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Motivation for Monte Carlo Methods

• Now consider computing the expectation of a function           
over       . 

• Recall that this looks like 

• How can we approximate or estimate E[f]?  

A bad plan…

Scales poorly with dimension of Z

A better plan…



Motivation for Monte Carlo Methods

• Generally, Z lives in a very high dimensional space.

• Generally, regions of high is very little of that space. 

• IE, the probability mass is very localized.

• Watching samples from        should provide a good maximum 
(one of our inference problems)



Motivation for Monte Carlo Methods

 Real problems are typically complex and high dimensional.

 Suppose that we could generate samples from a distribution 
that is proportional to one we are interested in. 

 Typically we want posterior samples,

Don’t know marginal 
likelihood / normalizer

Unnormalized
posterior

 Typically,        is easier to evaluate (though not always)



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:
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Sampling Continuous RVs

Recall that the CDF is the integral of the PDF and (left) tail probability,

Question Given samples                          what is 
the probability distribution of the CDF values, 

Observation 1 Equally spaced intervals of CDF 
correspond to regions of equal event probability

Observation 2 The same events have unequal 
regions under PDF 



Sampling Continuous RVs

Answer The CDF of iid samples has a 
standard uniform distribution!

Question How can we use this fact to 
sample any RV?

Answer Apply this relationship in reverse:
1. Sample iid standard uniform RVs
2. Compute inverse CDF
3. Result are samples from the target

This property is called the 
probability integral transform



Inverse Transform Sampling

 We can use these to exactly sample from any continuous 
distribution using the cumulative distribution function: 

 Assuming continuous CDF is invertible:

 Input:  Independent standard uniform variables

This function transforms uniform variables to our target distribution!

Requires us to have
access to inverse CDF



Inverse Transform Sampling

 Very nice trick that applies to all continuous RVs (in theory)

 Yay, we know how to sample any RV right?  Wrong…

 Don’t always have the inverse CDF (or cannot calculated it)

 Doesn’t extend easily to multivariate RVs (that’s why I only 
showed 1-dimensional)



Rejection Sampling

Assume
• Access to easy-to-sample distribution
• Constant k such that  

Proposal Distribution
Where we can use one of

methods on previous slides
to sample efficiently

Algorithm

Example Uses Gaussian 
proposal q to draw samples 
from multimodal distribution p



Rejection Sampling

• Rejection sampling is hopeless in high dimensions, but
is useful for sampling low dimensional “building block” 
functions.

• For example, the Box-Muller method for generating 
samples from a Gaussian uses rejection sampling.

A second example where a 
gamma distribution is 
approximated by a Cauchy 
proposal distribution.



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:



Monte Carlo Integration

One reason to sample a distribution is to approximate 
expected values under that distribution…

Expected value of function         w.r.t. distribution         given by,

 Doesn’t always have a closed-form for arbitrary functions
 Suppose we have iid samples:
 Monte Carlo estimate of expected value, 



Monte Carlo Integration

• Expectation estimated from empirical distribution of L samples:

• For any N this estimator, a random variable, is unbiased:

• The Dirac delta is loosely defined as a piecewise function:
Caveat This is technically incorrect.  Dirac is only well-
defined within integrals,                                    but it 
gets the intuition across.



Monte Carlo Asymptotics

• Estimator variance reduces at rate 1/N:

• If the true variance is finite have central limit theorem: 

Independent of dimensionality
of random variable X

• Even if true variance is infinite have laws of large numbers: 

Weak 
Law

Strong
Law



Importance Sampling

Can we estimate          without sampling p(z)?

Monte Carlo estimate over samples                     from proposal q(z):

Key: We can sample from an “easy” distribution q(z) instead!

q(z) is an easy-to-sample
proposal distribution



Importance Sampling

IS weights are the ratio of target / proposal distributions:

where

But we often do not know the normalizer of the target distribution,

where

Can only evaluate unnormalized target

Can we evaluate IS estimate in terms of unnormalized weights?

Yes!  Let’s see how…



Importance Sampling (Normalized)

Recall, the importance sampling estimate is given by,

With normalized target and proposal distributions, respectively:

Substitute and pull out ratio of normalizers,

Easy to computeNeed to compute this…



Importance Sampling (Normalized)

Idea Compute importance sampling estimate of target normalizer:

Typically we have normalized proposal q(z) so Zq=1 and,

Where      are our unnormalized importance weights,

We can compute this!



Given samples                   we can write the IS estimate as, 

Importance Sampling (normalized)

where

The ratio of normalizers is approximated by normalized weights,

Substituting the normalized weights yields,



1. Simulate from tractable distribution

Importance Sampling On-A-Slide

[ Source: Bishop ]

2. Compute importance weights & normalize

3. Compute importance-weighted expectation

Note There is no 1/N term since it is
part of the normalized IS weights



Selecting Proposal Distributions

Target Distribution Good Proposal Poor Proposal

Kernel or Parzen window estimators
interpolate to predict density:



Q: What is a good proposal distribution?

A: Minimize estimator variance

Importance Sampling

E.g. can do better
than q=p [ Source: Bishop ]

Minimum variance obtained when,

e.g. for N-dim. X and Gaussian q(x):

Estimator variance scales catastrophically with dimension:



Selecting Proposal Distributions
• For a toy one-dimensional, heavy-tailed target distribution:

Gaussian Proposal Cauchy (Student’s-t) Proposal
Empirical variance of weights may not predict estimator variance!
• Always (asymptotically) unbiased, but variance of estimator can 

be enormous unless weight function bounded above: 

Samples (L) Samples (L)



Monte Carlo Methods Summary

Importance Sampling

Rejection sampling
• Choose q such that:
• Sample q(z) and keep with probability:

Pro: Efficient, easy to implement
Con: Acceptance rate evaporates as dimension increases

Pro: Efficient, easy to implement
Con: Variance grows exponentially in dimension
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Non-linear State Space Models

• State dynamics and measurements given by 
potentially complex nonlinear functions

• Noise sampled from non-Gaussian distributions
• Usually no closed form for messages or marginals



Sequential Importance Sampling (SIS)

• Suppose interested in some complex, global function of state:

• Construct efficient proposal using Markov structure

Computing the weights is easy with this type of proposal!



Recursive Weight Updating

Recall the importance weights are given by,

Plugging in the factorization of p and q weights at time t are:

Therefore, by recursion we have that weights at time t+1 are:



Sequential Importance Sampling (SIS)
For    = 1,…,N 

Sample initial N particles from proposal prior:
Compute initial importance weights:

For t=1,…T
For   =1,…N

Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:



Particle Filters:  The Movie

(M. Isard, 1996)






Weight Degeneration

Sequential importance sampling does not work!

• In time, unnormalized weights approach zero with high probability,

• Normalized weights approach one-hot vector,

• Sample trajectories        are high-dimensional and become unlikely



Particle Resampling

Resample with replacement produces random discrete 
distribution with same mean as original distribution

While remaining unbiased, 
resampling avoids degeneracies in 

which most weights go to zero

where



Sequential IS with Resampling : Particle Filter
Initialize: N samples               and weights

For t=1,…T

For   =1,…N
Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

If Resampling:
Resample        from        according to normalized weights         (with replacement)

Else: Set
Set uniform weights



“Bootstrap” Proposal

Recall that the full proposal distribution factorizes as,

A convenient choice is to sample from the prior distribution,

This is easy to sample, and weight updates simplify,

“Correct” weights with data likelihood



Bootstrap Particle Filter
Initialize: N samples               and weights

For t=1,…T

For   =1,…N
Propagate particles:

Compute unnormalized weights,

Normalize weights:

Filter mean estimate:

If Resampling:
Resample        from        according to normalized weights         (with replacement)

Else: Set
Set uniform weights

Changes for
Bootstrap



Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 
using a set of samples

• Propagate over time using 
sequential importance
sampling with resampling



BP for State-Space Models

Inference (Product step of BP):

where

Prediction (Integral/Sum step of BP):



Particle Filter:  Measurement Update

Variance of importance weights increases with each update

Incoming message: A set of L weighted particles

Bayes’ Rule:  Posterior at particles proportional to prior times likelihood 



Particle Filter:  Sample Propagation

State Posterior Estimate: A set of L weighted particles

Prediction:  Sample next state conditioned on current particles

Assumption for now:  Can exactly simulate temporal dynamics



Particle Filter:  Resampling

State Posterior Estimate:

Prediction:  Sample next state conditioned on randomly chosen particles

Resampling with replacement preserves 
expectations, but increases the variance of 

subsequent estimators



Particle Filter:  Resampling

State Posterior Estimate:

Resampling with replacement preserves 
expectations, but increases the variance of 

subsequent estimators

Effective Sample Size:

Prediction:  Sample next state conditioned on randomly chosen particles



Particle Filtering Algorithms

Sample-based density estimate

Weight by observation likelihood

Resample & propagate by dynamics

• Represent state estimates 
using a set of samples

• Propagate over time using 
sequential importance
sampling with resampling



Bootstrap Particle Filter Summary

Assume sample-based approximation of incoming message:

Account for observation via importance weights:

Sample from forward dynamics distribution of next state:

• Represent state estimates 
using a set of samples

• Propagate over time using 
sequential importance
sampling with resampling



Bootstrap Particle Filter Summary

1. Propagation

2. Weighting

3. Resampling

[ Source: Cappe ]



Gaussian noise model,

Toy Nonlinear Model
x t y t

Nonlinear dynamics and observation model…

…filter equations lack closed form.

Measurement

and

Dynamics



Toy Nonlinear Model

What is the probability that a state sequence, sampled 
from the prior model, is consistent with all observations?

Particle Filter Marginal KDEs Full Sequence Importance Sampling

x t y t

MeasurementDynamics



A More General Particle Filter
• Assume sample-based approximation 

of previous state’s marginal:

• Account for observation and proposal via importance weights:

• Sample from a proposal distribution q:

• Resample to avoid particle degeneracy:



Switching State-Space Model

…

…

Discrete switching state:
With stochastic 
transition matrix

Switching state selects dynamics:
[ Video: Isard & Blake, ICCV 1998. ]

(e.g. Nonlinear Gaussian )

Colors indicate 3 writing modes






Example:  Particle Filters for SLAM
Simultaneous Localization & Mapping (FastSLAM, Montemerlo 2003)

Raw odometry (controls)
True trajectory (GPS)
Inferred trajectory & landmarks

Control inputs from time 1 to t



Dynamical System Inference

Smoothing
Define shorthand notation: 

Compute              at each time t

Filtering

Compute full posterior marginal
at each time t



Dynamical System Inference

Smoothing
Define shorthand notation: 

Filtering

If estimates at time t are not needed immediately, then better smoothed
estimates are possible by incorporating future observations



A Note On Smoothing

 Each resampling step discards states and they cannot subsequently restored
 Resampling introduces dependence across trajectories (common ancestors)
 Smoothed marginal estimates are generally poor
 Backwards simulation improves estimates of smoothed trajectories



Particle Filter Smoothing
Smoothing distribution factorizes as,

Markov property removes
dependence on yt+1 … yTFilter distribution at time T

Suggests an algorithm to sample from              :

1. Compute and store filter marginals,                 for t=1,…,T

2. Sample final state from full posterior marginal, 

3. Sample in reverse for t=(T-1),(T-2),…,2,1 from, 

Use resampling idea to sample from current particle trajectories in reverse



Particle Filter Smoothing
Reverse conditional given by def’n of conditional prob.:

Forward pass sample-based filter marginal estimates:

Thus particle estimate of reverse prediction is:

where



Particle Filter Smoothing



Particle Smoothing Example

Smoothing trajectories for T=100.  
True states (*).

Kernel density estimates based on 
smoothed trajectories.True states (*).



Additional Particle Filter Topics

 Auxiliary particle filter – bias samples towards those more likely to “survive”

 Rao-Blackwell PF – analytically marginalize tractable sub-components of the 
state (e.g. linear Gaussian terms)

 MCMC PF – apply MC kernel with correct target             to sample trajectory prior 
to the resampling step

 Other smoothing topics:
 Generalized two-filter smoothing
 MC approximation of posterior marginals

 Maximum a posteriori (MAP) particle filter

 Maximum likelihood parameter estimation using PF



Sequential Monte Carlo Summary

 Importance sampling for inference in nonlinear dynamical systems

 Using model dynamics as proposal allows recursive weight updates

 All but one weight go to zero as prior/posterior diverge (degeneracy)

 Periodic resampling (with replacement) avoids weight degeneracy

 Each resampling step increases estimator variance (use sparingly)

 In practice, resample when effective sample size (ESS) below thresh



Outline

• Monte Carlo Estimation
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Monte Carlo Estimation

One reason to sample a distribution is to approximate 
expected values under that distribution…

Expected value of function         w.r.t. distribution         given by,

 Doesn’t always have a closed-form for arbitrary functions
 Suppose we have iid samples:
 Monte Carlo estimate of expected value, 

Samples must be independent!



Markov chain Monte Carlo methods

• The approximations of expectation that we have looked at so far have assumed 
that the samples are independent draws. 

• This sounds good, but in high dimensions, we do not know how to get good 
independent samples from the distribution.

• MCMC methods drop this requirement.

• Basic intuition
– If you have finally found a region of high probability, stick around for a bit, enjoy yourself, 

grab some more samples.



Markov chain Monte Carlo methods

• Samples are conditioned on the previous one (this is the Markov chain). 

• MCMC is often a good hammer for complex, high dimensional, problems. 

• Main downside is that it is not “plug-and-play”
– Doing well requires taking advantage to the structure of your problem
– MCMC tends to be expensive (but take heart---there may not be any other solution, and at least 

your problem is being solved). 
– If there are faster solutions, you can incorporate that (and MCMC becomes a way to 

improve/select these good guesses). 



Metropolis Algorithm



Metropolis Algorithm

If things get better, always accept. If 
they get worse, sometimes accept.

Always emit one or the other



Metropolis Algorithm



Metropolis Example

Green follows accepted proposals
Red are rejected moves.



Markov chain view



Markov Chain Monte Carlo (MCMC)

 Stochastic 1st order Markov process with transition kernel:

 Each       full N-dimensional state vector
 MCMC samples                                  not independent
 New superscript notation indicates dependence:

… …

Independent Dependent

Key Question: How many MCMC 
samples T are needed to draw L 
independent samples from p(x)?



Stationary Markov chains

• Recall that our goal is to have our Markov chain emit samples from our target 
distribution p(z).

• This implies that the distribution being sampled at time t+1 would be the same 
as that of time t (stationary).

• If our stationary (target) distribution is p(), then if we imagine an ensemble of 
chains, they are in each state with (long-run) probability p().
– On average, a switch from s1 to s2 happens as often as going from s2 to s1, otherwise, the 

percentage of states would not be stable.



Markov Chain Monte Carlo (MCMC)

 Stochastic 1st order Markov process with transition kernel:

E.g. Let,

 Initial state dist’n:
 Repeated transitions converge to target

True for any initial state distribution [ Source: Andrieu et al. ]

… …

z1

z2

z3

How can we formalize this?



Detailed balance

• Detailed balance is defined by:

• Detailed balance is a sufficient condition for p() to be a stationary distribution 
with respect to the positive T.

Sufficient but not necessary



Detailed balance implies stationary

(because?)
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Detailed balance implies stationary



Detailed balance (continued)

• Detailed balance (for p()) means that if our chain was generating samples from 
p(),  it would continue to due so.
– We will address how it gets there soon.
– For MCMC algorithms like Metropolis, it is important that the stationary state is the 

distribution we want (most Markov chains converge to something),

• Does the Metropolis algorithm have detailed balance?



Metropolis has detailed balance

For detailed balance, we need to show (in general)

Probability of transition from z’ to z is the 
probability that z’ is proposed, and it is accepted.



Metropolis has detailed balance

For detailed balance, we need to show (in general)

Probability of transition from z to z’ is the 
probability that z’ is proposed, and it is accepted.

In Metropolis this is



Metropolis has detailed balance

(because?)
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Metropolis has detailed balance

q() is symmetric

(because?)



Metropolis has detailed balance

(switch order
in min())

q() is symmetric

(because?)



Metropolis has detailed balance

(switch order
in min())

q() is symmetric



Ergodic chains

• Different starting probabilities will give different chains

• We want our chains to converge (in the limit) to the same stationary state, 
regardless of starting distribution.

• Such chains are called ergodic, and the common stationary state is called the 
equilibrium state.

• Ergodic chains have a unique equilibrium.



When do our chains converge?

• Important theorem tells us that for finite state spaces* our chains converge to 
equilibrium under two relatively weak conditions.
– (1) Irreducible

• We can get from any state to any other state
– (2) Aperiodic

• The chain does not get trapped in cycles

• These are true for detailed balance (there exists a stationary state) with T>0 (you 
can get there).
– Detailed balance is sufficient, but not necessary for convergence—it is a stronger 

property than (1) & (2)

*Infinite or uncountable state spaces introduces additional complexities, 
but the main thrust is similar.



Evolution of ergodic chains



Evolution of ergodic chains



Evolution of ergodic chains

Dies outCannot die!



Evolution of ergodic chains



Matrix-vector representation



Matrix representation

What does this equation look like?



Matrix representation

For any p(0)! 



Aside on stochastic matrices

• A right (row) stochastic matrix has non-negative entries, and its rows sum to 
one.

• A left (column) stochastic matrix has non-negative entries, and its columns sum 
to one.

• A doubly stochastic matrix has both properties. 



Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
– If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that sum to one 
(stochastic vector).



Aside on stochastic matrices

• In our problem, T is a left (column) stochastic matrix.
– If you want to be right handed, take the transpose

• The column vector, p, also has non-negative elements, that sum to one 
(stochastic vector).

• Fun facts
– The product of a stochastic matrix and vector is a stochastic vector. 
– The product of two stochastic matrices is a stochastic matrix.



Aside on (stochastic) matrix powers

?
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Aside on (stochastic) matrix powers

Why not?



Aside on (stochastic) matrix powers

because it is a stochastic matrix.



Aside on (stochastic) matrix powers

Logic:
• Product of stochastic matrix is a stochastic matrix
• Columns of (left) stochastic matrix sum to 1
• Power is a bunch of products

because it is a stochastic matrix.



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers

?



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers

?



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers
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Aside on (stochastic) matrix powers



Aside on (stochastic) matrix powers



Justification relies on Perron Frobenius theorem  

From Wikipedia

Optional



Main points about P-F for positive square matrices

• The maximal eigenvalue is strictly maximal and real valued (item 1). 

• Its eigenvector (as computed by software*) has all positive (or negative) real 
components (item 3). 

• The maximal eigenvalue of a stochastic matrix has absolute value 1 (item 8 
applied to stochastic matrix). 

*P-F says that the positive version exists, but software might hand you 
the negative of that, but you can negate it to be consistent with P-F. 



Summary on matrix version of stationarity 

Neal ’93 provides an algebraic proof which does not rely on 
spectral theory. 



MCMC so far

• Under reasonable conditions (ergodicity) ensembles of chains over discretized states converge to an 
equilibrium state (stationary distribution)

• Easiest way to prove (or check) that this is the case is to show detailed balance and use T>0 (sufficient but 
not necessary)

• There is a nice analogy with powers of stochastic matrices, which converge to an operator based on the 
largest magnitude eigenvector (with |eigenvalue|=1)

• In theory, to use MCMC for sampling a distribution, we simply need to ensure that our target distribution is 
the equilibrium state.

• In practice we do not know even know if we have visited the best place yet. (The ensemble metaphor runs 
into trouble if you have a small number of chains compared to the number of states). 



MCMC Theory vs. Practice

• The time it takes to get reasonably close to equilibrium (where samples come 
from the target distribution) is called “burn in” time. 
– I.E., how long does it take to forget the starting state.
– There is no general way to know when this has occurred.

• The average time it takes to visit a state is called “hit time”. 

• What if we really want independent samples?
– In theory we can take every Nth sample (some theories about how long to wait exist, but it 

depends on the algorithm and distribution). 



MCMC for ML in practice

• We use MCMC for machine learning problems with very complex distributions over high 
dimensional spaces.

• Variables can be either discrete or continuous (often both)

• Despite the gloomy worst case scenario, MCMC is often a good way to find good solutions 
(either by MAP or integration).
– Key reason is that there is generally structure in our distributions.
– We need to exploit this knowledge in our proposal distributions. 
– Instead of getting hung up about whether you actually have convergence

• Enjoy that fact that what you are doing is principled and can improve any answer (with respect to your 
model) that you can get by other means

– Your model should be able to tell you which proposed solution are good.



A View of Metropolis

Transition kernel with target distribution:

1. Sample proposal:
2. Accept with probability:

Proposal must be symmetric

Example: Symmetric Gaussian proposal

[ Source: D. MacKay ]

where



Metropolis Efficiency

Consider Gaussian proposal:

• Typically           for adequate acceptance rate

• Leads to random walk dynamics 
that are slow to converge

• Rule of Thumb:
If average acceptance is              need 
to run for roughly                      
iterations for an independent sample 

[ Source: D. MacKay ]

This is only a lower bound (and potentially very loose)

How many samples needed for an independent sample?



Example: Random Walk Dynamics

Target:

Proposal:

Metropolis Independent

From               need ~400 steps to 
reach both end states (0 and 20).  
So, ~400 steps to generate 1 
independent sample!

[ Source: D. MacKay ]

Very important to avoid random walk dynamics

State evolution for t=1…600, horizontal bars denote intervals of 50



Beyond the Metropolis Method

Metropolis requires the proposal to be symmetric,

This often results in a chain that takes a long time to converge 
to a stationary distribution (long burn in time)

Example The most common proposal (Gaussian),

exhibits random walk dynamics that are inefficient

Metropolis-Hastings relaxes this symmetry requirement…



Metropolis-Hastings MCMC method 



• Like Metropolis, but now q() is not necessarily symmetric.

• If Metropolis-Hastings has detailed balance, then it 
converges to the target distribution under weak conditions.
– The converse is not true, but generally samplers of interest will 

have detailed balance 

Does Metropolis-Hastings converge to the target distribution? 



Does Metropolis-Hastings have detailed balance? 
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Does Metropolis-Hastings have detailed balance? 



Does Metropolis-Hastings have detailed balance? 



Does Metropolis-Hastings have detailed balance? 



Metropolis-Hastings comments 

• Again it does not matter if we use unnormalized probabilities in the M-H 
acceptance ratio A(z,z’)

• It should be clear that the Metropolis method (where q() is symmetric) is a 
special case of M-H

• q(z’|z) can be anything, but you need to specify the reverse move q(z|z’), which 
can be tricky



MCMC So Far…

Metropolis Algorithm
• Sample RV from proposal  
• Proposal must be symmetric 
• Accept with probability 

Metropolis-Hastings Algorithm
• Proposal does not have to be symmetric
• Accept with probability

Both methods require choosing proposal, which can be hard



Gibbs Sampling

Let          be the target distribution on random variables,

Consider the complete conditional distribution

where                                                  all RVs except 

Idea Don’t sample all RVs from one proposal.  Sample each 
from its corresponding complete conditional,

We call this method Gibbs Sampling



Gibbs Sampling

Recall that an RV is conditionally independent of 
all RVs given its Markov Blanket

Bayes NetMRF

So complete conditionals only depend on Markov Blanket,

Immediate
Neighbors

Parents, Children,
Co-Parents

[ Source: Bishop, C. PRML ]



Condition on most recent samples

Can choose any order (or randomize)



Gibbs sampling 

• Gibbs sampling is special case of M-H (but we always accept)
• Unlike M-H we do not have to choose proposal
• The proposal distribution will be cycle over
• Transition function T() varies (cycles) over time

– Relaxation of our assumption used to provide intuition about convergence
– It still OK because the concatenation of the T() for a cycle converge 

• We must be able to compute and sample from
– This is not always possible in general! 

• This is not the sample as sampling from the generative model, e.g. 
Ancestral Sampling in a Bayes Net samples from 



(Source: D. MacKay)
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(Source: D. MacKay)



Examples of Gibbs 

• Gibbs can be very good if one can compute and sample from the complete 
conditional distributions

• This is often feasible for MRFs of discrete RVs
– Typical examples include symmetric systems like the Markov random field grids we had for 

images
– Complete conditionals only depend on immediate neighboring pixels

• Continuous models are more complicated, and typically restricted to exponential 
family distributions (we will discuss in the next lecture)



Example: Image Denoising

Problem Given observed image corrupted by i.i.d.
noise, infer “clean” denoised image.  

[ Source: Bishop, C. PRML ]

Noisy Image Latent Image



Example: Image Denoising

Observation noise

Use a “grid graph” where each pixel is 
connected to its up/down/left/right neighbors,

Where                              for convenience

Observation Likelihood:

Pairwise Similarity:
Smoothness prior

Complete conditional only depends on immediate neighbors,

Normalizer only requires summing 
over 4 neighbors       . 



Examples of Gibbs 

(From Dellaert and Zhu tutorial)



Examples of Gibbs 

(From Dellaert and Zhu tutorial)



Gibbs as Metropolis Hastings (M-H)

To see Gibbs as MH, and to understand why we always 
accept, consider that if it were MH, then our proposal 
distribution, qi(), for a given variable, i, would be 

The “*” here means next state, NOT stationary state.



Gibbs as M-H 

(def’n of “bar”)

(def’n of A())

(Gibbs, coloring)
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(def’n of A())

(Gibbs, coloring)

(because?)
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Gibbs as M-H 

(def’n of “bar”)

(def’n of A())

(Gibbs, coloring)



Gibbs Sampling Extensions

Standard Gibbs suffers same random walk behavior as M-H 
(but no adjustable parameters, so that’s a plus…)

Block Gibbs Jointly sample subset           from
• Reduces random walk caused by highly correlated variables
• Requires that conditional                    can be sampled efficiently

Collapsed Gibbs Marginalize some variables out of joint:

• Reduces dimensionality of space to be sampled
• Requires that marginals are computable in closed-form



Combined samplers

Different samplers fail in different ways, so combine them…

…can also combine with Gibbs proposals



Mixing MCMC Kernels

Consider a set of MCMC kernels                      all having target 
distribution p(x) then the mixture:

Is a valid MCMC kernel with target distribution p(x)

Mixture MCMC Transition kernel given by:
1. Sample
2. Sample  

Mixing weights

Can do this more generally….



Inference (and related) Tasks

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer:
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• Compute expectations:

• Optimization:

• Compute normalizer:



Simulated Annealing 

• Analogy with physical systems

• Relevant for optimization (not integration)

• Powers of probability distributions emphasize the peaks

• If we are looking for a maximum within a lot of distracting peaks, this can help. 



Simulated Annealing 

• Define a temperature T, and a cooling schedule (black magic part)

• Lower temperatures correspond to emphasized maximal peaks.
– Hence we exponentiate by (1/T).

• The terminology makes sense because the number of states accessible to a 
physical system decreases with temperature. 



Simulated Annealing 

(From Andrieu et al)

Basically M-H but we are annealing
target distribution with temperature T



Annealing 

(From Andrieu et al)



Annealing 

(From Andrieu et al)



Annealing 

(From Andrieu et al)



Annealing 

(From Andrieu et al)



Simulated Annealing

Let annealing distribution at temp   be given by:

As            we have: 

Simulated Annealing (SA) for Global Optimization:
Annealing schedule

1. Sample       from MCMC kernel     with target 
2. Set        according to annealing schedule

SA for Convergence:                     Final temperature = 1

where



MCMC Summary

• Markov chain induced by MCMC transition kernel T(z,z’)

• Converges to stationary distribution iff chain is ergodic
• Chain is ergodic if it is irreducible (can get from any z to any z’) 

and aperiodic (doesn’t get trapped in cycles)

• Easier to prove detailed balance, which implies ergodicity

• Metropolis algorithm samples from symmetric proposal q(z’|z) 
and accepts sample z’ with probability,



MCMC Summary

• Metropolis-Hastings allows non-symmetric proposal q(z’|z) 
and accepts sample z’ with probability,

• Gibbs sampler on random vector                            
successively samples from complete conditionals,

• Gibbs is instance of M-H which always accepts



MCMC Summary

• Simulated annealing adjusts target distribution at each stage 
with temperature T

• For decreasing temperatures                    support of target 
approaches set of global maximizers

• Convenient to use for global maximization
• Can prove that this will find the global maximum in the limit (need to 

wait for the heat death of the universe, however…)

• For increasing temp ending at                   approaches p(x)

• Helps avoid getting stuck in local optima



Monte Carlo Methods Summary

• Simulation:

• Compute expectations:

• Optimization:

• Compute normalizer / marginal likelihood:

Rejection sampling, MCMC

Importance sampling or 
any simulation method

Simulated annealing

Reverse importance sampling (Did not cover)



Monte Carlo Methods Summary

• In complex models we often have no other choice than to simulate 
realizations

• Rejection sampler choose proposal/constant s.t.

• Monte carlo estimate via independent samples                      ,
• Unbiased
• Consistent
• Law of large numbers
• Central limit theorem (if f is finite variance)



Monte Carlo Methods Summary

• Importance sampling estimate over samples                      ,

• Avoids simulation of p(z) but variance scales exponentially with dim.
• Sequential importance sampling extends IS for sequence models, with 

proposal given by dynamics,

• Resampling step necessary to avoid weight degeneracy

Importance Weights

Proposal

Recursively update weights“Bootstrap” Particle Filter



Monte Carlo Methods Summary

• Lots of other methods to explore…
• Hamiltonian Monte Carlo
• Slice Sampling
• Reversible Jump MCMC (and other transdimensional samplers)
• Parallel Tempering

• Some good resources if you are interested…
Neal, R. “Probabilistic Inference Using Markov Chain Monte Carlo Methods”, U. Toronto, 1993
MacKay, D. J. “Introduction to Monte Carlo Methods”, Cambridge U., 1998
Andrieu, C., et al., “Introduction to MCMC for Machine Learning”, 2001
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