CSC 665-1: Advanced Topics in Probabilistic Graphical Models

Hamiltonian Monte Carlo (Addendum)

Instructor: Prof. Jason Pacheco

Images: From M. Betancourt, "A Conceptual Introduction to HMC"

Volume vs. Dimension

2 Neighbors

Volume outside shell grows exponentially faster than volume inside

1D

2D

Number of possible directions (neighbors) is $3^{\mathrm{D}}-1$, exponential in dimension

Intuition of Typical Set

Example: Gaussian

D i.i.d Gaussian RVs $y=\left(y_{1}, \ldots, y_{D}\right)^{T} \in \mathbb{R}^{D}: y \sim \mathcal{N}(0, I)$

Squared distance is Chi-Squared RV: $\|y\|^{2} \sim \chi^{2}(D)$

Weak Law of Large Numbers

Weak law of large numbers. Take x to be the average of N independent random variables h_{1}, \ldots, h_{N}, having common mean \bar{h} and common variance $\sigma_{h}^{2}: x=\frac{1}{N} \sum_{n=1}^{N} h_{n}$. Then

$$
\begin{equation*}
P\left((x-\bar{h})^{2} \geq \alpha\right) \leq \sigma_{h}^{2} / \alpha N . \tag{4.32}
\end{equation*}
$$

Proof: obtained by showing that $\bar{x}=\bar{h}$ and that $\sigma_{x}^{2}=\sigma_{h}^{2} / N$.
$>$ Holds for any α and N large enough
$>$ E.g. on average samples are similar to the mean

Asymptotic Equipartition Property (AEP)

> Applying LLN to estimate entropy we get:

$$
\frac{1}{N} \sum_{n=1}^{N} \log _{2}\left(\frac{1}{p\left(x_{n}\right)}\right) \rightarrow H(X)
$$

$>$ Thus X typically belongs to a subset of size $2^{N H(X)}$ with each element having probability $p(x)$ near $2^{-N H(X)}$
> This is the called the typical set of elements with probability:

$$
2^{-N H(X)-\epsilon} \leq p(x) \leq 2^{-N H(X)+\epsilon}
$$

Example: Random Binary String

$>$ Let $x=\left(x_{1}, \ldots, x_{N}\right)$ be N -length binary string
$>$ Probability of r 1 s and (N-r) 0s:

$$
P(\mathbf{x})=p_{1}^{r}\left(1-p_{1}\right)^{N-r}
$$

$>$ Number of N -length strings with r 1 s :

$$
n(r)=\binom{N}{r}
$$

$>\mathrm{n}(\mathrm{r})$ follows a Binomial distribution:

$$
P(r)=\binom{N}{r} p_{1}^{r}\left(1-p_{1}\right)^{N-r}
$$

Example: Random Binary String

HMC Vector Field Intuition

Ideally, MCMC dynamics should explore typical set efficiently

In theory, HMC aligns vector field with typical set

Conservative Dynamics Intuition

Attractive

Diffusion

Conservative

Volume Preservation

Dissipative System
(Volume Grows / Shrinks)

Conservative System (Volume Preserved)

Conservative dynamics defined by volume preservation

Proof of Volume Preservation

>Recall Hamiltonian dynamics:

$$
\frac{d q_{i}}{d t}=\frac{\partial H}{\partial p_{i}} \quad \frac{d p_{i}}{d t}=-\frac{\partial H}{\partial q_{i}}
$$

$>$ Approximation of HMC transition for $\mathrm{d}=1$ and time $\delta \approx 0$:

$$
T_{\delta}(q, p)=\left[\begin{array}{l}
q \\
p
\end{array}\right]+\delta\left[\begin{array}{l}
d q / d t \\
d p / d t
\end{array}\right]+\text { terms of order } \delta^{2} \text { or higher }
$$

> Jacobian:

$$
B_{\delta}=\left[\begin{array}{cc}
1+\delta \frac{\partial^{2} H}{\partial q \partial p} & \delta \frac{\partial^{2} H}{\partial p^{2}} \\
-\delta \frac{\partial^{2} H}{\partial q^{2}} & 1-\delta \frac{\partial^{2} H}{\partial p \partial q}
\end{array}\right]+\text { terms of order } \delta^{2} \text { or higher }
$$

Proof of Volume Preservation (cont'd)

> Determinant of Jacobian equals volume:

$$
\begin{aligned}
\operatorname{det}\left(B_{\delta}\right) & =1+\delta \frac{\partial^{2} H}{\partial q \partial p}-\delta \frac{\partial^{2} H}{\partial p \partial q}+\text { terms of order } \delta^{2} \text { or higher } \\
& =1+\text { terms of order } \delta^{2} \text { or higher }
\end{aligned}
$$

$>\log \operatorname{det}\left(B_{\delta}\right) \approx 0$ since $\log (1+x) \approx x$ for x near zero
$>$ Consider $\log \operatorname{det}\left(B_{s}\right)$ for s not close to zero

- Set $\delta=s / n$ and apply $T_{\delta} \mathrm{n}$ times

$$
\begin{aligned}
\log \operatorname{det}\left(B_{s}\right) & =\sum_{i=1}^{n} \log \operatorname{det}\left(B_{\delta}\right)=\sum_{i=1}^{n}\left\{\text { terms of order } 1 / n^{2} \text { or smaller }\right\} \\
& =\text { terms of order } 1 / n \text { or smaller } \quad \text { As } n \rightarrow \infty \text { we have } \log \operatorname{det}\left(B_{s}\right) \rightarrow 0
\end{aligned}
$$

Proof of Volume Preservation (cont'd)

$>$ For $\mathrm{d}>1$ each dxd submatrix (row j , col i) of Jacobian is:

$$
B_{\delta}=\left[\begin{array}{cc}
I+\delta\left[\frac{\partial^{2} H}{\partial q_{j} \partial p_{i}}\right] & \delta\left[\frac{\partial^{2} H}{\partial p_{j} \partial p_{i}}\right] \\
-\delta\left[\frac{\partial^{2} H}{\partial q_{j} \partial q_{i}}\right] & I-\delta\left[\frac{\partial^{2} H}{\partial p_{j} \partial q_{i}}\right]
\end{array}\right]+\text { terms of order } \delta^{2} \text { or higher }
$$

$>$ Determinant is still $1+$ higher order terms, remainder of argument holds

