Denoising Diffusion Probabilistic Models

Authors

Jonathan Ho UC Ajay Jain Pieter Abbeel
Berkeley UC Berkeley UC Berkeley
jonathanho@berkeley.edu ajayj@berkeley.edu pabbeel@cs.berkeley.edu

Denoising Diffusion Probabilistic Models (DDPM)

A technique used in machine learning to generate new data that resembles a
given dataset, a task known as data generation.

Unlike some other models that work by classifying or differentiating data,
DDPMs are generative models.

Are designed to create new data closely matching a given set of real data.
Start with random noise and then iteratively refine it to form a coherent data
sample, a process guided by a neural network

The data is being refined at each step to resemble real data.

Refining the data is controlled by a schedule of noise reduction levels, which
are applied at each step of the generation process

YY YV YV Y

Fixed forward diffusion process

Data Noise

Generative reverse denoising process

Background

Diffusion model or diffusion probabilistic model Or Score-based generative model

YV VVYY

A\

A\

A\

Inspired by non-equilibrium thermodynamics

A class of Latent variable generative models

A parameterized Markov chain trained using variational inference to produce
samples matching the data after finite time.

Transitions of this chain are learned to reverse a diffusion process

A Markov chain that gradually adds noise to the data in the opposite direction
of sampling until signal is destroyed. When the diffusion consists of small
amounts of Gaussian noise

It is sufficient to set the sampling chain transitions to conditional Gaussians
too, allowing for a particularly simple neural network parameterization.
Unlike VAE or flow models, diffusion models are learned with a fixed
procedure and the latent variable has high dimensionality (same as the original
data)

The goal of diffusion models is to learn a diffusion process that generates the
probability distribution of a given dataset

They learn the latent structure of a dataset by modeling the way in which data
points diffuse through their latent space.

Diffusion models

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

" Discriminator Generator
x > >
D(X) G(z)
x .| [Encoder J oz =6 N
q4(z|x) po(x|z)
Flow - Inverse
X = > B _ P
f(x) (=)
Xo— X171 X2 ——7 —

Diffusion Models

Three Major Components
Forward Process Reverse Process The Sampling Procedure

7l bRt Ve RAGE i TERE Nl . 2
S (L (ege MEURE SRR IS :
x 0 SREE Ny e
E m R R : V3 . B
D’F“flo’l procegs L0 Pt 5 ‘
STV g o s R Ve, i g -
R Ry BN i W
Rty Paisee B0HEH XE R Ny A%

< Denvising process| i g B e s B
Forward diffusion process that gradually adds noise to input
Reverse denoising process that learns to generate data by denoising

E

Forward Process

Q(X1|Xt—1) = -»V(XH V91— 3x1, .511) Q(XL:T|XO) = Hvszl (I(Xt|xt—1)

Use variational lower bound

..................................

__—’

‘\ Q(Xt|Xt—1 i

..................................

fig. 2. The Markov chain of forward (reverse) diffusion process of generating a sample by slowly adding (removing) noise. (Image source: Ho et al. 2020 with a few
additional annotations)

q(e|Te—1) Po(Te—1|T:)
> This term is also known as the forward diffusion > This term is also known as the forward diffusion
kernel (FDK). kernel (FDK).
> It defines the PDF of an image at timestep tin > |t defines the PDF of an image at timestep tin
the forward diffusion process xt given image the forward diffusion process xt given image
Xt-1. Xt-1.
> It denotes the “transition function” applied at > It denotes the “transition function” applied at

each step in the forward diffusion process each step in the forward diffusion process

Forward Diffusion Process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

o A A A A A

q(xlxi1) = N(xe; VT — Bixe1, BI) = q(xirixo) = | [aleelxi1) (joint)

t=1

19

Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define ay = [[(1-Fs) = qlxilxo) = N(xi Varxo, (1 —ay)T) (Diffusion Kemel)

s=1

For sampling: where /oy xg + /(1 — ay) € e ~N(0,1)

(¢ values schedule (i.e., the noise schedule) is designed such that ap — 0 and ¢(xp|xq) &~ N (x7;0,1))

Forward Process

q(zr|zr-1)

g(zr_1|TT—2

2 _;,A.{-g'«.-.’iﬁf =2
P

o
&

L N
po(zolz1) po(z1|z2) po(zr—2|T7-1) po(zr-1l|2TT)
Approximation of Gaussian transition kernel with parameters to be learned Initial distribution
q(zt—1|ze) po(Ti—1|zt) = N(@i—1; po(21,t), X (e, 1)) p(zr) = N(z4;0,1)

LEARNED BACKWARD PROCESS

What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel ¢(x;|x() but what about ¢(x¢)?

Diffused Data Distributions

Data Noise
oxt) = [atxox) dxo = [alxo) b do
\) - —— —— t
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel
The diffusion kernel is Gaussian convolution. a(x,) a(x,) q(x,) qa(x,) a(X;)

We can sample x; ~ ¢(x;) by first sampling x(~ ¢(xq) and then sampling x; ~ g(x¢|Xg) (i.e., ancestral sampling).

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) =~ N (x7;0,1))
Diffused Data Distributions

Generation:

Sample x7 ~ N (x7;0,1)

X
lteratively sample x; 1 ~ q(x;_1|x¢) t X X
“ - y X X X
True Denoising Dist. T
ax, ax) alkxy) - ax,) o a(Xg)
L S W W G S
alx,Ix,) a(x,Ix,) ax,Ix,) ailx,) alxplx))

In general, q(x;_1|x¢) o< q(x¢_1)q(x¢|x¢_1) is intractable.

Can we approximate C](Xt—1|Xt)? Yes, we can use a if [5; is small in each forward diffusion step.

Forward Process

ignore the fact that the forward process variances Bt are learnable by
reparameterization and instead fix them to constants .

Thus, in their implementation, the approximate posterior g has no learnable parameters,
so LT is a constant during training and can be ignored

Reverse Process

po(xo.r) = p(xr) [Ty Po(Xea|Xe) po(xioa|xe) = N(xi-1; pg(xe,), So (x4,)

2 T 2 T
The forward trajectory
q(%o:7) of oL 4 _
_2 1 _2 L
-2 0 2 -2 0 2
2 T 2 T
The reverse trajectory
po(Xo.7) of | ol |
3
-2 . —2 "
-2 0 2 -2 0 2
2 2
Yvvvy [(¢
49~ - ’VbbA Y- w s \
4 4 ASARA L Ll s
i; ($;\\AA“ - /4 A AAADD
. . vV {4d«as \) A AAAMI VN~~~ r vy
The drifting term Vorerr | (1< LYY Y IR
‘41<V YA Ad (4w quvlvg FeaANDAMMII)N
0 :::::*::.\\ s RS st Himp e e
po(x-t,t) _x-t v\AAA’\\\yvc«’VG\AQ)\444‘v::vv" EPE AR Y N - [
Y AA4 ~~ ~r P .-~ Y444 -~ ——-—,—rr L R T R R R \
PVNNA AL P AAALLLL r - A AAA 7 NKAsSss, FrsAaN))sa-)
EEE A I A rresas\))irss
ST YPYPVYVYVYTYTAA A Frrs=~N)b -
fr L I T I R N
RSP bt < 4
—2 L4 i >) ¥

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data

Noise

i i N i i i
T
p(XT) ZN(XT;O,I) . _ olx -
po(xi_1]xt) = N (x¢_1; pg(xt, 1), o71) = pobar) = H T)tl_[lpe(-1xe)
H_J

Trainable network
(U-net, Denoising Autoencoder)

Learning Denoising Model : variational upper bound

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

po(X0:7)] I

E . [—1 <E —1
a(xo) [= 10g pa(%0)] < q<xO>q<xlzT|xO>[%8 Ger o)

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurlPS 2020 show that:

L =E, | Dxnlq(xr|x0)||p(x1)) + ZPKL(Q(Xt—1|Xta X0)||po(xi—1]%t)) — 1nga(X0X1))]
Ly t>1 L Lo

where ¢(x;_1|x¢, x) is the tractable posterior distribution:

Q(Xt—1|xt7X0) = N(Xt—1§ ﬁt(XmXo), BtI))
V@t_]ﬂtxo—i—vl — Bi(1 — O_ét—l)xt and f, =

1 —oy 1 —a 1 —aq

I —ay

B

where [i; (x4, Xg) :=

Parameterizing the Denoising Model

Since both ¢(x;_1|x¢, X() and py(x;_1|x¢)are Normal distributions, the KL divergence has a simple form:

1 -
Li—1 = Dxr(q(x—1]xs, %0)||po(xi-1]x¢)) = Ey [T‘_QHMt(Xt?XO) — M9<Xt,t)||2] +C
t

Recall that x; = v/ay xg+ /(1 — ay) €

i) = 7 (4=)

They propose to represent the mean of the denoising model using a noise-prediction network:

With this parameterization

i . ———
Li 1 = Ex o(xa) e~ - — 1— b
1 = Exegtah A 0D {20?(1_&)(1_%)”6 oA xo - VI=a e)| 4 C
y

Xt

Tra i n i ng O bj ECtiVE We ig hti ng . Trading likelihood for perceptual quality

ﬁ2
Lt—l — EXONq(Xo),GNN(OJ) [203(1 _ /Bt)(]_ _ O(t) HE - 66’(\/7 XO + V]- - Oét € t)”
- J
)\t

At

The time dependent ensures that the training objective is weighted properly for the maximum data likelihood training.
However, this weight is often very large for small t’s.

observe that simply setting A\; = 1 improves sample quality. So, they propose to use:

Lsimple =]EXONq(Xo),ENN(O7I)7tNZ/{(1 T) U ‘6 - 60(\/_7‘ X+ vV1—a 6 t)H]

Xt

Summary

I’O(Xc1|xz
.—> —>. ‘—> —’

‘-——’

Forward q(xy.rlxo) = T1T=q q(xelxe—y)

q(xelxe—1) = N(x¢; 1 = Bxe—q, Be])
q(xelxo) = N(xe; \[@xo, (1 — &)I)

- where a, :==1- 6, and @ := [11.; a

» Posterior G116, 5%5) = Ni i Bis %5). B0

- where B, (x;, %) =

\)“t-1ﬂt Xo + \/a?(ll'_‘_‘t-l) X, and ﬁt a— 1;5‘;—1 'Bt
-

* Backward Pe(xc_1x,) = N(x¢—1; Hg(x,,t), Lo(x,t))

* Loss Function D1 (q(xe-1lxe, x0)1pe (xe-11x.))

Summary

Algorithm 1 Training Algorithm 2 Sampling

;: repeat (x0) 1: xp ~ N(0,T)

Bl R, s 2: fort=1T,...,1d

3: t~ Uniform({1,...,T}) 3 0er N(0.1) °

4: €~ N(0,I) ,1 1—ay

5: Take gradient descent step on 4 X1 =5 (Xt — 1o, €0 (Xt,t)) + 0tZ

Vo || — eo(Varxo + 1 — aze t)”2 5: end for
6: until converged 6: return x

What happens to an image in the forward diffusion process?

Recall that sampling from ¢(x¢|x() is done using x; = v/ay xg + /(1 — ay) € where e ~ N(0,1)

Small ¢t
oy ~ 1

xt =+ xg+ /(1 —) e |]'_(?<o>|

§ o I/\v
‘ | F (fCt) |
\

Fxt) = Var F(xo)+V/(1 —ar) Fle) Freq.
Large t

In the forward diffusion, the high frequency content is perturbed faster.

Training

Ezot,e (Ile — €0(zt, 1)|*) = Eaot,c (Ile — eo(v/@z0 + V1 — e, t)l|%)

1 2 3

Sample random step Make a forward pass of the Take a gradient descent step
from random trajectory model to eastimate noise to update model parameters
— 2
o . — . |
Sample image Sample noise Generated Parametrised Estimated True
noisy image model noise noise

Sample time step between 1 and T

Generate random step from Estimated noise in Update model parameters
random trajectory the noisy image taking gradient descent step

lllustration of the training process of a denoising diffusion probabilistic model training.

Samplaing

Current state Estimated noise Estimated x0 Next state
Use the model "Remove"” estimated noise Linear combination between the
to estimate the noise in from current state using the current state and estimated x0
the current state appropriate formula with some additional noise

F
a.
etk
-
7y
(gaussian noise)
N
o
[
a.
bk
fom
7y]
x[TIZ)-l
poe:
a.
[S]
s
7))

lllustration of the sampling process of a denoising diffusion probabilistic model.

Experiments

YVYVYY

4

T=1000

forward process B1 = 10-4 to T = 0.02

These constants were chosen to be small relative to data scaled to [-1, 1]

Reverse and forward processes have approximately the same functional form while keeping the
signal-to-noise ratio at xT as small as possible as LT = DKL(q(xT [x0) k N (0, I)) = 10-5

To represent the reverse process, used a U-Net backbone similar to an unmasked Pixel CNN++
with group normalization throughout . Parameters are shared across time, which is specified to
the network using the Transformer sinusoidal position embedding. We use self-attention at the 16
x 16 feature map resolution.

Inception Scores

The Inception Score (IS) is an algorithm used to assess the quality of images created by a
generative image model such as a generative adversarial network (GAN)

The Inception Score of pge,, relative to pgis is

IS(pgen, Pais) = exp(Ex~pgen [DKL (p dis (1) / # d“('lw)pgen(w)dm)])

Equivalent rewrites include

In I8 (Pgen, Pa) = Barpyy, | Drct (Pais (12) [Barpyy, s (-12)])|

10 IS (pgen; piis) = H[Eanpy, [piis (12)]] — Eanpy, [Hlpais (2]

In 1.5 is nonnegative by Jensen's inequality.

Experiments - sampie quaiy

Table 1: CIFARI10 results. NLL measured in bits/dim.

Model IS FID NLL Test (Train)
Conditional

EBM [11] 8.30 37.9

JEM [17] 8.76 38.4

BigGAN [3] 9.22 14.73

StyleGAN2 + ADA (vl1) [29] 10.06 2.67

Unconditional

Diffusion (original) [53] <

Gated PixelCNN [59] 4.60 65.93 .03

Sparse Transformer [7] 2.
PixelIQN [43] 5.29 49.46

EBM [11] 6.78 38.2

NCSNv2 [56] 31:75

NCSN [55] 8.874+0.12 25.32

SNGAN [39] 8.22+0.05 247

SNGAN-DDLS [4] 9.09+0.10 15.42

StyleGAN2 + ADA (v1) [29] 9.74 + 0.05 3.26

Ours (L, fixed isotropic X) 7.67:0.13 13.51 0 (3.69)
Ours (Lsimple) 9.461+0.11 3.17 3.75 (3.72)

Table shows Inception scores,
FID scores, and negative log
likelihoods (lossless
codelengths) on CIFAR10.
With FID score of 3.17, used
unconditional model achieves
better sample quality than
most models in the literature,
including class conditional
models. This FID score is
computed with respect to the
training set, as is standard
practice; when we compute it
with respect to the test set, the
score is 5.24, which is still
better than many of the
training set FID scores in the
literature.

EXpe rl m e ntS “ Reverse process parameterization and training objective ablation

Table 2: Unconditional CIFAR10 reverse
process parameterization and training objec-
tive ablation. Blank entries were unstable to
train and generated poor samples with out-of-

range scores.

~ Objective IS FID
" f1 prediction (baseline)
L, learned diagonal X2 7.2840.10 23.69
L, fixed isotropic 2 8.0610.09 13.22
15 — fol? = =
€ prediction (ours)
L, learned diagonal X2 - -
L, fixed isotropic X2 LOGE0:23 13.51
|€ — €o||? (Lsimple) 9.46+0.11 3.17

the sample quality effects of reverse process
parameterizations and training
objectives.That the baseline option of
predicting y~ works well only when trained on
the true variational bound instead of
unweighted mean squared error, a simplified
objective akin to. Also see that learning
reverse process variances (by incorporating
a parameterized diagonal Z8(xt) into the
variational bound) leads to unstable training
and poorer sample quality compared to fixed
variances. Predicting , as we proposed,
performs approximately as well as predicting
M~ when trained on the variational bound with
fixed variances, but much better when
trained with our simplified objective

Experiments

“‘v

’ ‘«
» .':/7 | Gyl l- = J lr— :'- ,Jn
Figure 3: LSUN Church samples. FID=7.89 Figure 4: LSUN Bedroom samples. FID=4.90
Algorithm 3 Sending x Algorithm 4 Receiving

Receive x7 using p(xr)

fort=T—-1;...;1.0deo
Receive x; using pp (x¢|x¢+1)

end for

return xg

1: Send x7 ~ q(x7|x0) using p(x7)

2 fort=T—1,...,2,1do

3 Send Xt v Q(Xt|Xt+1, Xo) using Po (Xt|Xt+1)
4: end for

5: Send x¢ using pg(xo|x1)

ik B8 e

Experiments

Table 3: FID scores for LSUN 256 x 256 datasets

Model LSUN Bedroom LSUN Church LSUN Cat
ProgressiveGAN [27] 8.34 6.42 371.92
StyleGAN [28] 2.65 421 8.53%
StyleGAN?2 [30] - 3.86 6.93
Ouis (Lsimiple) 6.36 7.89 19.75

Ours (Lgimple, large) 4.90 - -

EXperimentS “ Progressive coding

The gap between train and test is at most 0.03 bits per dimension, which is
comparable to the gaps reported with other likelihood-based models and
indicates that our diffusion model is not overfitting. Still, while lossless code
lengths are better than the large estimates reported for energy based
models and score matching using annealed importance sampling, they are
not competitive with other types of likelihood-based generative models.
Since used samples are nonetheless of high quality, IT conclude that
diffusion models have an inductive bias that makes them excellent lossy
compressors. Treating the variational bound terms L1 +- - -+LT as rate and
LO as distortion, The CIFAR10 model with the highest quality samples has a
rate of 1.78 bits/dim and a distortion of 1.97 bits/dim, which amounts to a
root mean squared error of 0.95 on a scale from 0 to 255. More than half of
the lossless codelength describes imperceptible distortions.

EX pe ri m e ntS “ Progressive lossy compression

Xg A Xg = (Xt —A) 1— @tfe(xt)) /v

due to Eq. (4). (A stochastic reconstruction xy ~ pg(Xg|x;) is also valid, but we do not consider
it here because it makes distortion more difficult to evaluate.) Figure 5 shows the resulting rate-
distortion plot on the CIFAR10 test set. At each time ¢, the distortion is calculated as the root mean

squared error 4/ ||xg — Xo||2/D, and the rate is calculated as the cumulative number of bits received
so far at time ¢. The distortion decreases steeply in the low-rate region of the rate-distortion plot,
indicating that the majority of the bits are indeed allocated to imperceptible distortions.

Distortion (RMSE)

80

60

40

20

|

[

T 1T 1T T T 711

[

I

[

I

[

I

[

I

[

|

[

I

| I

L 11

0

200 400 600 800 1,000

Reverse process steps (1" — t)

Rate (bits/dim)

25

0.5

]
Distortion (RMSE)

] ! [[K)o [

200 400 600 800 1,000

Reverse process steps (1T — t)

80

60

40

20

|

L SN T PP O I

T A A

|

- o0 e 0 o [] e
| | | | |
0.5 1 1.5
Rate (bits/dim)

Figure 5: Unconditional CIFAR10 test set rate-distortion vs. time. Distortion is measured in root mean squared

error on a [0, 255] scale.

EXpe rl m e ntS “ Connection to autoregressive decodin

L = Dxv(q(xr) || p(xr)) + Eq| > Dxr(q(xi-1|x:t) || po(xe—1]x:)) | + H(x0)

t>1

Now consider setting the diffusion process length T to the dimensionality of the data, defining the
forward process so that q(xt|x0) places all probability mass on x0 with the first t coordinates
masked out (i.e. q(xt|xt—1) masks out the t th coordinate), setting p(xT) to place all mass on a
blank image, and, for the sake of argument, taking p8(xt—1|xt) to be a fully expressive conditional
distribution. With these choices, DKL(q(xT) k p(xT)) = 0, and minimizing DKL(q(xt—1|xt) k p6
(xt—1]|xt)) trains pB to copy coordinates t + 1, . .., T unchanged and to predict the t th coordinate

givent+ 1, ..., T Thus, training p® with this particular diffusion is training an autoregressive
model.

EXpe ri m e ntS “ Interpolation

interpolate source images x0, x 0 0 ~ q(x0) in latent space using q as a stochastic encoder, xt, x 0 t ~ q(xt|x0), then decoding the linearly
interpolated latent x t = (1 — A)x0 + Ax 0 0 into image space by the reverse process, x 0 ~ p(x0|x t). In effect,used the reverse process to
remove artifacts from linearly interpolating corrupted versions of the source images, as depicted in Fig. 8 (left). fixed the noise for different
values of A so xt and x 0 t remain the same. Fig. 8 (right) shows interpolations and reconstructions of original CelebA-HQ 256 x 256
images (t = 500). The reverse process produces high-quality reconstructions, and plausible interpolations that smoothly vary attributes
such as pose, skin tone, hairstyle, expression and background, but not eyewear. Larger t results in coarser and more varied
interpolations, with novel samples at t = 1000

Diffused source . A=01 A=0.2 A=0.3 A=04 A=0.5 A=0.6 A=0.7 A=0.8 A=0.9 Rec.
x, ~ qlx, | x))

Denoised
interpolation

Pixel-space Source X,
interpolation

Source x,

Figure 8: Interpolations of CelebA-HQ 256x256 images with 500 timesteps of diffusion.

EXpe ri m e ntS “ Interpolation

Inception Score

10

®
|
FID

| | i | | | | | | |

200 400 600 800 1,000

Reverse process steps (1" — t)

300

200

100

I

| | | | | | i |

0

1 |
200 400 600 800 1,000

Reverse process steps (1" — t)

Figure 10: Unconditional CIFAR10 progressive sampling quality over time

Source Rec. A=0.1 A=0.2 A=0.3 A=0.4 A=0.5 A=0.6 A=0.7 A=0.8 A=0.9 Rec. Source

. X -~ e ' @ ‘
1000 steps v N .\ 173 e e ‘ 'y
875 steps -1

750 steps

-
W
'S

625 steps

-
-

500 steps

s
-

375 steps

250 steps

-

-

e

9
¥
4
9
9
¥

125 steps

-

0 steps

Figure 9: Coarse-to-fine interpolations that vary the number of diffusion steps prior to latent mixing.

EX pe ri m e ntS “ Progressive generation

progressive unconditional generation process given by progressive decompression from random bits. In other words, we predict the
result of the reverse process, x"0, while sampling from the reverse process using Algorithm 2. Figures 6 and 10 show the resulting
sample quality of x"0 over the course of the reverse process. Large scale image features appear first and details appear last. Figure 7
shows stochastic predictions x0 ~ pO(x0|xt) with xt frozen for various t. When t is small, all but fine details are preserved, and when t is
large, only large scale features are preserved. Perhaps these are hints of conceptual compression

T IR
| -
. . —

..-ﬁ--¢!!¥K¥¥¥V¥Y¥V

} . - » 4
"' l'. LQ’

Figure 6: Unconditional CIFAR10 progressive generation (X over time, from left to right). Extended samples
and sample quality metrics over time in the appendix (Figs. 10 and 14).

EX pe ri m e ntS “ Progressive generation

Share x,

Figure 7: When conditioned on the same latent, CelebA-HQ 256 x 256 samples share high-level attributes.
Bottom-right quadrants are x;, and other quadrants are samples from pg (X0 |x+).

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:
The encoder is fixed
The latent variables have the same dimension as the data
The denoising model is shared across different timestep

The model is trained with some reweighting of the variational bound.

Additional References

Archive Paper — https://arxiv.org/pdf/2006.11239.pdf
https://generativeai.pub/denoising-diffusion-probabilistic-models-from-scratch-728df8228565
https://towardsdatascience.com/understanding-the-denoising-diffusion-probabilistic-model-the-socratic-way-445¢c1bdc5756
https://towardsdatascience.com/understanding-diffusion-probabilistic-models-dpms-1940329d6048
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://medium.com/@aitau_am/a-friendly-introduction-to-denoising-diffusion-probabilistic-models-cc76b8abef25
https://en.wikipedia.org/wiki/Diffusion_model

https://en.wikipedia.orag/wiki/Inception_score
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

— Peer Reviews on Paper
e https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179cadb-Review.html
e https://medium.com/@AriaLeeNotAriel/numbynum-denoising-diffusion-probabilistic-models-reviewed-2b1aff8bb9a5

https://arxiv.org/pdf/2006.11239.pdf
https://generativeai.pub/denoising-diffusion-probabilistic-models-from-scratch-728df8228565
https://towardsdatascience.com/understanding-the-denoising-diffusion-probabilistic-model-the-socratic-way-445c1bdc5756
https://towardsdatascience.com/understanding-diffusion-probabilistic-models-dpms-1940329d6048
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://medium.com/@gitau_am/a-friendly-introduction-to-denoising-diffusion-probabilistic-models-cc76b8abef25
https://en.wikipedia.org/wiki/Diffusion_model
https://en.wikipedia.org/wiki/Inception_score
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Review.html
https://medium.com/@AriaLeeNotAriel/numbynum-denoising-diffusion-probabilistic-models-reviewed-2b1aff8bb9a5

Extended derivations

(. - Po(Xt—1|X¢
{{X1:7|X0 L =E,|-—logp(xT) ;lo i 1)‘
pe Xt— 1|Xt

=E, [-logp(xr log————= : po(Xe—1]xe) q(xe—1)

_ ; (X¢|x¢-1) =Eq | —logp(xr) — ;1) A
" Po(X¢—1X¢) po(Xo|x1) _ -_ plxr) Po(Xe—1|xe)
= o losper) e g)~) =B) ") o

- I >
_E —lng(xT)—Zlog Po(Xe—1[%¢) q(xe-1/Xo) . pe(Xo[x1) — Dy (q(xr) || pxz)) + Eq [ZDKL(q(xt_ﬂxt)” i (1[50}
| 0 q(xe-1fxe, x0) q(xi[x0) q(x1[x0) =
=E |- -) log 1)9 it — log py(xo[x1)
lexO =7 q(Xe-1[xt,%0)

= Eq | Dicw.(g(xr[xo0) [| p(xr)) +) Dicr(q(xe-1[Xe: Xo) | po(e- 1|xt))—logp9(x0|x1)]

L t>1

Alternate version of L

] + H(xo)

CelebA-HQ 256 x 256 generated samples

CelebA-HQ 256 x 256 nearest neighbors, computed on a 100 x 100 crop surrounding the faces. Generated samples are in
the leftmost column, and training set nearest neighbors are in the remaining columns

(a) Pixel space nearest neighbors

CelebA-HQ 256 x 256 nearest neighbors, computed on a 100 x 100 crop surrounding the faces. Generated samples are in
the leftmost column, and training set nearest neighbors are in the remaining columns

(b) Inception feature space nearest neighbors

Unconditional CIFAR10 generated samples

s LIRS =R SRl LR &

1EI%EWIEIIUIEEEEIEJ=

s LM S Ol S RS ES N
A Ll [T P L Y e
BA I o 5 e E2PSER, 00 - i SN e T
COANRIRERTRLENP AT
Lo i e ol W2 S R LR A e P o 10 B0 1
(D 74 Ee R M * 2[5
S AL A i AR TRy
Eﬁgﬂﬂlg=lﬁlﬂdilﬂﬂalﬂ
Al v oL = FWEWES BN =2
IE'.&I.IEEHiH?ﬁEI.Mﬂ

Unconditional CIFAR10 nearest neighbors. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.

ey o e e R iy e) ! g St e =[] o e o
iU El ey Wi al S 2 S B
MY BB SN M eNgy - (N ALD<
(|l il bl arbideale d laid ol oLl] ol
ARV AT IO REREOSS
R K] K S e o P s o e
PR ER BRI E ¢
oY R S I Y I O R G B T e el
R o et i AN O a5 s O G s 0 o R
I A G s s s 9 e e s e -

(a) Pixel space nearest neighbors

Unconditional CIFAR10 nearest neighbors. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.

i e st e s e T e
KRR - EEIluﬂlliﬁIm
B e S T O i auN B
!Iﬁdﬁﬂlﬂllllllﬂﬁﬂﬂiﬂ

d LRV L A0 (L4 O i (A
] Nl I sl S [R s = | [
lﬂ!ﬂﬁﬂ!ﬂmﬂﬂhﬁﬂﬂlﬂlﬂl
o T 0 0 N o . L W 4 50
PGPS - RN P e S
e Bl -ENEz - “H\HEESL

(b) Inception feature space nearest neighbors

Figure 17: LSUN Bedroom generated samples, large model. FID=4.90

Figure 17: LSUN Bedroom generated samples, large model. FID=4.90

LSUN Church generated samples. FID=7.89

1§
> 1

MELERCLL moasbotne?tum: www

LSUN Church generated samples. FID=7.89

LSUN Bedroom generated samples, small model. FID=6.36

LSUN Bedroom generated samples, small model. FID=6.36

e

LSUN Cat generated samples. FID=19.75

W ErE
[P, - P

-y T

= ’\
,IL |
‘ ¢ ! |

~ . szirs wahed

chiool!Hix !l tec dw

LSUN Cat generated samples. FID=19.75

Types of 2
Uncertainty

Aleatoric Uncertainty

* There are two major kinds of uncertainty \4/\{/\——‘

* Epistemic Uncertainty describes what the
model doesn’t know. It is attributed to
inadequate knowledge of the model. This is the
uncertainty which can be reduced by having
more data or increasing the model complexity.

Epistemic Uncertainty

e Aleatoric Uncertainty is the inherent lllustration of aleatoric and epistemic uncertainty. Blue dots are
uncertainty which is part of the data generating the data points, red lines are the predictions, and the green
process. For example, a paper plane which is shades is the +3 Standard deviation around the prediction.
launched by a high precision equipment, which Aleatoric uncertainty captures the noise in the dataset and is
maintains the same degree of release, speed of thus constat in the case if a data set with homoscedastic noise

pictured above. Meanwhile, epistemic uncertainty captures the
uncertainty of the model and thus decrease when more data
points are observed

release and a thousand other parameters will
still not fall in the same place each trial. This
inherent variability is Aleatoric Uncertainty.

