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Assumptions

Given dataset                          of        i.i.d data samples   X = {x(i)}N
i=1 N

• Some random process generated the data.
• This process involves an unobserved cont. r.v z

x

• The process is as follows:
1.       is generated from prior z

(i) pθ∗(z)

z θ
∗

2.       is generated from conditional  x
(i) pθ∗(x|z) x

θ
∗ :  true parameters 

z
(i) :  latent variable

• Prior and likelihood come from parametric family 
of distributions             and pθ(z) pθ(x|z)

We assume the following:



But first …



We have a problem!

We don’t know the complete data generation process.
      

z

x

θ
∗

θ
∗

z
(i)•   and          are unknown to us

Three problems:

1. Efficient approximate ML or MAP estimation for θ

2. Efficient approximate posterior inference of      given    

3. Efficient approximate marginal inference of 

z x

x



Notation and terminology

qφ(z|x) : recognition model or probabilistic encoder

• Approximation to the intractable posterior pθ(z|x)

φ : variational parameters

θ : generative model parameters

: latent representation or codez

pθ(x|z) : probabilistic decoder



The variational lower bound 
log pθ(x

(1)
, . . . ,x

(N)) =
∑

N

i=1 log pθ(x
(i)) (log marginal likelihood)

log pθ(x
(i)) = Eqφ(z|x(i))[log pθ(x

(i))]

= E
qφ(z|x(i))

[

log
pθ(x

(i)
,z)

pθ(z|x(i))

]

= E
qφ(z|x(i))

[

log
pθ(x

(i)
,z)qφ(z|x

(i))

qφ(z|x(i))pθ(z|x(i))

]

= E
qφ(z|x(i))

[

log
pθ(x

(i)
,z)

qφ(z|x(i))

]

+ E
qφ(z|x(i))

[

log
qφ(z|x

(i))

pθ(z|x(i))

]

= L(θ,φ;x(i))

(ELBO)

= DKL(qφ(z|x
(i))||pθ(z|x

(i)))



The variational lower bound 
L(θ,φ;x(i)) = log pθ(x

(i))−DKL(qφ(z|x
(i))||pθ(z|x

(i)))

≤ log pθ(x
(i))

≥ 0 KL divergence is non-negative

DKL(qφ(z|x
(i))||pθ(z|x

(i))) determines two distances:

1. KL divergence of the approximate posterior from the 
true posterior;

2. Gap between the ELBO                        and the marginal 
likelihood                         ; also called the tightness of the bound.

L(θ,φ;x(i))

log pθ(x
(i))



The variational lower bound 

L(θ,φ;x(i)) = Eqφ(z|x(i))

[

log pθ(x
(i)

,z)
qφ(z|x(i))

]

= Eqφ(z|x(i))

[

− log qφ(z|x
(i)) + log pθ(x

(i)
, z)

]

= −DKL(qφ(z|x
(i))||pθ(z)) + Eqφ(z|x(i))

[

pθ(x
(i)|z))

]

Goal: differentiate and optimize the lower bound                          
w.r.t. both      and  

L(θ,φ;x(i))

φ θ

∇φEqφ(z)[f(z)] = Eqφ(z)[f(z)∇φ log qφ(z)] ≃
1
L

∑L

l=1 f(z
(l))∇φ log qφ(z

(l))

Naïve Monte Carlo gradient estimator
*exhibits very high variance* 

where z(l) ∼ qφ(z|x
(i))



Stochastic Gradient Variational Bayes 
(SGVB) estimator
TL;DR: SGVB is an unbiased estimator of the lower bound without the 
high variance issue.

Reparametrize the r.v.                           as:  z̃ ∼ qφ(z|x)

z̃ = gφ(ϵ,x) ϵ ∼ p(ϵ)with

Differentiable transformation Noise variable 

Eqφ(z|x(i)) [f(z)] = Ep(ϵ)

[

f(gφ(ϵ,x
(i)))

]

≃
1
L

∑L

l=1 f(gφ(ϵ
(l),x(i)))

ϵ
(l)

∼ p(ϵ)where 



SGVB estimator
Remember our ELBO: 

L(θ,φ;x(i)) = Eqφ(z|x(i))

[

− log qφ(z|x
(i)) + log pθ(x

(i)
, z)

]

Applying reparameterization of      to our ELBO, we get our SGVB estimator
                                                            :

z

L̃A(θ,φ;x(i)) = 1
L

∑L

l=1 log pθ(x
(i)
, z

(i,l))− log qφ(z
(i,l)|x(i))

where z(i,l) = gφ(ϵ
(i,l)

,x
(i)) and ϵ(l) ∼ p(ϵ)

L̃A(θ,φ;x(i)) ≃ L(θ,φ;x(i))



SGVB estimator
Remember our second ELBO variant: 

Applying reparameterization of      to our second ELBO, we get:z

L̃B(θ,φ;x(i)) = −DKL(qφ(z|x
(i))||pθ(z)) +

1
L

∑L

l=1(log pθ(x
(i)|z(i,l)))

where z(i,l) = gφ(ϵ
(i,l)

,x
(i)) and ϵ(l) ∼ p(ϵ)

L(θ,φ;x(i)) = −DKL(qφ(z|x
(i))||pθ(z)) + Eqφ(z|x(i))

[

pθ(x
(i)|z))

]

which is our second version of the SGVB estimator 

L̃B(θ,φ;x(i)) ≃ L(θ,φ;x(i))



SGVB estimator (full dataset)

Given dataset      with      datapoints:

L(θ,φ;X) ≃ L̃M (θ,φ;XM ) = N

M

∑
M

i=1 L̃(θ,φ;x
(i))

X N

X = {x(i)}M
i=1

Minibatch of M data samples Estimator of ELBO of the full dataset

We can now take derivatives                                       and optimize      and∇θ,φL̃(θ,φ;X
M ) φ θ



The AEVB algorithm



The reparameterization trick 

L(θ,φ;x(i)) = −DKL(qφ(z|x
(i))||pθ(z)) + Eqφ(z|x(i))

[

pθ(x
(i)|z))

]

Our second ELBO variant:

Involves sampling      from                      i.e.    z qφ(z|x
(i)) z ∼ qφ(z|x

(i))

But sampling is a stochastic process and therefore we cannot 
backpropagate gradients through it.

Solution: express     as a deterministic variable  z z = gφ(ϵ,x)

where                     and             is some vector-valued function 
parametrized by  

ϵ ∼ p(ϵ) gφ(.)

φ



The reparameterization trick 
Example: let                      be a multivariate Gaussian with diagonal 
covariance structure: 

qφ(z|x
(i))

z ∼ qφ(z|x
(i)) = N (z;µ(i)

,σ
2(i)

I)

z
(i) = µ

(i) + σ
(i) ⊙ ϵ, where ϵ ∼ N (0, I) ; Reparameterization trick.

where       denotes element-wise product. ⊙



The reparameterization trick 

Illustration of how the reparameterization trick makes the sampling process trainable.(Image source: Slide 12 
in Kingma’s NIPS 2015 workshop talk)

http://dpkingma.com/wordpress/wp-content/uploads/2015/12/talk_nips_workshop_2015.pdf


Example: Variational Auto-Encoder 
Idea: use a neural network for                 and optimize      and      jointly 
using the AEVB algorithm.      

qφ(z|x) φ θ

Let:  
pθ(z) = N (z;0, I)

pθ(x|z) : multivariate Gaussian or Bernoulli
• Parameters of this distribution are computed from      

with a MLP 
z

pθ(z|x) : true (but intractable) posterior
• Assume this takes on approx. Guassian with an approx. 

diagonal covariance.



Example: Variational Auto-Encoder 
qφ(z|x) : variational approximate posterior

• We can let this be a multivariate Gaussian with a 
diagonal covariance structure.

log qφ(z|x
(i)) = logN (z;µ(i)

,σ
2(i)

I)

Outputs of encoding MLP

Note: in this model                and             are Gaussian and thus  qφ(z|x) pθ(z)

DKL(qφ(z|x)||pθ(z)) has a closed form



Example: Variational Auto-Encoder 

L(θ,φ;x(i)) ≃ 1
2

∑J

j=1

(

1 + log((σ
(i)
j )2)− (µ

(i)
j )2 − (σ

(i)
j )2

)

+ 1
L

∑L

l=1 log pθ(x
(i)|z(i,l))

z
(i,l) = µ

(i) + σ
(i) ⊙ ϵ

(l) and ϵ
(l) ∼ N (0, I)

where 



Example: Variational Auto-Encoder 

Illustration of variational autoencoder model with the multivariate Gaussian 
assumption.(source: https://lilianweng.github.io/posts/2018-08-12-vae/)



Experiments
Tasks:
1. Train generative models of images from MNIST and Frey Face 

datasets
2. Compare learning algorithms in terms of:

a) The variational lower bound
b) The estimated marginal likelihood



Results: likelihood lower bound

Vertical axis: the estimated average variational lower bound per datapoint. The estimator variance 
was small (< 1) and omitted. Horizontal axis: amount of training points evaluated. Nz : dim. of latent 
space



Results: marginal likelihood



Results: Visualization of high-dimensional 
data 



Results: Visualization of high-dimensional 
data 



Code

• https://github.com/AntixK/PyTorch-VAE/blob/master/models/vanilla_vae.py 

https://github.com/AntixK/PyTorch-VAE/blob/master/models/vanilla_vae.py


Thank you


