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Posterior Approximation Problem
e

@ Generative process
» Observable variable (data) x is generated by some random process
involving latent variable z
* step 10 z ~ po(2)
* step 2: x ~ po(z|z)
» Latent variables z and generative parameters (or model) ¢ are unknown
» Notes: The generative parameters of prior pg(z) , the likelihood
po(x|z), and posterior py(z|z) are different from one another, but here
we group them into generative parameters ¢
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Posterior Approximation Problem
oo 7 Jat—p

@ Posterior approximation: we want to estimate posterior py(z|x)

po(x|2)po(2)
po()

(z|z) =

° ProblemS'
» po(z) = [ po(2)pe(x|z)dz can be intractable
> po(z |x) can be mtractable
» These intractabilities typically happen when complex likelihood
functions pg(z|z) neural networks are used
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Variational Approximation
oo 7 Jat—p

e Approach: find a variational approximation g4(z|z) close to
intractable true posterior py(z|x)

> ¢,(z|x) is conditional, instead of unconditional ¢4(z), like in previous

discussed papers
* optimization techniques in this paper can be used for unconditional
qo(z) as well

> gy(z|x) belongs to a family of tractable distributions

> gy(z|x) is not required to be factorial, like in mean-field VI

> Notes: we will call ¢ variational parameters in contrast to generative
parameters 6
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Variational Approximation

e Formally, we set a family of distributions g4 (2|x), and solve the
optimization problem

. Q¢(Z‘x):|
argmin I(L zZ|\x pol\zZ|T = E 2l 10
%’0 (Q¢( ’ ) H 9( ‘ )) q¢(2|x) |: gp9(2’| )

> Notes: generative parameters 6 are assumed to be unknown so we
want to solve for them as well

@ Problems
» Since pg(z|z) is intractable, KL(gy(2|z) || po(z|x)) is also intractable
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Evidence (or Variational) Lower Bound (ELBO)

e ELBO

KL(gg(2[x) || po(2]))

qg(2|)
=E 1
Q¢(Z|$) _O pa(z\x)
_ 4 (2|7)po(x)
= Pt [5Gy
4y (2|7)
- Eq¢(2|x) po(z, x):| + IE5(1¢,(z|x) [10gp9(96)]
= —Ey, (2o log po(2, ) — log gy (2]x)] + logpg(z)

~——
ELBO=L(¢,0;z) log likelihood

» maximizing L£(¢,0; x) is equivalent to minimizing
KL(gs(z[) || po(z]z))

» simultaneously, maximizing the lower bound of logpg(x) > L(¢,0;x)
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Connection between L(¢, 0; x) and Auto-encoder

Reconstructed

Input <---oooooooooooooe Ideally they are identical. ------------------ > input

x =~ x

Bottleneck!
Encoder Decoder ,
x \g/qs/ %

X

An compressed low dimensional
representation of the input.

@ Recall basic Auto-encoder model
> It consists of two parts g4 and fy

* g learns to encode and compress data x into latent z and
* fp learns to decode and reconstruct latent z back z’

» Learning objective: minimizing the reconstruction loss/error
Lap(@.6:2) = [¢' — folgo(2)))”
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Connection between L(¢, 0; x) and Auto-encoder
e Rewritting L(¢, 6; x)

L($,0;2) = Eq, (212 log po(z, 2) — log gs(2|z)]
= Eq, (1) [log po(x[2) + logpe(2) — log g4 (2|2)]

%(Z\ﬂf)]

=Eg, (22 llo T 2z) |10

o (zle) log po(z|2)] — q¢()[gp9(z)

_ q(2|2)

= By e D08 0la]2)] ~ By 0 221

= Ey, (z|z) [log po(2[2)] — KL(gp(2]2), po(2))
expected reconstruction regularizer

log likelihood

» first term: learning objective to maximize the expected reconstruction
log likelihood
» second term: regularizer that makes g, (z|z) close to prior py(z)
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Connection between L(¢, 0; x) and Auto-encoder

Decoder

po(x|z)

@ Variational Auto-encoder model, the intuition
> It also consists of two parts: variational encoder g4(z|x) and generative
decoder py(x|z)
* q4(z|z) learns to encode or compress data x into latent z
* pg(x|z) learns to decode or reconstruct latent z back to z’
* Notes: z ~ go(z|z) is actually a random variable, in contrast to
determistic z in basic Auto-encoder model
> Learning objective: maximizing the expected reconstruction log
likelihood with a regularizer that makes encoder g4(z|z) close to prior

po(2)

Lyar(9,0;2) = Eq, (212) [log pe(z|2)] — KL(qg(2]2), pe(2))
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Datapoint

Overview of Training Scheme in VAE

Inference Model

a(z[x)

Generative Model

p(x,z)

Objective

ELBO = log p(x,z) - log q(z|x)

source: Kingma et al., 2019

s
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Optimization of the £(¢,0; x)
@ Optimization problem

ar%lglin L(¢,0;x) = Eqy (21 [log po(2, ) — log gy (2|7)]

o General approach

» Compute the gradient £(¢, ;) w.r.t. variational parameters ¢ and
generative parameters 6

» Use backpropagation and stochastic gradient descent algorithm for
training large networks and large dataset
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Optimization of the L(¢, 0; x)
@ The naive Monte Carlo gradient estimator
v(qud)(z\m) [f(Z)] = Eqd,(z\x) [f(z)vq¢(z|x) IOg Q¢(Z|x)]
L
1
> Zf(zl)qu)(zl‘x) log q¢(zl\$)
=1

where 2! ~ g4(z|2)

» However, this gradient estimator exhibits very high variance
(Blei et al., 2012)
» We donot use backpropagation in this case.

13/30



The reparameterization trick

Original form

f

~ ap(zfx)

Reparameterized form

Backprop

!

v,f g(p.x.c)

f
v/ T\o
Y, f x ~p(e)

: Deterministic node

. : Random node

—— : Evaluation of f

= : Differentiation of f

> Sampling z ~ g4(z|z) is a stochastic process, we cannot
backpropagate gradient through z

> Reparameterize the r.v. z using a differentiable transformation
9o (€, x) of an (auxiliary) noise variable €

z = gg(€,x) where €~ p(e)

source: Kingma et al., 2019

14/30



The reparameterization trick

Original form Reparameterized form
f B)cl\plopl f
~ ag(zx) Vyz = glpxe)
) X Vo f x% ~p(e)

: Deterministic node —— : Evaluation of f

. : Random node = : Differentiation of f

@ An example, univariate Gaussian case
> Let z ~ p(z|z) = N(u,0?)
» Reparameterize z = u + o€, where ¢ ~ N (0, 1)

source: Kingma et al., 2019
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The reparameterization trick

@ Three basic approaches: how to choose such transformation g4(.) and
auxiliary distribution € ~ p(e)

1. Tractable inverse CDF?
* Let e ~ U(0,1) and gy (€, z) be the inverse CDF of g4 (z|x)
* Examples: Exponential, Cauchy, Logistic, Gumbel, etc.

2. "location-scale” family of distributions
* Let e ~ N(0,1) and g4(.) = location + scale - €
* Examples: Gaussian, Laplace, Elliptical, etc.

3. Composition
* |t is often possible to express random variables as different

transformation of auxiliary variables
* Examples: Log-Normal (exponentiation of normally distributed
variable), Gamma (a sum over exponentially distributed variables), etc.
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Recap: VAE with reparameterization trick, univariate
Gaussian case

Reconstructed

Input «----oooooee e Ideally they are identical. ~ ----------------ooooon input

x~x
— Probabilistic Encoder —

g4(2[x)

Sampled
latent vector
Probabilistic
D xl
. Po(x|z)

_ An compressed low dimensional
z=pt+o0e representation of the input.

- e~ N(0,I) —

Std. dev

source: Lilianweng's blog post
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https://lilianweng.github.io/posts/2018-08-12-vae/

The reparameterization trick

@ The reparameterization is useful: the Monte Carlo estimate of the
expectation E, (.|,)[f(2)] is now differentiable w.r.t. ¢.

» We donot need the naive Monte Carlo gradient estimator

V¢Eq¢(z Z LZf q¢(zl|x logq¢ l|a:)
where 2! ~ g4(z|2)

> Instead, more efficiently, we sample € to estimate the expectation
Eq, (z12)[f(2)] and apply backpropagation to learn parameters.

L
Egy (1o [f Z (96(x,€))  where €~ p(e)

> In practice, we may only need to sample once L =1
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The reparameterization trick

o Proof: we can estimate the expectation E,, (.|,)[f(2)] with Monte

Carlo samples

» Given the determistic mapping z = g4 (€, ) we know that

qs(2|2) H dz; = p(e) H de;
» Therefore,

Eq, 1) [f(2)] = [ qg(2]2) f(2)dz

p(e)f(z)de

Il
— e —

P(€)f(gg(e, ))de
p(€) [f(g¢(65 Z‘))]

L
> flgsla,€))  where
=1

=

1

~

|

€ ~ p(e)
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The Stochastic Gradient Variational Bayes (SGVB)
Estimator

@ Optimization problem A

argfgaX£(¢’ 0; iL‘) = IEq(zg(z|z) [lngg(Z, 1:) — log Q¢(Z|I')]

@ Monte Carlo estimate of expectation

1 L
Eq¢(z\x) [f(Z)] Z Z f(gd)(m? 61)) where €~ p(ﬁ)
=1
o SGVB estimator A: L(¢,0;x) ~ LA(,6; x)

L
LZ logpo (=, 2) — log 4, (='|x)

[

LN, 05 )

where 2! = gy(e',z) and € ~ p(e)
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The Stochastic Gradient Variational Bayes (SGVB)
Estimator

@ Optimization problem B

arg(z)rr;ax L(p,0;x) = Eq,(z]2) [log pg(x|2)] — KL(g4(2|2), pe(2))

@ SGVB estimator B: L(¢, ;) ~ EB(qb,Q;w)

L

£2(6.0:0) = 73 [logag(al=)] — KLgo(2l2),po(2))

=1
where 2! = gg(el,z) and ¢ ~ p(e)

» We use this version if KL(g4(z|2),pg(2)) can be computed analytically
» We only have to estimate E,, ., [log pp(z]2)] in this case
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The SGVB Estimator for full dataset

@ SGVB estimator for the full dataset X with N datapoints, based on
dataset

~ N M
£(6,0;X) = LY(6,0: XM) = 2> " L£(6,6,2")

=1

where XM = {2}Mis 3 randomly drawn minibatch of M
datapoints from the full dataset X.

> In the experiments, number of samples L = 1 if M is large enough,
e.g., M =100
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The Auto-Encoding VB (AEVB) Algorithm

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section@can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM < Random minibatch of M datapoints (drawn from full dataset)
€ < Random samples from noise distribution p(€)
g+ Vo.oLM (8, ;XM €) (Gradients of minibatch estimator @b
0, ¢ < Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (6, ¢)
return 6, ¢
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Experimental Results

MNIST, N, =3 MNIST, N, =5 MNIST, N, =10 MNIST, N, =20 MNIST, N, =200
—100f . T - . T ™ 100 T ™ 100 - T T : -
-110} -110} 1-110
o —1200 4 -120} {-120
-130f - {-130} 1{-130
-140} /-’ {-140} {-140
-150 -150 -150 ‘
10°  10° 107 10° 10°  10° 107 10° 10°  10° 107 10° 10°
# Training samples evaluated
Frey Face, N, =2 Frey Face, N, =5 Frey Face, N, =10
1600 - . 1600 - - 1600 - - 1600
14001 - 1400 - 1400 - 1400
T Wake Sieep (tesD) 1200} {1200} —] 1200 11200
— Wake-Sleep (train) 1000 _{ 1000 1 1000 1000
- - AEVB (test) < soof / soof 1 800 1 soo}
— AEVB (train) 600 2 600f ¢ 600 600
400/ j 400/ 1 400 1 400
200 1 200 { 200 1 200

0 . . 0 . . 0 . . 0 . .
10°  10° 107 10° 10° 10° 100 10° 10° 10° 10’ 10° 10°  10° 10’ 10°

Using MNIST and Frey Face dataset, comparison between AEVB and
Wake-sleep in term of optimizing the lower bound
AEVB converges faster and reaches better lower bound in all
experiments
More latent variables does not result in more overfitting, which is
explained by the regularizing effect of the learning objective
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Experimental Results

~100 . Nf’“"”’

= 1000 N,,.; = 50000
T T T -125 - T — T T T

~110 —130} B

— Wake-Sleep (train)
- - Wake-Sleep (test)
— MCEM (train)

- = MCEM (test)

— AEVB (train)

- - AEVB (test)

-135
-120

-140

—145
—140

Marginal log-likelihood
L
I
o

-150

—-160 . . . . L -
0 10 20 30 40 50 60

# Training samples evaluated (millions)

> Using MNIST, comparison between AEVB, Wake-sleep, and Monte
Carlo EM in term of estimated marginal log-likelihood, for very
low-dimensional latent space

> AEVB converges faster and reaches better marginal log-likelihood,
even better with larger dataset

> Monte Carlo EM takes long time to learn on larger dataset
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VAE as Generative Model
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(b) Learned MNIST manifold

(a) Learned Frey Face manifold

> Since the prior of the latent space is Gaussian, linearly spaced

coordinates on the unit square were transformed through the inverse

CDF of the Gaussian to produce values of the latent variables z.

> For each z, we plot the corresponding = using py(x|2)
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Summary

@ VAE consists of two parts: variational encoder g4(z|x) and generative
decoder py(x|2)

» gy(z|x) learns to encode or compress data x into latent z
> pp(x|z) learns to decode or reconstruct latent z back to o’

o VAE uses evidence lower bound (ELBO) as a learning objective
L(),0;x) =By, (212) log pe(2z, ¥) —log gy (2|x)]  (A)
= IEq¢,(z|:1:) [lnge(.ﬂZ)] - KL(Q¢(Z‘Z)7PQ(Z)) (B)
» Maximizing ELBO is equivalent to minimizing the

KL(gy(2|2) || po(z|x)), and maximizing lower bound of log py(z)
» We use form ELBO form B if we can compute KL(g¢(2|2),ps(2))
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Summary

@ Reparameterize trick

> We reparameterize the r.v. z using a differentiable transformation
ge(€, ) of an (auxiliary) noise variable €

z=gg(e,z) where €~ p(e)
» This allows us to construct a differentiable estimator of expectation
L
Eq, (z12)[f Z (go(z,€))  where e~ p(e)
@ SGVB estimator A

L
<Z>,0 x) Z [logpg 2', ) logq¢(zl|x)

where 2! = g¢(el,$) and € ~ p(e)
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Summary

o AEVB Algorithm

Algorithm 1 Minibatch version of the Auto-Encoding VB (AEVB) algorithm. Either of the two
SGVB estimators in section@can be used. We use settings M = 100 and L = 1 in experiments.

0, ¢ < Initialize parameters
repeat
XM ¢ Random minibatch of M datapoints (drawn from full dataset)
€ < Random samples from noise distribution p(e)
g < Vo, LY (0, ¢; XM €) (Gradients of minibatch estimator (8))
6, ¢ < Update parameters using gradients g (e.g. SGD or Adagrad [DHS10])
until convergence of parameters (60, ¢)
return 0, ¢
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Different Types of Models Similar to VAE

GAN: Adversarial x
training

VAE: maximize
variational lower bound

Flow-based models: x
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

source: Lilianweng's blog post

Discriminator

D(x)

Flow

T f®

Generator

G(2)

Inverse

[+]

(@

— ]
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