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Motivation

@ Bandits

» Good general framework to study learner's decision making strategies
under uncertainty
» A branch of Reinforcement Learning (RL)

* In Bandits, context in each round is independent from previous rounds
» Practical applications: recommendation systems
@ Thompson Sampling for Bandits
» Related to Bayesian inference and posterior sampling
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Contextual Bandits Setting

A game consists of 71" rounds, T is really large or infinity
@ At each round ¢, the system randomly assigns K items, each item has
observable context/features z; j, € R4

> 1} is an observable random variable

Learner chooses an item k£ and observes a stochastic reward

Yt ~ p(y‘mt,lﬁ 9*)

» p(.) is the underlying probabilistic model with a fixed parameter 6*
> 1, is a observable random variable
@ Learner's objective: maximizing the final cumulative rewards or
minimize the cumulative regrets

T
Rewardr = Z yt]
t

T

Regret = ZE[yt|xt,k*a9*] - E[yt‘xt,l%’e*]
t

max

min
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An Approach to Solve Contextual Bandits
@ While playing, learner collects all previous observations
Dy ={a1, 21,91, -, Gt—1, T4 1,Yt—1}

@ Based on D;_1, learner tries to approximate 0, ~ 0*

@ Then, based on ét, learner select the potentially optimal item

]; = argmin E[y‘xt,k7 ét]
k

@ Intuition: As learner collects more observations, it maybe makes
better estimations of 0, selects better item, and gets better rewards
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Exploration versus Exploitation 0,

o MLE of 6,

0, = argmax p(Dy_1]0)
0

@ However, using MLE is greedy in exploitation, and potentially stuck
with suboptimal items
» Learner would exploit a few items that have features fit 0,
> In turn, ét is updated to the rewards of these few items
» Repeat this process forever
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-

Exploration versus Exploitation

— action 1
—— action 2
2 | — action 3

probability density

@ Simplified case for intuition:
» Item or action k maps to 0, its features is simplified to one hot
» Reward distribution for item k is simplified to posterior distribution
p(0k|Di-1) )

» Exploiting the item that have maximal MLE 6, is not good
* At this round, observed reward only minimally affects posterior of 01
* Thus, learner chooses the item forever and ignores other potentially

better items
source: Russo et al., 2020
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e-Greedy Strategy

o Strategy
» With probability 1 — ¢, exploit optimal item according to MLE 0.
Otherwise, select other items uniformly

@ Note: learner will explore forever even after certain about optimal
item.

7/18



Upper Confidence Bound (UCB) Strategy

@ Strategy: optimistism in the face of uncertainty
> Learner selects the potentially optimal item

k= argminmngE[y|xt7k,9] st |0 — 0|, < R(2)
k

» The region ||0 — ;]a;, < h(t) is a confidence ellipsoid around the
estimated 0
> Learner optimistically select the combination of the item and 6 on the
confidence bound that has maximal reward expectation
> As round passes, the ellipsoid will shrink smaller, learner explores lesser
and eventually stops
@ Notes:

» Theoretically proven to have sublinear regret bounds and strong
empirical performance (Auer, 2003; Filippi et al., 2010; Faury et al.,
2020; Jun et al., 2021; Faury et al., 2022)

* Regret bound O(dvVT + )
> Largest number of research in bandits
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Upper Confidence Bound (UCB) Strategy

confidence ellipsoid

3

0:007/0:12

source: from Prof. Kwang-Sung Jun

Do
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Thompson Sampling

@ Strategy: Bayesian inference and posterior sampling
» Learner approximates posterior p(6|D;_1) and samples 6, from it

p(0|Ds—1) o< p(0)p(Dy-110)

» As round passes, the variance of the posterior will shrink, learner
explores lesser and eventually stops

o Notes
» Empirically perform better than UCB (Chapelle and Li, 2011; Li et al.,
2010; Dumitrascu et al., 2018)
» Theoretically proven to have similar regret bounds as UCB (Agrawal
and Goyal, 2013; Russo and Van Roy, 2016; Abeille and Lazaric, 2017;
Dong et al., 2019)
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Probabilistic Models in Contextual Bandits

e Mixture of Gaussians (Urteaga and Wiggins, 2021)

p(ylz, wi, 04, m;) = Z WiN(y\wTwu 01'2)
%

o Generalized linear models (GLM) (Filippi et al., 2010)

wT'LU — mT
|:y¢( ) Jf(w( w)) +C(y,0’2)

p(yl®, w,0) = exp
where () is a link function

» Linear regression, Gaussian reward, identity link function (Agrawal and
Goyal, 2013; Abeille and Lazaric, 2017)

plylz,w,0) = N(ylz w,0)
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Contextual Logistic Bandits

o Logistic regression, Bernoulli reward, sigmoid link function (Dong
et al., 2019)

pyilai, w) = Ber(yi|sigm(z] w))
t—1

p(Diaw) =[]

i

(e®i w)vi

1+4emiw

@ More challenging compared to linear regression

» Nonlinearity, discrete rewards
» No closed-form MLE, need to use numerical optimization methods
» Challenging to approximate posterior and to do posterior sampling
* Laplace approximation (Chapelle and Li, 2011)
* Polya-Gamma Gibbs sampling (Dumitrascu et al., 2018; Polson et al.,
2013)
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Recent Work: Polya-Gamma Thompson Sampling
(PG-TS) (Dumitrascu et al., 2018)

@ Intuition

» Reframe the discrete rewards as functions of latent variables with PG
distributions over a continous space

» With the PG latent variable, the logistic likelihood becomes mixture of
Gaussians with PG mixing distributions
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Recent Work: Polya-Gamma Thompson Sampling (PG-TS)

@ PG augmentation scheme
(e”) —b /Oo —w?
— 9—bprt wip? /2 d
L e ; e p(w)dw

where k =a —b/2, w PG(b,0)

@ The logistic likelihood becomes mixture of Gaussians with PG mixing
distributions.

-
_ (emi w)yi Kix] w > —w;(z] w)?/2
Li(w|wi, z;, ;) = m o< eMi®i ; e i p(w;)dw;
t—1

p(wlw;, Di—1) = p(w) [ | Li(wlws, i, vi)
i
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Recent Work: Polya-Gamma Thompson Sampling (PG-TS)

@ Thus, w can be draw from a Gaussian distribution, parameterized by
PG augmentation w;

(wifw) ~ PG(1, 2 )
(w|wi7Dt71) ~ N(muh Vw)

where V, = (X TQX + Vo_l)*l, my, = Vo (X Tk + Vo_lmo)
o Benefits
» PG distribution can be easily sampled with high acceptance rate
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Recent Work: Polya-Gamma Thompson Sampling (PG-TS)

Algorithm 3 PG-TS: Pélya-Gamma augmented Thompson Sampling

Input: b, B, M, D =0, 8, ~ MV N(b,B)
fort=1,2,...do

Receive contexts x; , € R4

R

for m = 1to M do

fori=1tot —1do
wilo" Y ~ PG(1,x], 87" ")

Q1 = diag(wi,wa, ... wi—1)

K1 = [m — L i1 — %]T
V, — (X[ 91X, +BH!
m, — Vi (XTki 1 +B~'b)
6" |r,_1,w ~ MVN(m,, V)
0, — o)
Select arm ay <— argmazapi(x{ ,0¢)
Observe reward r; € {0, 1}
D =DU{X¢q,, a1, 7t}
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Extending the Polya-Gamma Thompson Sampling

@ Extending the posterior sampling
» Applying Hamiltonian MC
» Applying Stein’s Variational Inference

o Extending PG-TS from Bernoulli to Categorical rewards
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Coding and Evaluation

e Coding

» https://github.com/iosband/ts_tutorial (Russo et al., 2020)

» https://github.com/iurteaga/bandits (Urteaga and Wiggins,
2021)

@ Evaluation

» Measure the quality of samples generated from posterior samplers?

» Empirical performance on reward and regret over time horizon

» Theoretical analysis on regret bounds (not presented in the PG-TS
paper)**
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