Computer
Science

CSC696H: Advanced Topics in
Probabilistic Graphical Models

No U-Turn Sampler

Prof. Jason Pacheco

(Random Walk) Metropolis Algorithm

While not bored

{
Sample q(z|z(pm))
p(2
Accept with probability A(z,z(p"’e'”)) = min| 1, p()
>(»(prev)
p(2)
If accept, emit z, otherwise, emit z(P™").
}

Always emit one or the other

If things get better, always accept. If
they get worse, sometimes accept.

(Random Walk) Metropolis Example

3 :

257

2 5

157

1 5

05¢}

0 05 i s 2 25 3
Green follows accepted proposals
Red are rejected moves.

Example: Random Walk Dynamics

+— State evolution for t=1...600, horizontal bars denote intervals of 50

Metropolis Independent [Source:D. MacKay]

1200 iterations 1200 iterations

T I T T Ll I T I I I

90 . 90 |
80 I I e 80 I
70

60 —

30
20
10

10 15 20 0 5 10 15 20

L 0,...,20
Target: p(z) = { or 210200 zo = 10 need ~400 steps to
otherwise
reach both end states (0 and 20).
¥=zr+1 So, ~400 steps to generate 1
otherwise independent sample!

O ra—

Proposal: q(z'|z) = {

Very important to avoid random walk dynamics

Hamiltonian Monte Carlo (HMC)

Better at avoiding random walk behavior typically associated
with Metropolis(-Hastings) and Gibbs samplers

Some Drawbacks...
» Per-iteration cost for D-dim RV is O(D5/4)
» Contrast to random walk Metropolis O(D?)

» Very Sensitive to hyperparameters
« Number of leapfrog steps L <= Requires costly tuning runs (NUTS focuses on this)
* Stepsize € g Tning this on-the-fly not too hard [Andrieu and Thomas (2008) + this paper]

* Requires gradient of (unnormalized) log-probability

HMC Recap

Canonical form of our target distribution (the one we want to sample):

1
p(0) = 7 €XP (L(0)) == where L(6) is the log-PDF

Introduce momentum to form r ~ A/(0, 1) Hamiltonian in canonical form:
1
p(0,7) = p(@)p(r) < exp ([,(9) — ETTT)

Intuition Fictitious Hamiltonian energy of D-dimensional “position” § and
rq IS momentum of d-th position dimension.

* Position-dependent potential energy: —L£(0)

» Kinetic energy: — 2,77

HMC Recap

Can simulate Hamiltonian dynamics of our fictitious physical system:
dr 0L(0) g 01 ;

= ——r'r=r

dt 0 dt ~ Or?2

Need to do this numerically, so we use a “leapfrog” integrator:

_},I‘.—I—Efz _ _},f + ((_/Z)VHE(QT) €t+f _ 6;1‘. + E_},I‘.—FE;IQ: _},f—l—f _ _},I‘.—l—t‘f‘g + ((_/Z)VHE(QT—H&)

« Simulated 6 is a Metropolis-Hastings proposal

* Volume preserving and time-reversible

* Time-reversible

« Satisfies detailed balance = valid MCMC sampler with target p(9)

Algorithm 1 Hamiltonian Monte Carlo

Given 6V, e, LL. M:
for m=1to M
Sample 7 ~ N(0, I).
Set @ + 97?1—11§ . 9??1—11_
for:=1to L do
Set 6,7 + Lea.pfrog(é, T, €).
end for

With probability o« = min {L

Problem: Need to choose # leapfrog steps

} cset 0" «— 0, r"™ +— —r.

end for

function Leapfrog(d,r, €)
Set 7 <=1+ (/2)VoL(0).
Set 6 < O + 7.

Set 7« 7 + (/2)VyL(h).
return é, r.

A trajectory for a two-dimensional Gaussian distribution, simulated using 25 leapfrog steps with a
step-size of 0.25. The ellipses plotted are one standard deviation from the means. The 1nitial state had

g =[—1.50,—1.55]"and p =[-1, 1]T.

Position coordinates Momentum coordinates

;- ;Tht] - \\

0~ L 0 - \
14 A -1 A \
't“- -'.
) ' Problem: U-Turn)
| [I | | | | I | |
-2 -1 0 1 2 -2 -1 0 1 2

Value of Hamiltonian

2.4

2.3 -

U N

¢ —"

/l

l-::-.
'.:-__'______..-I
l':___________

2.2 A

U -
-
-
[
un
I~
-
[
wun

Notice that this trajectory does not resemble a random walk. Instead, starting from the lower
left-hand corner, the position variables systematically move upward and to the right, until they
reach the upper right-hand corner, at which point the direction of motion 1s reversed. The
consistency of this motion results from the role of the momentum variables.

Components of No U-Turn Sampler

Combines many MCMC components that we have explicitly
covered (or covered in readings)

Gibbs sampler

Slice Sampler (also involves Gibbs updates)
Metropolis

HMC simulation via leapfrog integrator

No U-Turn Sampler : In a NUTShell

Solves 2 problems with HMC
1. Automatically select number of leapfrog steps L
2. Avoid U-turn phenomenon (by selecting L)

Approach

« Simulate backwards-and-forward random number of steps
« Step simulation if a U-turn is happening

* Do extra technical stuff to ensure detailed balance satisfied

On to the technical bits!

Figuring out a good L is hard...

* Need to figure out if simulation is too long, too short, or “just right”
* Typically need to rely on heuristics
* Need a useful criterion to tell if simulation is “long enough”

Let 6 be initial value of simulator and § eventual proposal with
momentum 7 then:

d(6—0)-(0-0)
dt 2

R] - _
—G-0)- “b-0)=(6-06) 7
dt

is proportional to progress we would make if we continue to run
simulator.

 Less than 0 means we have a U-turn

041

0.3

0.2

0.1

-0.1F

6 traced out by
leapfrog integrator

% (0 —0)-7<0

Each dot is a position %M

| ldea Simulate HMC

until we hit a U-turn
then stop

_ Problem This naive

approach violates time

| reversibility and

detailed balance!

| Approach Simulate

HMC forward-and-

i backward and ensure

O
&
q
b
¢
o)
o 6—0—o— »;,L-@-"P
[1?_‘;
0
?
°
o]
i p(0)
oo oot
| | | | | |
=-0.1 0 0.1 0.2 0.3 04 0

" detailed balance holds

Slice Sampler

A
Target to sample: p(z) x f(x)

Augment with+ € R as:

1 if 0 <u<p(z)
* _ = =
P, u) = { 0 otherwise.

Note that marginal is unchanged:

. p(z)
/ p*(x,u)du = /U du = p(x) Can do this with

unnormalized f(x)

So sample from new target p*(x, v) then ignore u for samples x:

w) | 2% ~ Uniform([0, p(z?)]) 2D | D) Uniform({z : p(z) > w1V}

Samples from conditionals as in a Gibbs sampler

NUTS : Slice Sampler View

Hamiltonian target to sample

p(0,) o exp (ﬁ(e) o T)

Augment with slice variable u € R to yield new target:

p(B.r,u) o< Tu € [0, exp{L(#) — %r -7 }H]

Slice sampling from each of the conditionals (both Uniform):

| 0,7 ~ Uniform ([0, exp{ £(8) — %7")

How do we sample this?
1 e

0,r | U ~ Uniform({gj rou < exp(ﬁ(@) _ ifr : 7“)}) Simulate HMC via leapfrog

Some Complications

The previous approach is not guaranteed to satisfy detailed balance...

* Let B be all position-momentum states generated by leapfrog
* Let C C B be subset of states that ensure detailed balance satisfied

« Sample from new target p(6,r,u,B,C | ¢) and ensure:

C.1: All elements of C must be chosen in a way that preserves volume. That is, any
deterministic transformations of #. » used to add a state . 7' to C must have a Jacobian
with unit determinant.

C.2: p((6.r) €Cll.r.u.e)=1.
C.3: plu < exp{L(0) — S+ -+"}|(0 = 1.

C.4: If (A,r) € C and (F)". ") € C then for any B, p(B,C|0.r, u,€) = p(B,C|0".1". u,¢€).

The Basic NUTS Algorithm : Skipping Details
Samples from augmented target: p(6,r,u, B,C | €)

1. sample r ~ N(0,1).
2. sample u ~ Uniform([0, exp{L(0") — %? -1},

3. sample B.C from their conditional distribution p(B.C|6", 7. u.€).

4. sample L r ~ T(0.7,C). M These steps require more
explanation

» Steps 1-3 sample r, v, B, C conditional on gt
« Step 4 samples new 0! ~ p(0 | B,C,u,r,¢€)

NUTS : Step 3

3. sample B.C from their conditional distribution p(B,C|6". 7. u,¢€)

« Simulate all points via leapfrog
 Build 5 by simulating in, both, forward- and reverse-time

» Use repeated doubling method
* At stage j choose forward (+1) or backward (-1) as : v; ~ Uniform({—1,+1})
e Simulate 2! steps of size v,e

« Keep doing this until we detect a U-turn (or hit maximum steps)

This builds a balanced binary “tree” of simulations
forward- and backward- from an initial point. Better
shown by picture...

Init Forward Backward Backward
' 1-ste 2-ste 4-ste S -P.ﬂ' ¥
0 0 O L o
® ./ ./ " Forward Q.
: d d 8-step O

o o0 CO8b eesedosy eesedosLessesese

Binary simulation tree built by repeated doubling. At stage j randomly simulate
forwards or backwards 2! leapfrog steps. Note that binary tree is never explicitly
represented, only the simulation chain.

NUTS : Step 4

4. sample O r ~ T(6,r,C)

Where T(.) is transition that leaves uniform distribution over C invariant,

Y H[(ﬁ". -:r"’) < C] So, once we figure out position-momentum
Z T ‘9 " C) ‘C‘ points in C then we can choose uniformly

(0,r)eC among them for position-momentum sample

Step 4 is valid because:

p(@.rlu,B,C,e) o< p(B.Cl0,r, u,e)p(d,r|u) (Bayes’ rule + chain rule)
x p(B.Cl0,r.u, e)l[lu < exp{L(f) — %?’ -r}] (Condition C.1)
x I|(6,7) € C]. (Condition C.2 and C.4)

All points belong to set
B of HMC simulations

Excluded from C because
violate detailed balance

Algorithm 2 Naive No-U-Turn Sampler

Given 0°, e, £, M:
for m=1to M do
Resample ¥ ~ N(0, I).
Resample u ~ Uniform([0, exp{L(0™~1 — 579 - rO}])
Initialize 6= =™t 0+ =0m= L r— =90 T =9 =0, C={(0™ L. r")}, s=1.
while s =1 do
Choose a direction v; ~ Uniform({—1,1}).
if v; = —1 then
0=, r—,—, —.C' s < BuildTree(~, 77, u, v, j, €).
else
—, —, 07, r™,C", s + BuildTree(0%, 7", u, v, j, €).
end if
if s =1 then
C+—Ccuc.
end if
s« s'I[(OT—60—)-r— > 0]I[(#T —0—)-r* >0].
J<« g7+ 1L
end while
Sample ¢, r uniformly at random from C.
end for

Example : Bayesian Logistic Regression

Logistic regression model:

pla, Ble,y) o< ply|xz, a. B)p(a)p(B)
o exp{— >, log(1 + exp{—vi(a + z; - B}) — 2;2 S 2—#3? - 3}

Fit to German credit data from UCI benchmark datasets:

* x; IS 24-dim feature vector of predictors (zero-mean, unit variance)
 Output y.: denied credit (-1) extended credit (+1)

« 24-dim feature weights (3

« Scalar intercept o

* Priors of @ and 8 zero-mean normal w/ independent 2 = 100 variance

o QO
o O
N @
o O
© O

ESS per gradient
o
2
-
o

Example : Bayesian Loglstlc Regression

NUTS HMC ¢L=0.05 HMC L =~ 0.075 HMC L =011 HMC eL=~0.17 HMC ¢L=0.26 HMC ¢L =~ 0.39 HMC L = 0.58
]
: : Te
el ot . . . < . s Lad iy
. R A IEI N A TN e
04 06 08 04 06 08 04 06 08 04 06 08 04 06 08 04 06 08 04 06 08 04 06 08

Target acceptance rate statistic o

Effective sample size (ESS) as a function of § and (for HMC) simulation length

eL for the pvariatesnermal, logistic regression, gterarehiesitosistieresression,
ad-stechastievolatiitnedels. Each point shows the ESS divided by the number

of gradient evaluations for a separate experiment; lines denote the average of the
points’ y-values for a particular ¢. Leftmost plots are NUTS’s performance, other
plots shows HMC’s performance for various settings of eL.

Example : Bayesian Logistic Regression

NUTS HMC eL = 0.075 HMC L =017 HMC =L =039 HMC =L = 0.88 HMC eL =2

0.20-
0.10-

0.001° A

—-0.10-

04 06 08 04 06 08 04 06 08 04 06 08 04 06 08 04 06 08
Target acceptance rate statistic 6

Discrepancies between the realized average acceptance probability statistic & and

its target o for the murartate—srermead, logistic regression, hierarehteatdosiste
rearession—ahd—stochastie—volatiit= models. Each point’s distance from the x-

axis shows how effectively the dual averaging algorithm tuned the step size € for
a single experiment. Leftmost plots show experiments run with NUTS, other
plots show experiments run with HMC with various settings of L.

	CSC696H: Advanced Topics in�Probabilistic Graphical Models
	(Random Walk) Metropolis Algorithm
	(Random Walk) Metropolis Example
	Example: Random Walk Dynamics
	Hamiltonian Monte Carlo (HMC)
	HMC Recap
	HMC Recap
	Slide Number 8
	Slide Number 9
	Components of No U-Turn Sampler
	No U-Turn Sampler : In a NUTShell
	Figuring out a good L is hard…
	Slide Number 13
	Slice Sampler
	NUTS : Slice Sampler View
	Some Complications
	The Basic NUTS Algorithm : Skipping Details
	NUTS : Step 3
	Slide Number 19
	NUTS : Step 4
	Slide Number 21
	Slide Number 22
	Example : Bayesian Logistic Regression
	Example : Bayesian Logistic Regression
	Example : Bayesian Logistic Regression

