Variational Inference A Review for Statisticians[1]

Eric Duong eduong@arizona.edu

University of Arizona, Tucson

September 14, 2022

Outline

Introduction

Evidence Lower Bound Parameter Learning

Variational Inference

Mean Field Coordinate Ascent Variational Inference (CAVI)

Example: Bayesian Mixture of Gaussians

Mean Field of Bayesian Mixture of Gaussians CAVI for Bayesian Mixture of Gaussians Results of CAVI for Bayesian Mixture of Gaussians

Introduction

Bayes' Rule

$$p(z \mid x, \theta) = \frac{p(x, z \mid \theta)}{p(x \mid \theta)}$$

- z is latent variables
- x is observed data
- ullet heta is model parameters

Goal

- We want to compute posterior $p(z \mid x, \theta)$ and parameters θ that are maximally likely given observations x.
- However, computing exact evidence $p(x \mid \theta)$ by integrating $p(x,z \mid \theta)$ is intractable.
- With variational inference, we can approximate evidence $p(x \mid \theta)$ and posterior $p(z \mid x, \theta)$.

Evidence Lower Bound (ELBO)

$$\begin{split} \log p(x \mid \theta) &= \log p(x \mid \theta) \int_{z} q(z) \\ &= \int_{z} q(z) \log p(x \mid \theta) \\ &= \mathbb{E}_{q} [\log p(x \mid \theta)] \\ &= \mathbb{E}_{q} \left[\log p(x \mid \theta) \frac{q(z)}{q(z)} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{p(x, z \mid \theta) q(z)}{p(z \mid x, \theta) q(z)} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{q(z)}{p(z \mid x, \theta)} + \log \frac{p(x, z \mid \theta)}{q(z)} \right] \\ &= \mathbb{E}_{q} \left[\log \frac{q(z)}{p(z \mid x, \theta)} \right] + \mathbb{E}_{q} \left[\log \frac{p(x, z \mid \theta)}{q(z)} \right] \\ \log p(x \mid \theta) &= \mathrm{KL}(q(z) || p(z \mid x, \theta)) + \mathcal{L}(q(z), \theta) \end{split}$$

Evidence Lower Bound (ELBO)

$$\log p(x \mid \theta) = \mathrm{KL}(q(z) \| p(z \mid x, \theta)) + \mathcal{L}(q(z), \theta)$$

- $\log p(x \mid \theta)$ is the bound we want to approximate.
- $KL(q(z)||p(z||x,\theta))$ is bound gap we want to minimize.
- $\mathcal{L}(q(z), \theta)$ is evidence lower bound (ELBO).

Maximizing $\mathcal{L}(q(z), \theta)$ gives us both $\log p(x \mid \theta)$ and $p(z \mid x, \theta)$

$$\log p(x \mid \theta) \ge \max_{q(z) \in \mathcal{Q}} \mathcal{L}(q(z), \theta)$$
$$p(z \mid x, \theta) \approx q^*(z) = \arg \max_{q(z) \in \mathcal{Q}} \mathcal{L}(q(z), \theta)$$

Parameter learning

Find θ that is maximizes the likelihood $p(x \mid \theta)$

$$\log p(x \mid \theta) = \frac{\text{KL}(q(z) || p(z \mid x, \theta))}{\theta^* = \arg \max_{\theta} \log p(x \mid \theta)}$$

Parameter learning

Find θ that is maximizes the likelihood $p(x \mid \theta)$

$$\log p(x \mid \theta) = \frac{\text{KL}(q(z) || p(z \mid x, \theta))}{\theta^* = \arg \max_{\theta} \log p(x \mid \theta)}$$

Expectation Maximization

• If we can compute $p(z\mid x,\theta)$, then set $q(z)=p(z\mid x,\theta)$ and then find θ that maximizes ELBO $\mathcal{L}(q(z),\theta)$

$$\theta^* = \underset{\theta}{\operatorname{arg\,max}} \mathcal{L}(q(z), \theta)$$

Parameter learning

Find θ that is maximizes the likelihood $p(x \mid \theta)$

$$\log p(x \mid \theta) = \frac{\text{KL}(q(z) || p(z \mid x, \theta))}{\theta^* = \arg \max_{\theta} \log p(x \mid \theta)}$$

Expectation Maximization

• If we can compute $p(z \mid x, \theta)$, then set $q(z) = p(z \mid x, \theta)$ and then find θ that maximizes ELBO $\mathcal{L}(q(z), \theta)$

$$\theta^* = \arg\max_{\theta} \mathcal{L}(q(z), \theta)$$

Variational Inference

• If we cannot compute $p(z \mid x, \theta)$, then we optimize q(z) to best approximate $p(z \mid x, \theta)$.

Variational Inference

Finding q(z) that approximates $p(z \mid x, \theta)$

$$q^*(z) = \underset{q(z) \in \mathcal{Q}}{\operatorname{arg \, min}} \operatorname{KL}(q(z) || p(z \mid x, \theta))$$

- This is called "variational" because we are optimizing over function q(z), not a scalar or vector.
- However, we cannot minimize the KL divergence because we cannot compute $p(z \mid x, \theta)$. Therefore, we optimize q(z) to maximize the ELBO $\mathcal{L}(q(z), \theta)$ instead.

$$q^*(z) = \underset{q(z) \in \mathcal{Q}}{\operatorname{arg max}} \mathcal{L}(q(z), \theta)$$

- This objective approximates both $\log p(x \mid \theta)$ and $p(z \mid x, \theta)$.
- In practice, we choose a family \mathcal{Q} (e.g., mean field) and then optimize the parameters of q(z) to maximize ELBO.

Mean Field

(Naive) Mean Field

Assume that each latent variable z_j is independent of other latent variables, $z_j \perp z_i, j \neq i$. We construct a probability factor $q_j(z_j)$ for each z_j

$$q(\mathbf{z}) = \prod_{j=1}^{M} q_j(z_j)$$

Structured Mean Field

We add dependencies between latent variables.

Mixture-Based Mean Field

We add more latent variables.

Let $\mathcal Q$ be a mean field variational family. Our goal is to optimize $q(\mathbf z)$ to maximize ELBO $\mathcal L(q(\mathbf z),\theta)$ (note that θ is parameters of model $p(\mathbf z,\mathbf x\mid\theta)$, not parameter of factors $q(\mathbf z)$).

$$q^*(\mathbf{z}) = \underset{q(\mathbf{z}) \in \mathcal{Q}}{\operatorname{arg max}} \mathcal{L}(q(\mathbf{z}), \theta)$$

Instead of jointly optimizing all $q(\mathbf{z})$, we optimize each factor $q_j(z_j)$ while keeping other factors $q_\ell(z_\ell)$, $\ell \neq j$, fixed.

$$q_j^*(z_j) = \operatorname*{arg\,max}_{q_j(z_j), j \neq \ell} \mathcal{L}(q(\mathbf{z}), \theta)$$

This can be solved by setting $\frac{\partial \mathcal{L}}{\partial q_j} = 0$ and solving for $q_j(z_j)$. We obtain an update rule for $q_j(z_j)$

$$q_j^*(z_j) \propto \exp\{\mathbb{E}_{-j}[\log p(z_j \mid \mathbf{z}_{-j}, \mathbf{x})]\}$$
$$\propto \exp\{\mathbb{E}_{-j}[\log p(z_j, \mathbf{z}_{-j}, \mathbf{x})]\}$$

Typically we write $q_j^*(z_j)$ in the exponential family form to derive the update rules for parameters of $q_j^*(z_j)$. The exponential family form of $p(z_j | \mathbf{z}_{-j}, \mathbf{x})$ is

$$p(z_j \mid \mathbf{z}_{-j}, \mathbf{x}) = h(z_j) \exp \left\{ \eta_j(\mathbf{z}_{-j}, \mathbf{x})^\top \phi(z_j) - A(\eta_j(\mathbf{z}_{-j}, \mathbf{x})) \right\}$$

The exponential family form of $q_i^*(z_j)$ is

$$q_j^*(z_j) \propto \exp\left\{\mathbb{E}_{-j}\left[\log p(z_j \mid \mathbf{z}_{-j}, \mathbf{x})\right]\right\}$$
$$\propto h(z_j) \exp\left\{\mathbb{E}_{-j}\left[\eta_j(\mathbf{z}_{-j}, \mathbf{x})\right]^\top \phi(z_j)\right\}$$

We see that the natural parameter of $q_{j}^{st}(z_{j})$ is

$$v_i = \mathbb{E}_{-i} \left[\eta_i(\mathbf{z}_{-i}, \mathbf{x}) \right]$$

```
Data: Model p(\mathbf{x}, \mathbf{z}) and data \mathbf{x}
Result: Variational density q(\mathbf{z}) = \prod_{i=1}^{m} q_i(z_i)
Initialize factors q_i(z_i)
while ELBO has not converged do
     \begin{array}{l} \text{for } j = 1, \dots, m \text{ do} \\ & /* \text{ Compute parameters of } q_j(z_j) \text{ here} \\ & \text{Set } q_j(z_j) \propto \exp\{\mathbb{E}_{-j}[\log p(z_j \mid \mathbf{z}_{-j}, \mathbf{x})]\} \end{array}
       Compute ELBO \mathcal{L}(q(\mathbf{z}), \theta)
end
return q(\mathbf{z})
                                  Algorithm 1: CAVI algorithm
```

Note that \mathbb{E}_{-j} is an expectation over joint factors excluding target variable z_j , i.e., $\mathbb{E}[\mathbb{E}[...\mathbb{E}[\prod_{\ell \neq j} q_\ell(z_\ell)]...]]$, but will collapse into individual expectation of only each factor.

Conditionally Conjugate Models

There is a special case of exponential family models called conditionally conjugate models that has a global latent variable vector β and local latent variables \mathbf{z} whose i-th element only governs the i-th data. The joint density is

$$p(\beta, \mathbf{z}, \mathbf{x}) = p(\beta) \prod_{i=1}^{n} p(z_i, x_i \mid \beta)$$

Goal

Given mean field factors $q(\beta; \lambda)$ and $q_j(z_j; \varphi_j)$, compute λ and φ that maximizes ELBO $\mathcal{L}(q(\beta, \mathbf{z}; \lambda, \varphi))$

$$\lambda^*, \varphi^* = \underset{\lambda, \varphi}{\operatorname{arg max}} \mathcal{L}(q(\beta, \mathbf{z}; \lambda, \varphi))$$

Derive exponential family form of $p(\beta \mid \mathbf{z}, \mathbf{x})$

The exponential family form of the likelihood $p(z_i, x_i \mid \beta)$ is

$$p(z_i, x_i \mid \beta, \theta) = h(z_i, x_i) \exp \left\{ \beta^{\top} \phi(z_i, x_i) - A(\beta) \right\}$$

and exponential family form of the conjugate prior $p(\beta)$ is

$$p(\beta) = h(\beta) \exp \left\{ \alpha^{\top} \begin{bmatrix} \beta \\ -A(\beta) \end{bmatrix} - B(\beta) \right\}$$

Then the posterior $p(\beta \mid \mathbf{z}, \mathbf{x})$ has the exponential family form

$$p(\beta \mid \mathbf{z}, \mathbf{x}) \propto \exp \left\{ \begin{bmatrix} \alpha_1 + \sum_{i=1}^n \phi(z_i, x_i) \\ \alpha_2 + n \end{bmatrix}^\top \begin{bmatrix} \beta \\ -A(\beta) \end{bmatrix} \right\}$$

Update parameter of mean field factor $q^*(\beta; \lambda)$

The updated natural parameter for $p(\beta \mid \mathbf{z}, \mathbf{x})$ is

$$\hat{\alpha} = \alpha + \begin{bmatrix} \sum_{i=1}^{n} \phi(z_i, x_i) \\ n \end{bmatrix}$$

We can update CAVI parameter λ of factor $q^*(\beta; \lambda)$ as

$$\lambda = \mathbb{E}_{q(\mathbf{z};\boldsymbol{\varphi})} \left[\hat{\alpha} \right] = \alpha + \begin{bmatrix} \sum_{i=1}^{n} \mathbb{E}_{q(z_i;\varphi_i)} \left[\phi(z_i, x_i) \right] \\ n \end{bmatrix}$$

Derive exponential family form of $p(z_j \mid \mathbf{z}_{-j}, \mathbf{x}, \beta)$ z_i is independent of other variables given x_j and β . Therefore

$$p(z_j \mid \mathbf{z}_{-j}, \mathbf{x}, \beta) = p(z_j \mid x_j, \beta)$$

The exponential family form of $p(z_j \mid x_j, \beta)$ is

$$p(z_j \mid x_j, \beta) = h(z_j) \exp \left\{ \eta_j(x_j, \beta)^\top \phi(z_j) - A(\eta_j(x_j, \beta)) \right\}$$

Update parameter of mean field factor $q^*(z_j; \varphi_j)$ We can update CAVI parameter φ_j of factor $q^*(z_j; \varphi_j)$ as

$$\varphi_i = \mathbb{E}\left[\eta_j(x_j,\beta)\right]$$

Data: Model $p(\beta, \mathbf{z}, \mathbf{x})$ and data \mathbf{x} **Result:** Variational density $q(\beta, \mathbf{z}) = p(\beta; \lambda) \prod_{i=1}^{m} q_i(z_i; \varphi_i)$ Initialize factors $q(\beta, \mathbf{z})$ while ELBO has not converged do $\lambda \leftarrow \alpha + \begin{bmatrix} \sum_{i=1}^n \phi(z_i, x_i) \\ n \end{bmatrix}$ for $j = 1, \dots, m$ do $\begin{bmatrix} \varphi_j \leftarrow \mathbb{E} \left[\eta_j(x_j, \beta) \right] \\ \text{end} \end{bmatrix}$ end $\text{Compute ELBO } \mathcal{L}(q(\beta, \mathbf{z}; \lambda, \varphi))$ end return $q(\beta, \mathbf{z})$ **Algorithm 2:** CAVI algorithm for conditionally conjugate models

Results of CAVI

CAVI optimizes mean field factors $q(\mathbf{z})$ to maximize ELBO $\mathcal{L}(q(\mathbf{z}), \theta)$, which gives us both $\log p(\mathbf{x} \mid \theta)$ and $p(\mathbf{z} \mid \mathbf{x}, \theta)$

$$\log p(\mathbf{x} \mid \theta) \ge \max_{q(\mathbf{z}) \in \mathcal{Q}} \mathcal{L}(q(\mathbf{z}), \theta)$$
$$p(\mathbf{z} \mid \mathbf{x}, \theta) \approx q^*(\mathbf{z}) = \arg \max_{q(\mathbf{z}) \in \mathcal{Q}} \mathcal{L}(q(\mathbf{z}), \theta)$$

Properties of (Naive) Mean Field and CAVI

- Parameters are typically updated using exponential family.
- ELBO monotonically increases, which guarantees to converge.
- Since ELBO is non-convex, CAVI only guarantees convergence at local optimum.
- Because latent variables are assumed to be independent, CAVI cannot capture the correlation between variables.

Mean Field cannot capture the correlation between latent variables



Figure: Mean-field approximation of 2-dimensional Gaussian posterior.

By minimizing $\mathrm{KL}(q(z)\|p(z\mid x,\theta))$, CAVI penalizes any data point outside the variance of the exact posterior, hence the approximated mean field stays inside the variance of the exact posterior.

Example: Bayesian Mixture of Gaussians

Bayesian Mixture of Gaussians Model

$$\mu_k \sim \mathcal{N}(0, \sigma^2),$$
 $k = 1, \dots, K$

$$c_i \sim \text{Categorical}\left(\frac{1}{K}, \dots, \frac{1}{K}\right), \quad i = 1, \dots, n$$

$$x_i \mid c_i, \boldsymbol{\mu} \sim \mathcal{N}(c_i^{\top} \boldsymbol{\mu}, 1), \qquad i = 1, \dots, n$$

$$p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}; \sigma^2, K) = p(\boldsymbol{\mu}; \sigma^2) \prod_{i=1}^n p(c_i; K) p(x_i \mid c_i, \boldsymbol{\mu})$$

Goal

- Given observed data \mathbf{x} , infer means \mathbf{m} and variance \mathbf{s}^2 of $q(\boldsymbol{\mu}; \mathbf{m}, \mathbf{s}^2)$ of K components and component assignment probability φ_i of each data x_i .
- Assume component variances σ^2 as a known hyperparameter.

Mean Field of Bayesian Mixture of Gaussians

Find \mathbf{m} , \mathbf{s}^2 , and $\boldsymbol{\varphi}$ that maximizes likelihood $p(\mathbf{x} \mid \sigma^2, K)$

$$\mathbf{m}^*, \mathbf{s}^{2*}, \boldsymbol{\varphi}^* = \underset{\mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi}}{\arg \max} \log p(\mathbf{x} \mid \sigma^2, K)$$
$$= \underset{\mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi}}{\arg \max} \mathcal{L}(q(\boldsymbol{\mu}, \mathbf{c}; \mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi}), \sigma^2, K)$$

Note that \mathbf{m} , \mathbf{s}^2 , and φ are used by ELBO to compute expectation with respect to factors $q(\boldsymbol{\mu}, \mathbf{c}; \mathbf{m}, \mathbf{s}^2, \varphi)$.

Mean Field of Bayesian Mixture of Gaussians

$$q(\boldsymbol{\mu}, \mathbf{c}; \mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi}) = \prod_{k=1}^K q(\mu_k; m_k, s_k^2) \prod_{i=1}^n q(c_i; \varphi_i)$$
$$q(\mu_k; m_k, s_k^2) \sim \mathcal{N}(m_k, s_k^2)$$
$$q(c_i; \varphi_i) \sim \text{Categorical}(\varphi_i)$$

$$p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}; \sigma^2, K) = p(\boldsymbol{\mu}; \sigma^2) \prod_{i=1}^n p(c_i; K) p(x_i \mid c_i, \boldsymbol{\mu})$$
$$q(\boldsymbol{\mu}, \mathbf{c}; \mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi}) = \prod_{k=1}^K q(\mu_k; m_k, s_k^2) \prod_{i=1}^n q(c_i; \varphi_i)$$

ELBO for Bayesian Mixture of Gaussians

$$\begin{split} & \mathcal{L}(q(\boldsymbol{\mu}, \mathbf{c}; \mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi}), \sigma^2, K) \\ &= \sum_{k=1}^K \mathbb{E}\left[\log p(\mu_k; \sigma^2); m_k, s_k^2\right] \\ &+ \sum_{i=1}^n \left(\mathbb{E}\left[\log p(c_i; K); \varphi_i\right] + \mathbb{E}\left[\log p(x_i \mid c_i, \boldsymbol{\mu}); \varphi_i, \mathbf{m}, \mathbf{s}^2\right] \right) \\ &- \sum_{i=1}^n \mathbb{E}\left[\log q(c_i; \varphi_i)\right] - \sum_{k=1}^K \mathbb{E}\left[\log q(\mu_k; m_k, s_k^2)\right] \end{split}$$

$$q^*(c_i; \varphi_i) \propto \exp\{\mathbb{E}\left[\log p(\mathbf{c}, \mathbf{x}, \boldsymbol{\mu}; \sigma^2, K); \mathbf{m}, \mathbf{s}^2\right]\}$$
$$\propto \exp\{\log p(c_i; K) + \mathbb{E}\left[\log p(x_i \mid c_i, \boldsymbol{\mu}); \mathbf{m}, \mathbf{s}^2\right]\}$$

 $q(c_i; \varphi_i)$ is a categorical distribution. We can compute φ_i by formulating the categorical distribution in the form of an exponential family and read natural parameters. Recall that the exponential family form of categorical distribution is

Categorical
$$(c_i; \varphi_i) \propto \exp \left\{ \sum_{k=1}^K c_{ik} \varphi_{ik} \right\}$$

Note that the equation above omits the base measure and log-normalizer. It only shows natural parameters and sufficient statistics.

$$q^{*}(c_{i}; \varphi_{i}) \propto \exp\{\mathbb{E}\left[\log p(\mathbf{c}, \mathbf{x}, \boldsymbol{\mu}; \sigma^{2}, K); \mathbf{m}, \mathbf{s}^{2}\right]\}$$

$$\propto \exp\{\log p(c_{i}; K) + \mathbb{E}\left[\log p(x_{i} \mid c_{i}, \boldsymbol{\mu}); \mathbf{m}, \mathbf{s}^{2}\right]\}$$

$$\propto \exp\{\mathbb{E}\left[\log p(x_{i} \mid c_{i}, \boldsymbol{\mu}); \mathbf{m}, \mathbf{s}^{2}\right]\}$$

$$= \exp\{\mathbb{E}\left[\log \prod_{k=1}^{K} p(x_{i} \mid \mu_{k})^{c_{ik}}; \mathbf{m}, \mathbf{s}^{2}\right]\}$$

$$\propto \exp\{\sum_{k=1}^{K} c_{ik} \mathbb{E}\left[-(x_{i} - \mu_{k})^{2}/2; m_{k}, s_{k}^{2}\right]\}$$

$$\propto \exp\left\{\sum_{k=1}^{K} c_{ik} (\mathbb{E}[\mu_{k}; m_{k}, s_{k}^{2}]x_{i} - \mathbb{E}[\mu_{k}; m_{k}^{2}, s_{k}^{2}]/2)\right\}$$

$$q^*(c_i; \varphi_i) \propto \exp\left\{\sum_{k=1}^K c_{ik}(\mathbb{E}[\mu_k; m_k, s_k^2] x_i - \mathbb{E}[\mu_k; m_k^2, s_k^2]/2)\right\}$$

We have sufficient statistics $\{c_i\}$ and natural parameters $\{\mathbb{E}[\mu_k;m_k,s_k^2]x_i-\mathbb{E}[\mu_k;m_k^2,s_k^2]/2\}$ of categorical distribution. Recall that the exponential family form of categorical distribution (with only natural parameters and sufficient statistics)

Categorical
$$(c_i; \varphi_i) \propto \exp \left\{ \sum_{k=1}^K c_{ik} \varphi_{ik} \right\}$$

The update rule for φ_{ik} is

$$\varphi_{ik} \propto \exp\{\mathbb{E}[\mu_k; m_k, s_k^2]x_i - \mathbb{E}[\mu_k; m_k^2, s_k^2]/2\}$$

$$q^*(\mu_k; m_k, s_k^2) \propto \exp\{\mathbb{E}\left[\log p(\boldsymbol{\mu}, \mathbf{c}, \mathbf{x}; \sigma^2, K); \boldsymbol{\varphi}, \mathbf{m}_{-k}, \mathbf{s}_{-k}^2\right]\}$$

$$\propto \exp\{\log p(\mu_k; \sigma^2)$$

$$+ \sum_{i=1}^n \mathbb{E}\left[\log p(x_i \mid c_i, \boldsymbol{\mu}); \varphi_i, \mathbf{m}_{-k}, \mathbf{s}_{-k}^2\right]\}$$

Because $q(\mu_k; m_k, s_k^2)$ is a Gaussian distribution, we compute m_k and s_k^2 by formulating the Gaussian distribution in the form of an exponential family and read natural parameters. Recall that the exponential family form of Gaussian is

$$\mathcal{N}(\mu_k; m_k, s_k^2) \propto \exp\left\{\frac{m_k}{s_k^2}\mu_k - \frac{1}{2s_k^2}\mu_k^2\right\}$$

Note that the equation above omits the base measure and log-normalizer. It only shows natural parameters and sufficient statistics.

$$\log q^*(\mu_k; m_k, s_k^2)$$

$$\propto \log p(\mu_k; \sigma^2) + \sum_{i=1}^n \mathbb{E} \left[\log p(x_i \mid c_i, \boldsymbol{\mu}); \varphi_i, \mathbf{m}_{-k}, \mathbf{s}_{-k}^2 \right]$$

$$\propto \log p(\mu_k; \sigma^2) + \sum_{i=1}^n \mathbb{E} \left[c_{ik} \log p(x_i \mid \mu_k); \varphi_i \right]$$

$$\propto \log p(\mu_k; \sigma^2) + \sum_{i=1}^n \mathbb{E} \left[c_{ik} \log p(x_i \mid \mu_k); \varphi_i \right]$$

$$\propto -\frac{\mu_k^2}{2\sigma^2} + \sum_{i=1}^n \mathbb{E} \left[c_{ik}; \varphi_i \right] \log p(x_i \mid \mu_k)$$

$$\propto -\frac{\mu_k^2}{2\sigma^2} + \sum_{i=1}^n \varphi_{ik} \left(\frac{-(x_i - \mu_k)^2}{2} \right)$$

$$\propto -\frac{\mu_k^2}{2\sigma^2} + \sum_{i=1}^n \varphi_{ik} x_i \mu_k - \frac{\varphi_{ik} \mu_k^2}{2}$$

$$\log q^*(\mu_k; m_k, s_k^2) \propto \left(\sum_{i=1}^n \varphi_{ik} x_i\right) \mu_k - \left(\frac{1}{2\sigma^2} + \sum_{i=1}^n \frac{\varphi_{ik}}{2}\right) \mu_k^2$$

We have sufficient statistics $\{\mu_k, \mu_k^2\}$ and natural parameters $\{\sum_{i=1}^n \varphi_{ik} x_i, -\frac{1}{2\sigma^2} - \sum_{i=1}^n \frac{\varphi_{ik}}{2}\}$ of Gaussian. Recall that the exponential family form of Gaussian (with only natural parameters and sufficient statistics)

$$\log \mathcal{N}(\mu_k; m_k, s_k^2) \propto \frac{m_k}{s_k^2} \mu_k - \frac{1}{2s_k^2} \mu_k^2$$

The update rule for m_k and s_k^2 is

$$m_k = \frac{\sum_{i=1}^n \varphi_{ik} x_i}{\frac{1}{\sigma^2} + \sum_{i=1}^n \varphi_{ik}}, \qquad s_k^2 = \frac{1}{\frac{1}{\sigma^2} + \sum_{i=1}^n \varphi_{ik}}$$

CAVI algorithm for Bayesian Mixture of Gaussians

Data: Data $x_{1:n}$, number of components K, prior variance of component means σ^2

Result: Variational density $q(\mu_k; m_k, s_k^2)$ and $q(c_i, \varphi_i)$ Initialize parameters $\mathbf{m} = m_{1:K}$, $\mathbf{s^2} = s_{1:K}^2$, and $\varphi = \varphi_{1:n}$ while *ELBO has not converged* do

$$\begin{array}{l} \text{for } i=1,\ldots,m \text{ do} \\ \mid \text{ Compute and normalize} \\ \mid \varphi_{ik} \propto \exp\{\mathbb{E}[\mu_k;m_k,s_k^2]x_i - \mathbb{E}[\mu_k;m_k^2,s_k^2]/2\} \\ \text{end} \\ \text{for } k=1,\ldots,K \text{ do} \\ \mid \text{ Compute } m_k \leftarrow \frac{\sum_{i=1}^n \varphi_{ik}x_i}{\frac{1}{\sigma^2} + \sum_{i=1}^n \varphi_{ik}} \\ \text{ Compute } s_k^2 \leftarrow \frac{1}{\frac{1}{\sigma^2} + \sum_{i=1}^n \varphi_{ik}} \end{array}$$

end

Compute ELBO $\mathcal{L}(q(oldsymbol{\mu},\mathbf{c}),\mathbf{m},\mathbf{s}^2,oldsymbol{arphi})$

end return $q(\boldsymbol{\mu}, \mathbf{c}; \mathbf{m}, \mathbf{s}^2, \boldsymbol{\varphi})$

Results of CAVI for Bayesian Mixture of Gaussians

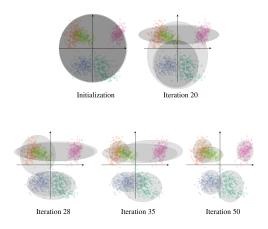


Figure: CAVI result of 2D Bayesian Mixture of Gaussians

Because latent variables are independent of other latent variables, covariance is not inferred; hence the ellipses are not diagonal.

Results of CAVI for Bayesian Mixture of Gaussians

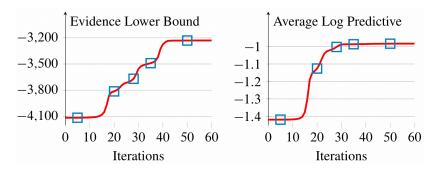


Figure: CAVI result of 2D Bayesian Mixture of Gaussians

Notice that ELBO monotonically increases and converges.

Questions

- How is CAVI's similar to and different from Gibbs sampling?
- Can variational inference be used in real-time inference?
- What are the potential applications of mean-field and CAVI?
- What are other variational inference methods that can capture variances better than CAVI?

References I

 David M. Blei, Alp Kucukelbir, and Jon D. McAuliffe. Variational Inference: A Review for Statisticians. 112(518):859–877.