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> Preliminary concepts



Model Uncertainty in Deep Learning

-> Model is uncertain about a test point beyond the range of training data
->  Still give a point estimate with high confidence

(a) Arbitrary function f(x) as a function of data x (softmax inpur) (b) o(f(x)) as a function of data x (softmax outpur)

Figure 1. A sketch of softmax input and output for an idealised binary classification problem. Training data is given between the
dashed grey lines. Function point estimate is shown with a solid line. Function uncertainty is shown with a shaded area. Marked with a
dashed red line is a point z* far from the training data. Ignoring function uncertainty, point 2™ is classified as class 1 with probability 1.



Necessity of Evaluating Uncertainty

=> Treat uncertain inputs and special cases explicitly
€ In case of uncertain classification, involve human to check
e In post office, check the characters of the zipcode to sort
€ Inreinforcement learning (RL)
e With uncertainty information an agent can decide when to exploit
and when to explore its environment.



Bayesian Inference

likelihood * prior p(D|w)p(w)

posterior = , or p(w|D) =

evidence p(D)

evidence = p(D) = / p(D|w)p(w)dw

f(0x)

Maximum A Posteriori (MAP) Estimation :

=> Train NN and get optimum w
= Compute MAP

Full Predictive Distribution :

POID, %) = / p(ylw, OpOwID)dw




Dropout in NN as a regularizer

foreach layeri=1,...,L,

= K junits
-> W _Jiweight matrices of dimensions K; x K;

W; =M, - diag([zi,j]ﬁﬂ
Ly T Bemoulli(pi) 101 7 — 1, ...,L, ] = 1, ---,Kz'—l

$Zgq =0 unit j in layer i -1 being dropped out as an input to layer i



Dropout in NN as a regularizer
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(a) Standard Neural Net (b) After applying dropout.

In the original dropout mechanism, some neurons are randomly shut down during
training. Srivastava et al. (2014), Figure 1.



Bayesian Neural Network (apply probability distribution)
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Fig. 3: (a) Point estimate neural network, (b) stochastic neural
network with a probability distribution for the activations, and
(c) stochastic neural network with a probability distribution
over the weights.

Probability distribution over NN
function y = f(x)

Prior:  p(f)
p(E[X,Y) « p(Y[X, £)p(f)



Gaussian Processes

A process to model distributions over functions
large neural networks = Gaussian processes
Given a training dataset of N -

o InputsX= {Xy,...,Xy}

e Corresponding outputs : Y = {yir -5 ¥n)
Goal : estimate function y =f(x)
Following the Bayesian approach

v

R

posterior distribution over the space of functions, given our dataset (X,Y)
p([X,Y) < p(Y|X, H)p(f)

p(f) - prior distribution over the space of functions



Gaussian Processes
p(f) - prior distribution pE1X,Y) « p(Y[X, H)p(f)
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Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel
(b) shows the situation after two datapoints have been observed. The mean prediction
is shown as the solid line and four samples from the posterior are shown as dashed
lines. In both plots the shaded region denotes twice the standard deviation at each

input value z.



Gaussian Processes (Example)

Posterior with 4 data points

=> Covariance function - squared
exponential

Predictive mean - bold blue line
Predictive uncertainty - light blue shape

B 7

Model uncertainty

€ Small near the data

€ Increases as we move away from
data-points



Posterior in Gaussian Processes :

=> Posterior distribution is a joint Gaussian distribution over all function values
F|X ~ N0 KX X))
Y |F~NF 1 'Iy)
=  K(X,X) is covariance function
defines the similarity between every pair of input points K(x;, X;)

/ p(wW)p(b)o(w!x + b)o(w!y + b)dwdb

write w = {W,;}L
Then predictive probability p(ylx, X,Y) = /p(y|x,w)p(w|X,Y)dw
(marginalized over weights)



Predictive Probability in Gaussian Processes :

=> predictive probability

P(y]%. X, Y) = / p(y1%, w)p(w]X, Y)dw

p(ylx,w) =N(y;¥(x,w), 7 'Ip)

p(w|X,Y) —> Intractable

need to approximate



> Dropout as Approximation



Approximating Posterior

= variational distribution ¢(w) approximates posterior p(w|X,Y)
=> By minimising the KL divergence

KL( g(w) || p(w]X,Y))
x — / 1(w) log p(Y|X, w)dw + KL(g(w)||p(w))

According to Gaussian Process properties

KL(o(w)llpw)) =3 (L IM + 5l )

i=1




Approximating Posterior

- [ atw) ogp(YIX. w)de z | gty ot

approximate each term in the sum by Monte Carlo integration sampling from (Z(w)
sample w,, ~ q(Lu)

get unbiased estimate — log p(yn |Xn7 C‘}n:

Lopmc X —1og p(yn|Xn, @n) + KL(g(w)||p(w))



Dropout as a Bayesian Approximation

define ¢(w) as:
W, =M, diag([zi,j]Ki )

G—
Zij g ™ BCI’HOUHi(pZ’) for: = 1, iy L, ] — 1, e Kz’—l

sample @,, ~ ¢(w) wn ={W;},

Lop-mc X —log p(¥,[Xn, @y + KL(g(w)]|p(w))



Obtaining Model Uncertainty

Approximate predictive distribution  ¢(y*|x*) = /p(y*|x*,w)q(w)dw

sample T sets of vectors from the Bernoulli distribution {z,...,z¢ }];
s t £ T
giving {Wi,..., W; };_;
T

Estimate First-Moment: E__ . . (y*) ~ ! Yo Wi o Woa)

Estimate Second-Moment :  E,y-1x) (v (v") =7 'Ip

T
1 st * <ok *
E 4 (X WiWE)Ty (X 7W§/WtL>

t=1



Obtaining Model Uncertainty

T
s . * 1 2k *
FirstMoment: E_ . ..,(y*) ~ 7 Y ¥ WL W) the model precision

pl?
g = .
2N A\

Second-Moment :  Eq -1 (v (y") =7 'Ip

model’s predictive variance Model Uncertainty
Varg(y«x+) (¥*) &
* * C o & *
IE'Jq(y*lx*)((y by )) — By ) (7)) Egy=ix) (¥7)



Obtaining Model Uncertainty - Discussion

-> To estimate the predictive mean and predictive uncertainty
€ Dropout is done in test time - NN model itself is not changed

=> Collect the results of stochastic forward passes through the model
€ this information can be used with existing NN models trained with dropout

- The forward passes can be done concurrently
€ constant running time



> Experiments



Model Uncertainty in Regression Tasks

-> Dataset - the Mauna Loa CO2 concentrations dataset
- NN hldden Iayers - 5 Atmospheric CO, at Mauna Loa Observatory
> NN 1024 hidden units in each layer wf o |
: s NOAAL Earth Systern Resaarch Liboratory
=> NN non-linearities - RelLU, TanH 2 seol
- dropout probabilities - 0.1/0.2 =
- number of forward iterations - 1000 0
g ool
320, % @ 1
1960 1970 1980 1990 2000 2010
YEAR

This is what the CO, dataset looks
like before pre-processing.



Model Uncertainty in Regression Tasks
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(a) Standard dropout with weight averaging (b) Gaussian process with SE covariance function

=> standard dropout NN model predicts
€ 0 with high confidence, not sensible

= GP model predicts

€ 0, but the model in uncertain
€ The shades of blue represent model uncertainty:
€ each colour gradient represents half a standard deviation



Model Uncertainty in Regression Tasks
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(c) MC dropout with ReLLU non-linearities (d) MC dropout with TanH non-linearities

- MC dropout with ReLU predicts | £

€ ~7, but the model in uncertain -0
€ the uncertainty is increasing far from the data

=> GP model predicts

€ 0, but the model in uncertain
€ the uncertainty stays bounded

RelLU doesn’t saturate

TanH saturates



Model Uncertainty in Regression Tasks - discussion

=> Models initialised with different dropout probability

€ initially exhibit smaller uncertainty
€ converged uncertainty at the end is almost indistinguishable

-> Moments (mean and uncertainty) of the dropout models converge to the
moments of the approximated GP model

=> The number of forward iterations may be small to get a reasonable estimation
to the predictive mean and uncertainty =

L L L 1 L L
-1 0 1 2 3

Figure 3. Predictive mean and uncertainties on the Mauna Loa
COz concentrations dataset for the MC dropout model with ReLU
non-linearities, approximated with 10 samples.



Model Uncertainty in Classification Tasks

Dataset - the full MNIST dataset (LeCun & Cortes, 1998)

LeNet convolutional neural network model (LeCun et al., 1998)
dropout applied before the last fully connected inner-product layer
dropout probabilities - 0.5

number of forward iterations - 100

N 20 20 2



Model Uncertainty in Classification Tasks
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(a) Softmax input scatter (b) Softmax output scatter

Figure 4. A scatter of 100 forward passes of the softmax input and output for dropout LeNet. On the X axis is a rotated image of
the digit 1. The input is classified as digit 5 for images 6-7, even though model uncertainty is extremly large (best viewed in colour).
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For the 12 images, the model predicts classes [11111557 777 7]

If the uncertainty envelope of a class is far from that of other classes’ (left-most image) then the input is
classified with high confidence

If the uncertainty envelope intersects that of other classes then the softmax output uncertainty can be as
large as the entire space.

expect the model to ask an external annotator for a label for this input images 6-7

the model uncertainty in the softmax output can be summarised by taking the mean of the distribution



Predictive Performance

Predictive log-likelihood captures how well a model fits the data

larger values indicating better model fit

Uncertainty quality can be determined from this quantity as well
Experiment is done to compare the RMSE and predictive log-likelihood

Experiment is done on

€ a popular variational inference method (VI, Graves (2011))
€ Probabilistic back-propagation (PBP, Hern’andez-Lobato & Adams (2015))
€ dropout uncertainty (Dropout)

N 20 20 2



Predictive Performance

Avg. Test RMSE and Std. Errors Avg. Test LL and Std. Errors

Dataset VI PBP Dropout VI PBP Dropout

Boston Housing 432 4+0.29 3.01 £0.18 2.97 £0.85 -2.90 £0.07 -2.57 £0.09 -2.46 +0.25
Concrete Strength 7.19 £0.12 5.67 £0.09 5.23 £0.53 -3.39 +£0.02 -3.16 £0.02 -3.04 £-0.09
Energy Efficiency 2.65 £0.08 1.80 £0.05 1.66 +£0.19 -2.39 £0.03 -2.04 £0.02 -1.99 4-0.09
Kin8nm 0.10 £0.00 0.10 £0.00 0.10 £0.00  0.90 £0.01 0.90 £0.01 0.95 £+0.03
Naval Propulsion 0.01 +0.00 0.01 +0.00 0.01 £0.00  3.73 £0.12 3.73 £0.01 3.80 £0.05
Power Plant 433 £0.04 4.12 +£0.03 4.02 £0.18 -2.89 +0.01 -2.84 £0.01 -2.80 +0.05
Protein Structure 4.84 £0.03 4.73 £0.01 4.36 +£0.04 -2.99 +£0.01 -2.97 +0.00 -2.89 +0.01
Wine Quality Red 0.65 £0.01 0.64 £0.01 0.62 £0.04 -0.98 £0.01 -0.97 £0.01 -0.93 +0.06
Yacht Hydrodynamics  6.89 £0.67 1.02 +0.05 1.11 £0.38 -3.43 £0.16 -1.63 £0.02 -1.55 40.12
Year Prediction MSD  9.034 £NA 8.879 =NA 8.849 +NA -3.622 £NA -3.603 £NA -3.588 +NA

Table 1. Average test performance in RMSE and predictive log likelihood



Model Uncertainty in Reinforcement Learning

An agent receives various rewards from different states
Agent’s aim is to maximise its expected reward over time

agent tries to learn to avoid transitioning into states with low rewards,
€ Instead pick actions that lead to better states.

-> with uncertainty information an agent can decide when to exploit and when to
explore

—=> RL uses NNs to estimate agents’ Q-value functions (a function that estimates
the quality of different actions)

v ¥



Model Uncertainty in Reinforcement Learning

Experiment set-up
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simulate an agent in a 2D world
Agent can take one of 5 actions
controlling two motors at its base
action - turn the motors at different
angles and different speeds
environment - red circles, green circle
positive reward

€ reaching to red circle

€ not looking at (white) walls
€ for walking in a straight line
negative reward

€ reaching to green circle
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Figure 5. Depiction of the reinforcement learning problem used in
the experiments. The agent is in the lower left part of the maze,
facing north-west.



Model Uncertainty in Reinforcement Learning :approaches

Epsilon greedy search

-> the agent selects the best action following its current Q-function estimation
with some probability
-> explores otherwise

Dropout approach

Use dropout Q-network
Use Thompson sampling

v



Model Uncertainty in Reinforcement Learnin
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Figure 6. Log plot of average reward obtained by both epsilon

greedy (in green) and our approach (in blue), as a function of the
number of batches.



Conclusions

=> Built a probabilistic interpretation of dropout

€ that make possible to obtain model uncertainty out of existing deep learning
models

Studied the properties of this uncertainty

Bernoulli dropout is used to approximate variational distribution

€ Other variants of dropout follow this interpretation as well and correspond to
alternative approximating distributions

=> Future Research

€ Experiment using this approach with different non-linearity function (activation
function) and different regularisation

v



