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Introduction

Bayes' Rule

p(z, 2| 0)

e =56 Te)

® 2 is latent variables
® 1 is observed data

® @ is model parameters

Goal
® We want to compute posterior p(z | ,0) and parameters 0
that are maximally likely given observations z.
® However, computing exact evidence p(x | #) by integrating
p(x, z | 0) is intractable.
® With variational inference, we can approximate evidence
p(z | 0) and posterior p(z | z,0).



Evidence Lower Bound (ELBO)

log p(z | 6) = log p(z | 6) / a(2)

z

= /q(Z) logp(z | 0)
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logp(x | 0) = KL(q(2)|[p(z | #,0)) + L(q(2),0)



Evidence Lower Bound (ELBO)

logp(x | 0) = KL(q(2)[lp(2 | ,0)) + L(q(2),0)

® logp(z | 0) is the bound we want to approximate.
* KL(q(2)|lp(z | z,0)) is bound gap we want to minimize.
® L(q(z),0) is evidence lower bound (ELBO).

Maximizing L(q(z),0) gives us both logp(x | ) and p(z | x,0)
logp(z | 0) > max L(q(2),0)
a(2)eQ

p(= | 2,0) ~ ¢ (2) = arg max L(q(=), 6)
q(2)€Q



Parameter learning
Find 6 that is maximizes the likelihood p(z | 6)

logp(z | 0) = KL(q(2)llp(z | 2,0)) + L(q(z),0)
0" = arg;naxlogp(at | 0)



Parameter learning

Find 6 that is maximizes the likelihood p(z | 6)

logp(x | 0) = KL(q(2)lp(= | x,0)) + L(q(2),0)
0" = arg;naxlogp(a: | 0)

Expectation Maximization

¢ If we can compute p(z | z,0), then set ¢(z) = p(z | z,0) and
then find # that maximizes ELBO L(q(z),6)

0* = argmax L(q(z),0)
0



Parameter learning

Find 6 that is maximizes the likelihood p(z | 6)

logp(x | 0) = KL(q(2)lp(= | x,0)) + L(q(2),0)
0" = arg;naxlogp(a: | 0)

Expectation Maximization

¢ If we can compute p(z | z,0), then set ¢(z) = p(z | z,0) and
then find # that maximizes ELBO L(q(z),6)

0* = argmax L(q(z),0)
0

Variational Inference

¢ If we cannot compute p(z | z,0), then we optimize ¢(z) to
best approximate p(z | z,0).



Variational Inference

Finding ¢(z) that approximates p(z | z, 6)

q"(z) = argmin KL(q(2)|p(2 | =,0))
q(2)€Q

® This is called "variational” because we are optimizing over
function ¢(z), not a scalar or vector.

® However, we cannot minimize the KL divergence because we
cannot compute p(z | z,0). Therefore, we optimize ¢(z) to
maximize the ELBO L(¢(z),0) instead.

¢*(z) = argmax L(q(z),0)
q(2)eQ
® This objective approximates both log p(z | 0) and p(z | z,0).

® In practice, we choose a family Q (e.g., mean field) and then
optimize the parameters of ¢(z) to maximize ELBO.



Mean Field

(Naive) Mean Field

Assume that each latent variable z; is independent of other latent
variables, z; L z;,j # i. We construct a probability factor ¢;(z;)
for each z;

M
q(z) = [ (=)
j=1

Structured Mean Field
We add dependencies between latent variables.

Mixture-Based Mean Field

We add more latent variables.



Coordinate Ascent Variational Inference (CAVI)

Let Q be a mean field variational family. Our goal is to optimize
q(z) to maximize ELBO L(q(z),0) (note that 6 is parameters of
model p(z,x | 6), not parameter of factors ¢(z)).

¢"(2) = arg max L(q(z)., 0)
q(z)€Q

Instead of jointly optimizing all ¢(z), we optimize each factor
q;(2;) while keeping other factors q¢(z¢), £ # j, fixed.

qj(25) = argmax L(q(z),0)

This can be solved by setting g—é = 0 and solving for ¢;(z;). We
obtain an update rule for g;(z;)
qj () o< exp{E_;[log p(z; | 2, x)[}
o exp{E_;{log p(z, 2_s, %)]}



Coordinate Ascent Variational Inference (CAVI)

Typically we write g;(2;) in the exponential family form to derive
the update rules for parameters of q;f(zj). The exponential family
form of p(z; | z—;,%) is

p(zj | 2—5,%) = h(z;) exp {m’(z—ja x) " 6(zj) — A(nj(z—j, X))}
The exponential family form of g7 (z;) is
q;(2;) oc exp {E_; [log p(z; | z—;, x)]}
o h(z) exp {E; [ (z-5,%)] " 6(2;) |

We see that the natural parameter of ¢} (z;) is

vj =E_;[nj(z—;,x)]



Coordinate Ascent Variational Inference (CAVI)

Data: Model p(x,z) and data x
Result: Variational density ¢(z) = [/, ¢;(2;)
Initialize factors ¢;(2;)
while ELBO has not converged do
for j=1,...,m do

/* Compute parameters of ¢;(z;) here */
Set g;(z;) oc exp{E_;[logp(z; | z—;,x)[}

end

Compute ELBO L(q(z), 0)

end

return ¢(z)
Algorithm 1: CAVI algorithm

Note that [E_; is an expectation over joint factors excluding target
variable z;, i.e., E[E[...E[[],.; g¢(2¢)]...]], but will collapse into
individual expectation of only each factor.



Coordinate Ascent Variational Inference (CAVI)

Conditionally Conjugate Models

There is a special case of exponential family models called
conditionally conjugate models that has a global latent variable
vector 5 and local latent variables z whose i-th element only
governs the i-th data. The joint density is

n

p(ﬁ,z,x) :p(ﬁ) Hp(Zi,«Tz‘ | /6)

i=1

Goal
Given mean field factors ¢(3; A) and ¢;(2;;¢;), compute X and ¢
that maximizes ELBO L(q(8,z; \, ))

N, = argmax £(q(B,2; A, )
A



Coordinate Ascent Variational Inference (CAVI)

Derive exponential family form of p(3 | z, x)
The exponential family form of the likelihood p(z;,z; | B) is

p(zi,zi | B,0) = h(z;, z;) exp {ﬁst(ZufBi) - A(ﬁ)}

and exponential family form of the conjugate prior p(3) is

w6 = e a1 -5

Then the posterior p(f | z,x) has the exponential family form

P(B | 2,%) o< exp { et T 1) }



Coordinate Ascent Variational Inference (CAVI)

Update parameter of mean field factor ¢*(5; \)
The updated natural parameter for p(f | z,x) is

> i1 92 fﬂi)}

d:a—i-[
n

We can update CAVI parameter A of factor ¢*(5; \) as

Z?:l Eq(zuwi) [¢(zi, x’)q

A= By [ = a+ [ n



Coordinate Ascent Variational Inference (CAVI)
Derive exponential family form of p(z; | z_;,x, )
z; is independent of other variables given z; and 3. Therefore
p(ZJ | zZ_;,X, B) :p(Z] | m]aﬁ)

The exponential family form of p(z; | z;, 3) is

p(2; | zj, B) = h(z;) exp {m‘(% BT p(z5) — Anj (x5, /3))}

Update parameter of mean field factor ¢*(z;; ¢;)
We can update CAVI parameter ¢; of factor ¢*(2;;¢;) as

¢i = E[n;(xz;, 8)]



Coordinate Ascent Variational Inference (CAVI)

Data: Model p(f,z,x) and data x

Result: Variational density ¢(8,2) = p(8; M) [T}~ 4j(zj; @)
Initialize factors ¢(f3,z)
while ELBO has not converged do
N adt [2?21 <Z5(Zi793z‘)}

n

for j=1,...,m do

| @i« Eni(z),8)]
end

Compute ELBO L(q(5,2; \, ¢))

end

return ¢(f3,z)
Algorithm 2: CAVI algorithm for conditionally conjugate models



Coordinate Ascent Variational Inference (CAVI)

Results of CAVI
CAVI optimizes mean field factors ¢(z) to maximize ELBO
L(q(z),0), which gives us both logp(x | #) and p(z | x, 0)
logp(x | 0) > max L(q(z),0)
qa(z)eQ

p(z | x,0) ~ q*(z) = arg max L(q(z), )
q(z)eQ

Properties of (Naive) Mean Field and CAVI

® Parameters are typically updated using exponential family.

e ELBO monotonically increases, which guarantees to converge.

® Since ELBO is non-convex, CAVI only guarantees convergence
at local optimum.

® Because latent variables are assumed to be independent, CAVI
cannot capture the correlation between variables.



Mean Field cannot capture the correlation between latent
variables

Exact Posterior

X2 Mean-field Approximation

ay

Figure: Mean-field approximation of 2-dimensional Gaussian posterior.

By minimizing KL(q(2)||p(z | ,8)), CAVI penalizes any data point
outside the variance of the exact posterior, hence the approximated
mean field stays inside the variance of the exact posterior.



Example: Bayesian Mixture of Gaussians

Bayesian Mixture of Gaussians Model

e ~ N(0,02), k=1,....K

K
x| ci,p ~ N(¢) 1), i=1,...,n

1 1
¢; ~ Categorical (E"”’_>’ i=1,...,n

n

p(p, ¢, x;0%, K) = p(p; 0®) [ [ plei; K)p(ai | i, p)

=1

Goal

e Given observed data x, infer means m and variance s? of
q(p; m, s2) of K components and component assignment
probability ¢; of each data x;.

2

® Assume component variances o“ as a known hyperparameter.



Mean Field of Bayesian Mixture of Gaussians
Find m, s?, and ¢ that maximizes likelihood p(x | 02, K)

m*, s?*, o* = argmaxlog p(x | 02, K)

m752 P

m,s2,¢

Note that m, s, and ¢ are used by ELBO to compute expectation
with respect to factors ¢, c;m,s? ).

Mean Field of Bayesian Mixture of Gaussians

K n
q(p, c;m, %, o) = [ [ a(uwi mi, sp) [ ] aleis 1)
k=1 =1

(Mlmmkv %) N(mk,s%)
q(ci; i) ~ Categorical (¢;)



CAVI for Bayesian Mixture of Gaussians

n

plp, e, x;0%, K) = p(p; 0®) [ [ ples; K)p(ai | ci, )

=1
K n
q(p,c;m,s%, ) = H q (s e, s7) [ [ aless @0)
k=1 =1

ELBO for Bayesian Mixture of Gaussians

L(q(p,c;m,s%, ), 0%, K)
K
= E [log p(ux; 0%); my, s3]

k=1
+Z log p(ci; K); i) + E [log p(x; | ci, p); i, m, 7))

K
_ Z E [log q(ci; i) — > E [log q(p; i, 57)]
=1 k=1



CAVI for Bayesian Mixture of Gaussians

q*(ci; i) o exp{E [log p(c,x, p; 0%, K );m, s*] }
x exp{log p(c;; K) + E [log p(z; | ¢;, p);m, s%] }

q(ci; ;) is a categorical distribution. We can compute ¢; by
formulating the categorical distribution in the form of an
exponential family and read natural parameters. Recall that the
exponential family form of categorical distribution is

K
Categorical(c;; ;) x exp {Z Cz‘ksﬂz‘k}

k=1

Note that the equation above omits the base measure and
log-normalizer. It only shows natural parameters and sufficient
statistics.



CAVI for Bayesian Mixture of Gaussians

q*(ci; i) < exp{E [log p(c, x, p; 0°, K);m, s°| }
o exp{log p(ci; K) + E [log p(; | ¢;, u);m, s°] }

o exp{E [log p(x; | ¢;, p); m, s%] }
K

log [ [ p(xi | )5 m, s?
k=1

K
o exp{ Y _ el [—(xi — p)? /2 mn, 57}
k=1

= exp{E ¥

K
o exp {Z cire (s mu, silar; — Elug; mi, Si]/Q)}
k=1



CAVI for Bayesian Mixture of Gaussians

K
q"(ci; pi) o< exp {Z it (Bpws m, sples — Elug; my,, Sz]/2)}
k=1

We have sufficient statistics {¢;} and natural parameters

{E[u; my, sz]z; — E[ur; m2, s3] /2} of categorical distribution.
Recall that the exponential family form of categorical distribution
(with only natural parameters and sufficient statistics)

K
Categorical(c;; ;) < exp {Z Cz‘k%k}

k=1

The update rule for p;i is

@ik o< exp{E[u; mi, si)zi — Elug; mi, sp]/2}



CAVI for Bayesian Mixture of Gaussians

q* (1i; M, s3) o< exp{E [log p(p, ¢, x;0%, K); o, m_y, 5%, ] }
o exp{log p(ux; 0°)

n
+ ) Elogp(w; | i, p); pi m_g, %] }
i=1

Because q(pug; mx, si) is a Gaussian distribution, we compute my
and s? by formulating the Gaussian distribution in the form of an
exponential family and read natural parameters. Recall that the
exponential family form of Gaussian is

2 mg L oy
N (g M, 5%) 0 €Xp  —5 fik — =5 1,
sy 253
Note that the equation above omits the base measure and
log-normalizer. It only shows natural parameters and sufficient
statistics.



CAVI for Bayesian Mixture of Gaussians
log ¢* (px; M, 57)

n
oclog p(uk; 0”) + Y B [log p(w; | ci, p); pi, m g, 8% ]
=1

n
oclog p(uk; o) + Y E [cir log p(ai | pa); @il
=1

oclog p(uk; 0%) + Y E [cirlog p(x; | i ); il

i=1
u2
X — 5 +ZE Czkv‘Pl] Ing(fL‘@ | Nk)
k
oc——+z%( *”)
1 Pikli}
X = ﬁ"‘Z‘szfElﬂk_Tk



CAVI for Bayesian Mixture of Gaussians

% ) Pik 2
10g ¢* (1 i, 53) o <Z sozkxz> ik — (g Z )

i=1

We have sufﬁcient statistics {/u, 42 } and natural parameters
{30 pinti, — 5o — i £} of Gaussian. Recall that the
exponential family form of Gaussian (with only natural parameters
and sufficient statistics)

mi 1
log N (ftk; Mg, $3) 0 —5 bk — 55 1k
i 253,
The update rule for m; and sz is
myp = —Z?:1 @zkxz Si — 1

=+ Y ik =+ i Pk



CAVI algorithm for Bayesian Mixture of Gaussians

Data: Data z1.,, number of components K, prior variance of
component means o2

Result: Variational density q(u; my, s2) and q(c;, @)
Initialize parameters m = mq.g, s2 = S%K, and ¢ = Y18
while ELBO has not converged do
fori=1,...,mdo
Compute and normalize

ik o< exp{Eur; mi, splwi — Elug; my, s7]/2}
end
fork=1,...,K do
Compute my, ¢ —A=i=L 22
P k 0—124-21':1 Pik

1

Compute 82 — T~
P k ﬁ“*‘zzlﬁ Pik

end
Compute ELBO L(q(u, c), m,s?, p)

end
. 2



Results of CAVI for Bayesian Mixture of Gaussians

Initialization

Iteration 20

Iteration 28

Iteration 35

Iteration 50

Figure: CAVI result of 2D Bayesian Mixture of Gaussians

Because latent variables are independent of other latent variables,
covariance is not inferred; hence the ellipses are no
[}

t diagonal.
ﬁl =



Results of CAVI for Bayesian Mixture of Gaussians

Evidence Lower Bound
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Figure: CAVI result of 2D Bayesian Mixture of Gaussians

Notice that ELBO monotonically increases and converges.



Questions

How is CAVI's similar to and different from Gibbs sampling?

e Can variational inference be used in real-time inference?

What are the potential applications of mean-field and CAVI?

® What are other variational inference methods that can capture
variances better than CAVI?
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