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Random Variables

(Informally) A random variable is an unknown 
quantity whose value depends on the outcome 
of a random process

Example Roll 2 dice and let random variable X 
represent their sum.  It takes values,

Example Flip a coin and let random variable Y 
represent the outcome,



Discrete vs. Continuous Probability

Discrete RVs take on a finite or countably infinite set of values
Continuous RVs take an uncountably infinite set of values

• Representing / interpreting / computing probabilities becomes 
more complicated in the continuous setting

• We will focus on discrete RVs for now…



Random Variables and Probability

is the event that X takes the value x

Capitol letters represent
random variables

Lowercase letters are
realized values

Example Let X be the random variable (RV) representing the sum of two 
dice with values,

X=5 is the event that the dice sum to 5.



Probability Mass Function

A function            is a probability mass function (PMF) of a discrete 
random variable if the following conditions hold:

(a) It is nonnegative for all values in the support,

(b) The sum over all values in the support is 1,

Intuition Probability mass is conserved, just as in physical mass.  
Reducing probability mass of one event must increase probability mass 

of other events so that the definition holds...



Probability Mass Function

Example Let X be the outcome of a single fair die.  It has the PMF,

Example We can often represent the PMF as a vector.  Let S be an 
RV that is the sum of two fair dice.  The PMF is then,

Uniform Distribution

Observe that S does
not follow a uniform

distribution



Functions of Random Variables

Any function f(X) of a random variable X is also a random 
variable and it has a probability distribution

Example Let X1 be an RV that represents the result of a fair die, and 
let X2 be the result of another fair die.  Then,

Is an RV that is the sum of two fair dice with PMF p(S).

NOTE Even if we know the PMF p(X) and we know that the 
PMF p(f(X)) exists, it is not always easy to calculate!



PMF Notation

• We use p(X) to refer to the probability mass function (i.e. a 
function of the RV X)

• We use p(X=x) to refer to the probability of the outcome X=x 
(also called an “event”)

• We will often use p(x) as shorthand for p(X=x)
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Joint Probability

Definition Two (discrete) RVs X and Y have a joint PMF denoted by    
and the probability of the event X=x and Y=y denoted by

where,

(a) It is nonnegative for all values in the support,

(b) The sum over all values in the support is 1,



Joint Probability

Let X and Y be binary RVs.  We can represent the 
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04 0.36

0.30 0.30

0 1

0

1

All values are nonnegative



Joint Probability

Let X and Y be binary RVs.  We can represent the 
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04 0.36

0.30 0.30

0 1

0

1

The sum over all values is 1:
0.04 + 0.36 + 0.30 + 0.30 = 1



Joint Probability

Let X and Y be binary RVs.  We can represent the 
joint PMF p(X,Y) as a 2x2 array (table):

Y

X
0.04 0.36

0.30 0.30

0 1

0

1

P(X=1, Y=0) = 0.30



Fundamental Rules of Probability

Given two RVs     and     the conditional distribution is:

Multiply both sides by         to obtain the probability chain rule:

For     RVs                          :

Chain rule valid
for any ordering



Fundamental Rules of Probability

Law of total probability

Proof ( chain rule )

( distributive property )

( PMF sums to 1 )

Generalization for conditionals:

• P(y) is a marginal distribution
• This is called marginalization



Tabular Method

P(x1)=P(x1,y1)+P(x1,y2)
P(x2)=P(x2,y1)+P(x2,y2)
[i.e., sum across rows]

0.4

0.6
P(x2)

P(x)

P(x1)

Y

X
0.04 0.36

0.30 0.30

y1 y2

x1

x2

0.34 0.66

P(y2)P(y1)

P(y)

Let X, Y be binary RVs with the joint probability table

P(y1)=P(x1,y1)+P(x2,y1)
P(y2)=P(x1,y2)+P(x2,y2)
[i.e., sum down columns]

For Binomial use K-by-K 
probability table.



Tabular Method

0.4

0.6
P(x2)

P(x)

P(x1)

Y

X
0.04 0.36

0.30 0.30

y1 y2

x1

x2

0.34 0.66

P(y1)

Censored!

We don’t care about 
event Y=y2

P(x|y1)=?



Tabular Method

X

Y=y1

x1

x2

0.34

P(y1)

P(x|y1)
0.04 / 0.34 

0.30 / 0.34 

These sum to one:
A conditional probability distribution is 

still a probability distribution

0.04

0.30



Summary

 A random variable is an unknown quantity whose value depends on 
the outcome a random process (informal definition)

 Some fundamental rules of probability:
 Conditional:
 Law of total probability:
 Probability chain rule:

 Is an event with probability mass

 p(X) is a probability mass function (PMF) satisfying
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Moments of RVs

Definition The expectation of a discrete RV    , denoted by          , is:
Summation over all

values in domain of X

Example Let    be the sum of two fair dice, then:

Theorem (Linearity of Expectations) For any finite collection of 
discrete RVs                          with finite expectations,

E.g. for two RVs X and YCorollary For any constant c



Moments of RVs

Law of Total Expectation Let    and    be discrete RVs with finite 
expectations, then:

Proof

( Definition of expectation )

( Probability chain rule )

( Linearity of expectations )

( Law of total probability )



Moments of RVs

Definition The conditional expectation of a discrete RV    , given    is:

Example Roll two standard six-sided dice and let    be the result of the 
first die and let    be the sum of both dice, then:

           

Conditional expectation follows properties of expectation (linearity, etc.)



Moments of RVs

Definition The variance of a RV     is defined as,

The standard deviation is                             .

(X-units)2

(X-units)

Lemma An equivalent form of variance is:

(Linearity of expectations)

(Algebra)

Proof Keep in mind that          is a constant, 
(Distributive property)



Moments of RVs

Definition The covariance of two RVs    and    is defined as,

Lemma For any two RVs    and    ,

e.g. variance is not a linear operator.

Proof
(Linearity of expectation)

(Distributive property)

(Linearity of expectation)

(Definition of Var / Cov)



Summary

Moments and Expected Value
 Expected value of a discrete RV: 

 Expectation is a linear operator

 Variance of a RV: 

 Variance is not a linear operator
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Continuous Probability

Experiment Spin continuous wheel and measure X displacement from 0

Question Assuming uniform probability, what is                ?



Continuous Probability

 Let                        be the probability of any single outcome 

 Let         be set of any k distinct points in         then,

 Since                                   by axioms of probability,             for any k 

 Therefore:          and 



Continuous Probability

We seem to have 
a paradox!

We have a well-defined event that x takes a value in set  

 Clearly this event can happen… i.e. it is possible

 But we have shown it has zero probability of occurring,  

 By the axioms of probability, the probability that it doesn’t happen is,

Solution Rethink how we interpret probability in continuous setting
 Define events as intervals instead of discrete values
 Assign probability to those intervals



Continuous Probability

Area of barHeight of bar

Height

Pr
ob

ab
ili

ty Height represents probability per
unit in the x-direction

We call this a probability density
(as opposed to probability mass)

What does height
represent?

Pr
ob

ab
ilit

y 
(M

as
s)



Continuous Probability

 Specific outcomes have zero probability

 But may have nonzero probability density

We denote the probability density function (PDF) as,

 An event E corresponds to an interval

 The probability of an interval is given by the area under the PDF,



Continuous Probability Measures

Definition The cumulative distribution function (CDF) of a real-valued 
continuous RV X is the function given by,

 Can easily measure probability of closed intervals,

 If X is absolutely continuous (i.e. differentiable) then,

Where        is the probability density function (PDF)

and

Fundamental Theorem
of Calculus

Different ways to represent 
probability of interval, CDF 

is just a convention.



Fundamental Laws of Probability (Continuous)
Most definitions for discrete RVs hold, replacing PMF with PDF/CDF…

Shorthand:Probability chain rule,

and

…and by replacing summation with integration…

Law of Total Probability for continuous distributions,

Expectation of a continuous random variable,
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What is Probability?

What does it mean that the probability of heads is ½ ?

Two schools of thought…

Neither is better/worse, but we can compare interpretations…

Frequentist Perspective
Proportion of successes (heads) in repeated 
trials (coin tosses)

Bayesian Perspective
Belief of outcomes based on assumptions 
about nature and the physics of coin flips



Frequentist & Bayesian Modeling

We will use the following notation throughout:

- Unknown (e.g. coin bias) - Data

Frequentist
(Conditional Model)

• is a non-random unknown 
parameter

• is the sampling / data 
generating distribution

Bayesian
(Generative Model)

• is a random variable (latent)
• Requires specifying          the 

prior belief

Prior Belief Likelihood



Bayes’ Rule

likelihood function 
for the parametersprior probability

marginal likelihoodposterior probability
or: evidence

or: partition function
or: normalizer

Posterior represents all uncertainty after observing data…



Bayes’ Rule : Marginal Likelihood

Marginal likelihood integrates (marginalizes) over unknown    :

This integral often lacks a closed form and 
cannot be computed…

Often hard to calculate Often know
this (the model)

Marginal likelihood is
less problematic in

discrete models (not always)



Bayesian Inference Example

A recent home test states that you have high 
BP.  Should you start medication?

Getty Images
About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.



• Latent quantity of interest is hypertension:
• Measurement of hypertension:
• Prior:
• Likelihood:   

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

Getty Images



Suppose we get a positive measurement, then posterior is:

Bayesian Inference Example

About 29% of American adults have 
high blood pressure (BP). Home test 
has 30% false positive rate and no 

false negative error.

What conclusions can be drawn from this calculation?

Getty Images



Aside : Proportionality
Recall PMF / PDF must sum / integrate to 1,

PMF PDF

May only know distribution constant that does not depend on RV x,

Properly normalized distribution by dividing our normalization constant:

so



Aside : Proportionality

Example Let X be a Bernoulli RV (coinflip) with probabilities 
proportional to:

Greater than 1, but
It is an unnormalized

probability

Compute normalization constant,

Normalize probability distribution,

Sums to 1



Frequentist vs. Bayesian Inference

We have data                    and want to infer unknown parameter

Frequentist Inference
The data uniquely determines , e.g. by the likelihood:

Bayesian Inference
The data updates our belief about   , which is random:

How well it explains the data

Our belief changes with more data

Not a distribution on parameter



Minimum Mean Squared Error (MMSE)

Posterior mean minimizes squared error,

• Minimizes error conditioned on observed data

• MMSE is an unbiased estimator

• MMSE is asymptotically unbiased and asymptotically normal,



Bayes Estimators

Minimizes expected loss function,

MMSE minimizes squared-error loss

Minimum absolute error (MAE) is posterior median,

Note: Same answer for linear function:

Expected loss referred to as Bayes risk.



Maximum a Posteriori (MAP)

Very common to produce maximum probability estimates,

MAP is the mode ( highest probability outcome ) of the posterior

Mode



Maximum a Posteriori (MAP)

Degenerate loss function

Also, not a Bayes estimator (unless discrete),

MAP (mode) may not be representative of typical outcomes

MAP

Typical

Posterior PDF

Despite its issues, MAP is frequently used 
in “Bayesian” inference and estimation



Example: Beta-Bernoulli MAP

Let                                           and                         then posterior is,  

Beta Posterior PDF

Highest probability (mode) of Beta given by,

NH

Beta distribution is not always convex!
• MAP is any value for
• Two modes (bimodal) for  

Take derivative,
set to zero, solve.



Maximum a Posteriori (MAP)

Equivalent to maximizing joint probability,
Constant

For iid solve in log-domain (like maximum likelihood est.),

Log-Likelihood
(how well it fits data)

Log-Prior
(how well it

agrees with prior)

Intuition MAP is like MLE but with a “penalty” term (log-prior)



Summary

• Bayesian statistics interprets probability differently than classical stats
• Frequentist: Probability  Long run odds in repeated trials
• Bayesian: Probability  Belief of outcome that captures all uncertainty

• Bayesian models treat unknown parameter as random, with a prior

• Bayesian inference via the posterior distribution using Bayes’ rule

• Bayesian estimators minimize expected risk (e.g. MMSE)

• Maximum a posteriori (MAP) estimate maximizes posterior probability
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