; 1,000 observations after sampling every 200 steps. Estimated SEM of T = 0.03. *Algorithm F; based on 1,000 observations after sampling every 10,000 steps. Estimated SEM of T = 0.03.

- Compare rejection, estimated likelihood, and likelihood-free MCMC
- Use summary stats S=V
- Data accepted if $|S-V| \leq \epsilon$
- First compare with $\epsilon=2$

Observations

- Methods produce comparable T
- Comparable mutation rate
- Very different acceptance rates

	$\varepsilon = 2^*$	$\epsilon = 1^{\dagger}$	$\epsilon = 0^{\dagger}$
Acceptance rate	15.1%	11.1%	4.8%
TMRCA T			
1st quartile	1.08	1.12	1.14
Mean	1.75	1.77	1.82
Median	1.52	1.52	1.55
3rd quartile	2.19	2.15	2.26
Mutation rate θ			
1st quartile	0.015	0.015	0.015
Mean	0.019	0.019	0.019
Median	0.018	0.018	0.018
3rd quartile	0.022	0.022	0.022

Table 2. Comparison of effects of ε using algorithm F and S = V

*Based on 1,000 observations after sampling every 10,000 steps. *Based on 1,000 observations after sampling every 50,000 steps.

Look at varying ϵ for MCMC

- "Under coalescent prior, mean heigh of tree is 1.97; posterior means do not differ from this"
- Surprisingly, $\epsilon=0$ still has non-negligible acceptance
- Acceptance rate pretty low overall

Table 3. Comparison of the three approaches using S = (V, H), $\varepsilon = 2$

	Rejection*	Estimated likelihood [†]	No likelihood‡
Acceptance rate	0.0008%	16.9%	0.2%
TMRCA T			
1st quartile	0.51	0.50	0.54
Mean	0.69	0.67	0.70
Median	0.64	0.63	0.66
3rd quartile	0.81	0.80	0.81
Mutation rate θ			
1st quartile	0.024	0.025	0.024
Mean	0.029	0.031	0.029
Median	0.028	0.030	0.028
3rd quartile	0.033	0.035	0.033

*Algorithm D; based on 1,000 observations. Estimated SEM of T = 0.01. *Based on likelihoods estimated from B = 200 simulations; 1,000 observations after sampling every 100 steps. Estimated SEM of T = 0.01.

[‡]Algorithm F; based on 1,000 observations after sampling every 50,000 steps. Estimated SEM of T = 0.01.

Authors state "Estimated likelihood method is at the edge of feasibility..."

Use stats S=(V,H) and $\epsilon = 2$ accept if:

 $|H - 28| \le \epsilon \qquad |V - 26| \le \epsilon$

- Using more complicated MCMC of Markovstova et al. (2000) mean height estimated at 0.68
- Using S=(V,H) yields results much closer to this estimate
- Rejection sampler essentially useless
- Likelihood estimation still higher acceptance, and closer estimate to "true" result

Table 4. Comparison of effects of ε using algorithm F and S = (V, H)

	$\epsilon = 2^*$	ε = 1*	$\epsilon = 0^{\dagger}$
Acceptance rate	0.2%	0.04%	0.005%
TMRCA T			
1st quartile	0.54	0.49	0.46
Mean	0.70	0.64	0.59
Median	0.66	0.60	0.55
3rd quartile	0.81	0.74	0.69
Mutation rate θ			
1st quartile	0.024	0.025	0.026
Mean	0.029	0.030	0.030
Median	0.028	0.030	0.031
3rd quartile	0.033	0.035	0.034

*Based on 1,000 observations after sampling every 50,000 steps. *Based on 1,000 observations after sampling every 200,000 steps.

Varying MCMC threshold...

- Overall low acceptance
- Higher threshold yields more accurate estimates (compared to "truth")
- Not feasible below 2.0
- So, it works... with some caveats... and tuning... definitely not an out-of-the-box solution