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Posterior Approximation Problem

Generative process
▶ Observable variable (data) x is generated by some random process

involving latent variable z
⋆ step 1: z ∼ pθ(z)
⋆ step 2: x ∼ pθ(x|z)

▶ Latent variables z and generative parameters (or model) θ are unknown
▶ Notes: The generative parameters of prior pθ(z) , the likelihood

pθ(x|z), and posterior pθ(z|x) are different from one another, but here
we group them into generative parameters θ
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Posterior Approximation Problem

Posterior approximation: we want to estimate posterior pθ(z|x)

pθ(z|x) =
pθ(x|z)pθ(z)

pθ(x)

Problems:
▶ pθ(x) =

∫
pθ(z)pθ(x|z)dz can be intractable

▶ pθ(z|x) can be intractable
▶ These intractabilities typically happen when complex likelihood

functions pθ(x|z) neural networks are used
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Variational Approximation

Approach: find a variational approximation qϕ(z|x) close to
intractable true posterior pθ(z|x)

▶ qϕ(z|x) is conditional, instead of unconditional qϕ(z), like in previous
discussed papers

⋆ optimization techniques in this paper can be used for unconditional
qϕ(z) as well

▶ qϕ(z|x) belongs to a family of tractable distributions
▶ qϕ(z|x) is not required to be factorial, like in mean-field VI
▶ Notes: we will call ϕ variational parameters in contrast to generative

parameters θ
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Variational Approximation

Formally, we set a family of distributions qϕ(z|x), and solve the
optimization problem

argmin
ϕ,θ

KL(qϕ(z|x) ∥ pθ(z|x)) = Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z|x)

]
▶ Notes: generative parameters θ are assumed to be unknown so we

want to solve for them as well

Problems
▶ Since pθ(z|x) is intractable, KL(qϕ(z|x) ∥ pθ(z|x)) is also intractable
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Evidence (or Variational) Lower Bound (ELBO)

ELBO

KL(qϕ(z|x) ∥ pθ(z|x))

= Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z|x)

]
= Eqϕ(z|x)

[
log

qϕ(z|x)pθ(x)
pθ(z, x)

]
= Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z, x)

]
+ Eqϕ(z|x) [log pθ(x)]

= −Eqϕ(z|x) [log pθ(z, x)− log qϕ(z|x)]︸ ︷︷ ︸
ELBO=L(ϕ,θ;x)

+ log pθ(x)︸ ︷︷ ︸
log likelihood

▶ maximizing L(ϕ, θ;x) is equivalent to minimizing
KL(qϕ(z|x) ∥ pθ(z|x))

▶ simultaneously, maximizing the lower bound of log pθ(x) ≥ L(ϕ, θ;x)
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Connection between L(ϕ, θ;x) and Auto-encoder

Recall basic Auto-encoder model
▶ It consists of two parts gϕ and fθ

⋆ gϕ learns to encode and compress data x into latent z and
⋆ fθ learns to decode and reconstruct latent z back x′

▶ Learning objective: minimizing the reconstruction loss/error

LAE(ϕ, θ;x) = [x′ − fθ(gϕ(x))]
2
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Connection between L(ϕ, θ;x) and Auto-encoder

Rewritting L(ϕ, θ;x)

L(ϕ, θ;x) = Eqϕ(z|x) [log pθ(z, x)− log qϕ(z|x)]
= Eqϕ(z|x) [log pθ(x|z) + logpθ(z)− log qϕ(z|x)]

= Eqϕ(z|x) [log pθ(x|z)]− Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]
= Eqϕ(z|x) [log pθ(x|z)]− Eqϕ(z|x)

[
log

qϕ(z|x)
pθ(z)

]
= Eqϕ(z|x) [log pθ(x|z)]︸ ︷︷ ︸

expected reconstruction
log likelihood

−KL(qϕ(z|z), pθ(z))︸ ︷︷ ︸
regularizer

▶ first term: learning objective to maximize the expected reconstruction
log likelihood

▶ second term: regularizer that makes qϕ(z|x) close to prior pθ(z)
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Connection between L(ϕ, θ;x) and Auto-encoder

Variational Auto-encoder model, the intuition
▶ It also consists of two parts: variational encoder qϕ(z|x) and generative

decoder pθ(x|z)
⋆ qϕ(z|x) learns to encode or compress data x into latent z
⋆ pθ(x|z) learns to decode or reconstruct latent z back to x′

⋆ Notes: z ∼ qϕ(z|x) is actually a random variable, in contrast to
determistic z in basic Auto-encoder model

▶ Learning objective: maximizing the expected reconstruction log
likelihood with a regularizer that makes encoder qϕ(z|x) close to prior
pθ(z)

LVAE(ϕ, θ;x) = Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|z), pθ(z))
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Overview of Training Scheme in VAE

source: Kingma et al., 2019
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Optimization of the L(ϕ, θ;x)
Optimization problem

argmin
ϕ,θ

L(ϕ, θ;x) = Eqϕ(z|x) [log pθ(z, x)− log qϕ(z|x)]

General approach
▶ Compute the gradient L(ϕ, θ;x) w.r.t. variational parameters ϕ and

generative parameters θ
▶ Use backpropagation and stochastic gradient descent algorithm for

training large networks and large dataset
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Optimization of the L(ϕ, θ;x)
The naive Monte Carlo gradient estimator

∇ϕEqϕ(z|x)[f(z)] = Eqϕ(z|x)[f(z)∇qϕ(z|x) log qϕ(z|x)]

≃ 1

L

L∑
l=1

f(zl)∇qϕ(zl|x) log qϕ(z
l|x)

where zl ∼ qϕ(z|x)

▶ However, this gradient estimator exhibits very high variance
(Blei et al., 2012)

▶ We donot use backpropagation in this case.
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The reparameterization trick

▷ Sampling z ∼ qϕ(z|x) is a stochastic process, we cannot
backpropagate gradient through z

▷ Reparameterize the r.v. z using a differentiable transformation
gϕ(ϵ, x) of an (auxiliary) noise variable ϵ

z = gϕ(ϵ, x) where ϵ ∼ p(ϵ)

source: Kingma et al., 2019
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The reparameterization trick

An example, univariate Gaussian case
▶ Let z ∼ p(z|x) = N(µ, σ2)
▶ Reparameterize z = µ+ σϵ, where ϵ ∼ N(0, 1)

source: Kingma et al., 2019
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The reparameterization trick

Three basic approaches: how to choose such transformation gϕ(.) and
auxiliary distribution ϵ ∼ p(ϵ)
1. Tractable inverse CDF?

⋆ Let ϵ ∼ U(0, 1) and gϕ(ϵ, x) be the inverse CDF of qϕ(z|x)
⋆ Examples: Exponential, Cauchy, Logistic, Gumbel, etc.

2. “location-scale” family of distributions
⋆ Let ϵ ∼ N(0, 1) and gϕ(.) = location + scale · ϵ
⋆ Examples: Gaussian, Laplace, Elliptical, etc.

3. Composition
⋆ It is often possible to express random variables as different

transformation of auxiliary variables
⋆ Examples: Log-Normal (exponentiation of normally distributed

variable), Gamma (a sum over exponentially distributed variables), etc.
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Recap: VAE with reparameterization trick, univariate
Gaussian case

source: Lilianweng’s blog post
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The reparameterization trick

The reparameterization is useful: the Monte Carlo estimate of the
expectation Eqϕ(z|x)[f(z)] is now differentiable w.r.t. ϕ.

▶ We donot need the naive Monte Carlo gradient estimator

∇ϕEqϕ(z|x)[f(z)] ≃
1

L

L∑
l=1

f(zl)∇qϕ(zl|x) log qϕ(z
l|x)

where zl ∼ qϕ(z|x)

▶ Instead, more efficiently, we sample ϵ to estimate the expectation
Eqϕ(z|x)[f(z)] and apply backpropagation to learn parameters.

Eqϕ(z|x)[f(z)] ≃
1

L

L∑
l=1

f(gϕ(x, ϵ
l)) where ϵ ∼ p(ϵ)

▶ In practice, we may only need to sample once L = 1
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The reparameterization trick

Proof: we can estimate the expectation Eqϕ(z|x)[f(z)] with Monte
Carlo samples

▶ Given the determistic mapping z = gϕ(ϵ, x) we know that

qϕ(z|x)
∏
i

dzi = p(ϵ)
∏
i

dϵi

▶ Therefore,

Eqϕ(z|x)[f(z)] =

∫
qϕ(z|x)f(z)dz

=

∫
p(ϵ)f(z)dϵ

=

∫
p(ϵ)f(gϕ(ϵ, x))dϵ

= Ep(ϵ)[f(gϕ(ϵ, x))]

≃ 1

L

L∑
l=1

f(gϕ(x, ϵ
l)) where ϵ ∼ p(ϵ)
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The Stochastic Gradient Variational Bayes (SGVB)
Estimator

Optimization problem A

argmax
ϕ,θ

L(ϕ, θ;x) = Eqϕ(z|x) [log pθ(z, x)− log qϕ(z|x)]

Monte Carlo estimate of expectation

Eqϕ(z|x)[f(z)] ≃
1

L

L∑
l=1

f(gϕ(x, ϵ
l)) where ϵ ∼ p(ϵ)

SGVB estimator A: L(ϕ, θ;x) ≃ L̃A(ϕ, θ;x)

L̃A(ϕ, θ;x) =
1

L

L∑
l=1

[
log pθ(z

l, x)− log qϕ(z
l|x)

]
where zl = gϕ(ϵ

l, x) and ϵl ∼ p(ϵ)
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The Stochastic Gradient Variational Bayes (SGVB)
Estimator

Optimization problem B

argmax
ϕ,θ

L(ϕ, θ;x) = Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|z), pθ(z))

SGVB estimator B: L(ϕ, θ;x) ≃ L̃B(ϕ, θ;x)

L̃B(ϕ, θ;x) =
1

L

L∑
l=1

[
log qϕ(x|zl)

]
−KL(qϕ(z|z), pθ(z))

where zl = gϕ(ϵ
l, x) and ϵl ∼ p(ϵ)

▶ We use this version if KL(qϕ(z|z), pθ(z)) can be computed analytically
▶ We only have to estimate Eqϕ(z|x) [log pθ(x|z)] in this case

21 / 30



The SGVB Estimator for full dataset

SGVB estimator for the full dataset X with N datapoints, based on
dataset

L(ϕ, θ;X) ≃ L̃M (ϕ, θ;XM ) =
N

M

M∑
i=1

L(ϕ, θ, xi)

where XM = {xi}Mi=1 is a randomly drawn minibatch of M
datapoints from the full dataset X.
▶ In the experiments, number of samples L = 1 if M is large enough,

e.g., M = 100
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The Auto-Encoding VB (AEVB) Algorithm
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Experimental Results

▷ Using MNIST and Frey Face dataset, comparison between AEVB and
Wake-sleep in term of optimizing the lower bound

▷ AEVB converges faster and reaches better lower bound in all
experiments

▷ More latent variables does not result in more overfitting, which is
explained by the regularizing effect of the learning objective
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Experimental Results

▷ Using MNIST, comparison between AEVB, Wake-sleep, and Monte
Carlo EM in term of estimated marginal log-likelihood, for very
low-dimensional latent space

▷ AEVB converges faster and reaches better marginal log-likelihood,
even better with larger dataset

▷ Monte Carlo EM takes long time to learn on larger dataset
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VAE as Generative Model

▷ Since the prior of the latent space is Gaussian, linearly spaced
coordinates on the unit square were transformed through the inverse
CDF of the Gaussian to produce values of the latent variables z.

▷ For each z, we plot the corresponding x using pθ(x|z)
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Summary

VAE consists of two parts: variational encoder qϕ(z|x) and generative
decoder pθ(x|z)

▶ qϕ(z|x) learns to encode or compress data x into latent z
▶ pθ(x|z) learns to decode or reconstruct latent z back to x′

VAE uses evidence lower bound (ELBO) as a learning objective

L(ϕ, θ;x) = Eqϕ(z|x) [log pθ(z, x)− log qϕ(z|x)] (A)

= Eqϕ(z|x) [log pθ(x|z)]−KL(qϕ(z|z), pθ(z)) (B)

▶ Maximizing ELBO is equivalent to minimizing the
KL(qϕ(z|x) ∥ pθ(z|x)), and maximizing lower bound of log pθ(x)

▶ We use form ELBO form B if we can compute KL(qϕ(z|z), pθ(z))
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Summary

Reparameterize trick
▶ We reparameterize the r.v. z using a differentiable transformation

gϕ(ϵ, x) of an (auxiliary) noise variable ϵ

z = gϕ(ϵ, x) where ϵ ∼ p(ϵ)

▶ This allows us to construct a differentiable estimator of expectation

Eqϕ(z|x)[f(z)] ≃
1

L

L∑
l=1

f(gϕ(x, ϵ
l)) where ϵ ∼ p(ϵ)

SGVB estimator A

L̃A(ϕ, θ;x) =
1

L

L∑
l=1

[
log pθ(z

l, x)− log qϕ(z
l|x)

]
where zl = gϕ(ϵ

l, x) and ϵl ∼ p(ϵ)
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Summary

AEVB Algorithm
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Different Types of Models Similar to VAE

source: Lilianweng’s blog post
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https://lilianweng.github.io/posts/2018-08-12-vae/

