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Likelihood free inference

1.Bayesian inference p(x | θ) p(θ),likelihood p(x | θ) computationally 
infeasible in general

2.Approximate Bayesian Computation, Synthetic Likelihood
• require only the ability to generate data from the simulator

• simulate the model repeatedly, and use the simulated data to build estimates of the parameter posterior

• improves as the number of simulations increases, hard to compute

• especially if the simulator is expensive to run

• achieve a good trade-off accuracy and simulation cost.



Sequential Neural Likelihood (SNL)

•Train a Masked Autoregressive Flow on simulated data->p(x| θ)

• Serves as an accurate model of the likelihood function

•During training, a Markov Chain Monte Carlo sampler selects the next 
Sequential Neural Likelihood

• Fast Likelihood-free Inference with Autoregressive Flows batch of 
simulations to run using the most up-to-date estimate of the 
likelihood function



Simulator model

•Takes a vector of parameters θ => Output a data vector x     

• Sample p(x | θ) by running the program

•X and a prior distribution p(θ)

•Estimating p(θ | X) ∝ p(X | θ) p(θ).



Conditional neural density estimator

•Parametric model qφ (such as a neural network) controlled by a set of 
parameters φ
• Input: pair of datapoints (u, v) 

•Output :conditional probability density qφ(u | v)

•Training data: {Un, Vn}1:N

•Maximizing the total log probability

•qφ(u | v) will learn to approximate the conditional p(u | v).



Approximate posterior using Neural density 
estimator
•we obtain a set of samples {θn, Xn}1:N from the joint distribution p(θ, 

x), by θn ∼ p(θ) and Xn ∼ p(x | θn) for n = 1, . . . , N.

•we train qφ using {θn, Xn}1:N as training data in order to obtain a global 
approximation of p(θ | x).

• Large number of simulations required enough training data accurate 
posterior fit

•Expensive



Sequential Neural Posterior Estimation(SNPE)

•Reducing the number of simulations needed by conditional neural 
density estimation

•Generate parameter samples θn from a proposal p˜(θ) instead of the 
prior p(θ)

• Finds a good proposal p˜(θ) by training the estimator qφ over a 
number of rounds, whereby in each round p˜(θ) is taken to be the 
approximate posterior obtained in the round before

• For its neural density estimator, SNPE uses a Mixture Density 
Network, a feedforward neural network

• Input x output a Gaussian mixture over θ 



Problems of SNPE

•Parameter samples follow p˜(θ) instead of p(θ)

•Adjust posterior or proposed samples

• SNPE-A

• SNPE-B



SNPE-A

•Posterior qφ(θ | X0) is adjusted

•Dividing it by p˜(θ) and multiplying it by p(θ).

• SNPE-A restricts p˜(θ) to be Gaussian; since qφ(θ | X0) is a Gaussian 
mixture

•Problem: p˜(θ) happens to have a smaller variance than any of the 
components of qφ(θ | X0) , the division yields a Gaussian with 
negative variance, from which the algorithm is unable to recover and 
thus is forced to terminate prematurely



SNPE-B

•Adjust parameter samples θn

•assigning them weights wn = p(θn)/p˜(θn)

•During training, the weighted log likelihood                          is used 
instead of the total log likelihood

•Compared to SNPE-A, this method does not require the proposal p˜
(θ) to be Gaussian, and it does not suffer from negative variances

•However, the weights can have high variance, which may result in 
high-variance gradients and instability during training.



Sequential Neural Likelihood(SNL)

•Avoids bias by proposal

• Learn likelihood instead of posterior



Sequential Neural Likelihood(SNL)

• Samples {θn, Xn}1:N from the joint distribution p(θ, x), by θn ∼ p~(θ) 
and Xn ∼ p(x | θn) for n = 1, . . . , N.

•Define p˜(θ, x) = p(x | θ) ˜p(θ) to be the joint distribution of each pair 
(θn, Xn).

•Train a conditional neural density estimator qφ(x | θ),



Sequential Neural Likelihood(SNL)

•Max total log likelihood

•Approximately equivalent to maximizing

•Kullback–Leibler divergence

•Maximum when KL is zero :qφ(x | θ) = p(x | θ) for all θ such that p˜(θ) 
> 0

•Approximate the likelihood in the support of the proposal, regardless 
of the shape of the proposal.

•The way we propose parameters does not bias learning the likelihood 
asymptotically



Sequential Neural Likelihood(SNL)

• the proposal p˜(θ) controls where qφ(x | θ) will be most accurate.

• In a parameter region where p˜(θ) is high, there will be a high 
concentration of training data, hence p(x | θ) will be approximated 
better.

• Final goal is estimating the posterior p(θ | X0) ,use proposal that is 
high in regions of high posterior density



Sequential Neural Likelihood(SNL)
• Train qφ multiple rounds, similar 

with SNL, but  train on all 
simulations obtained up to each 
round

• More training data in each round, qφ
(x | θ) becomes a more accurate 
model=> pˆr(θ | X0) gets closer to 
the exact posterior



Sequential Neural Likelihood(SNL)

•Choice of the neural density estimator qφ(X| θ) :conditional Masked 
Autoregressive Flow

•Perform well in a variety of general-purpose density estimation tasks

•MAF: transformation of a standard Gaussian density N (0, I) through a 
series of K autoregressive functions f1, . . . , fK each of which depends 
on θ



Conditional Masked Autoregressive Flow

•Each fk is a bijection with a lower-triangular Jacobian matrix, and is 
implemented by a Masked Autoencoder for Distribution Estimation 
conditioned on θ
•By change of variables, the conditional density is given by 



Experiments

•Neural Likelihood (NL)
(SNL without simulation guiding)

• SNPE-A

• SNPE-B

• Synthetic Likelihood (SL)

• Sequential Monte Carlo ABC (SMC-ABC)



Results

• toy model with complex posterior(fast)

• Lotka–Volterra model from ecology(slow)



A toy model with complex posterior

1.θ is 5-dimensional

2.x is a set of four 2-dimensional points (or an 
8-dimensional vector) sampled from a Gaussian 

3.mean mθ and covariance matrix Sθ are functions of θ:



A toy model with 
complex 
posterior
• Y:Maximum Mean 

Discrepancy between the 
approximate posterior of 
each method and the true 
posterior

• X:Total number of 
simulations used

• Left corner best trade-off 
between accuracy and 
simulation cost



Median distance between simulated and observed data 
for each round

• this plot we can assess convergence, and determine 
the minimum number of rounds to run for

• SNL has lower median distance compared to SNPE-B

• evidence that SNPE-B has not estimated the 
posterior accurately enough (as also shown in the 
left plot).



Lotka–Volterra population model

•Markov jump process that models the interaction of a population of 
predators with a population of prey

• Four parameters θ, which control the rate of (a) predator births, (b) 
predator deaths, (c) prey births, and (d) predator-prey interactions



Lotka–Volterra 
population 
model

• SNL and SNPE-A perform the best

• SNPE-B is less accurate



Lotka–Volterra population model

• SNPE-A and SNL have a lower median distance 
• SNPE-B has not estimated the posterior accurately enough



Discussion

•Performance and robustness of SNL

• Scaling to high-dimensional data
A potential strategy for scaling SNL up to high dimensions is exploiting the structure of the data

• Learning the likelihood vs the posterior
learning the likelihood can often be easier than learning the posterior, and it does not depend on the choice of 
proposal

a model of the likelihood can be reused with different priors, and is in itself an object of interest that can be 
used for identifiability analysis [40] or hypothesis testing


