
Denoising Diffusion Probabilistic Models

Authors

Jonathan Ho UC
Berkeley
jonathanho@berkeley.edu

Pieter Abbeel
UC Berkeley
pabbeel@cs.berkeley.edu

Ajay Jain
UC Berkeley
ajayj@berkeley.edu

Denoising Diffusion Probabilistic Models (DDPM)

➢ A technique used in machine learning to generate new data that resembles a
given dataset, a task known as data generation.

➢ Unlike some other models that work by classifying or differentiating data,
DDPMs are generative models.

➢ Are designed to create new data closely matching a given set of real data.
➢ Start with random noise and then iteratively refine it to form a coherent data

sample, a process guided by a neural network
➢ The data is being refined at each step to resemble real data.
➢ Refining the data is controlled by a schedule of noise reduction levels, which

are applied at each step of the generation process

Background

Diffusion model or diffusion probabilistic model Or Score-based generative model

➢ Inspired by non-equilibrium thermodynamics
➢ A class of Latent variable generative models
➢ A parameterized Markov chain trained using variational inference to produce

samples matching the data after finite time.
➢ Transitions of this chain are learned to reverse a diffusion process
➢ A Markov chain that gradually adds noise to the data in the opposite direction

of sampling until signal is destroyed. When the diffusion consists of small
amounts of Gaussian noise

➢ It is sufficient to set the sampling chain transitions to conditional Gaussians
too, allowing for a particularly simple neural network parameterization.

➢ Unlike VAE or flow models, diffusion models are learned with a fixed
procedure and the latent variable has high dimensionality (same as the original
data)

➢ The goal of diffusion models is to learn a diffusion process that generates the
probability distribution of a given dataset

➢ They learn the latent structure of a dataset by modeling the way in which data
points diffuse through their latent space.

Diffusion models

Diffusion Models

 Three Major Components

Forward Process The Sampling ProcedureReverse Process

Forward diffusion process that gradually adds noise to input
Reverse denoising process that learns to generate data by denoising

Forward Process

fig. 2. The Markov chain of forward (reverse) diffusion process of generating a sample by slowly adding (removing) noise. (Image source: Ho et al. 2020 with a few
additional annotations)

➢ This term is also known as the forward diffusion
kernel (FDK).

➢ It defines the PDF of an image at timestep t in
the forward diffusion process xt given image
xt-1.

➢ It denotes the “transition function” applied at
each step in the forward diffusion process

➢ This term is also known as the forward diffusion
kernel (FDK).

➢ It defines the PDF of an image at timestep t in
the forward diffusion process xt given image
xt-1.

➢ It denotes the “transition function” applied at
each step in the forward diffusion process

The formal definition of the forward process in T steps:

Forward diffusion process (fixed)

Data Noise

x0 x1 x2 x3 x4 … xT

(joint)

19

Forward Diffusion Process

Data Noise

Forward diffusion process (fixed)

x0 x1 x2 x3 x4 … xT

and

Define

For sampling: where

values schedule (i.e., the noise schedule) is designed such that

(Diffusion Kernel)

Diffusion Kernel

Forward Process

So far, we discussed the diffusion kernel but what about ?

We can sample by first sampling and then sampling (i.e., ancestral sampling).

The diffusion kernel is Gaussian convolution.

xt

q(x0) q(x1) q(x2) q(x3) q(xT)

Diffused Data Distributions

…

Data Noise

Diffused
data dist.

Input
data dist.

Diffusion
kernel

Joint
dist.

What happens to a distribution in the forward diffusion?

Recall, that the diffusion parameters are designed such that

Generation:

Sample

In general, is intractable.

Can we approximate ? Yes, we can use a Normal distribution if is small in each forward diffusion step.

xt

q(x1) q(x2) q(x3)

Diffused Data Distributions

…

Iteratively sample

True Denoising Dist.

q(x0)

q(x0|x1)

q(xT)

q(xT-1|xT)q(x1|x2) q(x2|x3) q(x3|x4)

Generative Learning by Denoising

Forward Process

ignore the fact that the forward process variances βt are learnable by
reparameterization and instead fix them to constants .

Thus, in their implementation, the approximate posterior q has no learnable parameters,
so LT is a constant during training and can be ignored

Reverse Process

Formal definition of forward and reverse processes in T steps:

Reverse denoising process (generative)

Data Noise

Trainable network
(U-net, Denoising Autoencoder)

x0 x1 x2 x3 x4 … xT

Reverse Denoising Process

For training, we can form variational upper bound that is commonly used for training variational autoencoders:

Sohl-Dickstein et al. ICML 2015 and Ho et al. NeurIPS 2020 show that:

where is the tractable posterior distribution:

Learning Denoising Model : Variational upper bound

Since both and are Normal distributions, the KL divergence has a simple form:

Recall that

They propose to represent the mean of the denoising model using a noise-prediction network:

With this parameterization

Parameterizing the Denoising Model

The time dependent ensures that the training objective is weighted properly for the maximum data likelihood training.

However, this weight is often very large for small t’s.

observe that simply setting improves sample quality. So, they propose to use:

Training Objective Weighting : Trading likelihood for perceptual quality

Summary

Summary

Recall that sampling from is done using where

Freq.

Small t

Freq.

Freq.

Large t

In the forward diffusion, the high frequency content is perturbed faster.

Fourier
Transform

What happens to an image in the forward diffusion process?

Training

Illustration of the training process of a denoising diffusion probabilistic model training.

Samplaing

Illustration of the sampling process of a denoising diffusion probabilistic model.

Experiments

➢ T = 1000
➢ forward process β1 = 10−4 to βT = 0.02
➢ These constants were chosen to be small relative to data scaled to [−1, 1]
➢ Reverse and forward processes have approximately the same functional form while keeping the

signal-to-noise ratio at xT as small as possible as LT = DKL(q(xT |x0) k N (0, I)) ≈ 10−5
➢ To represent the reverse process, used a U-Net backbone similar to an unmasked PixelCNN++

with group normalization throughout . Parameters are shared across time, which is specified to
the network using the Transformer sinusoidal position embedding. We use self-attention at the 16
× 16 feature map resolution.

The Inception Score (IS) is an algorithm used to assess the quality of images created by a
generative image model such as a generative adversarial network (GAN)

Inception Scores

Experiments - Sample Quality

Table shows Inception scores,
FID scores, and negative log
likelihoods (lossless
codelengths) on CIFAR10.
With FID score of 3.17, used
unconditional model achieves
better sample quality than
most models in the literature,
including class conditional
models. This FID score is
computed with respect to the
training set, as is standard
practice; when we compute it
with respect to the test set, the
score is 5.24, which is still
better than many of the
training set FID scores in the
literature.

Experiments - Reverse process parameterization and training objective ablation

the sample quality effects of reverse process
parameterizations and training
objectives.That the baseline option of
predicting µ˜ works well only when trained on
the true variational bound instead of
unweighted mean squared error, a simplified
objective akin to. Also see that learning
reverse process variances (by incorporating
a parameterized diagonal Σθ(xt) into the
variational bound) leads to unstable training
and poorer sample quality compared to fixed
variances. Predicting , as we proposed,
performs approximately as well as predicting
µ˜ when trained on the variational bound with
fixed variances, but much better when
trained with our simplified objective

Experiments

Experiments

Experiments - Progressive coding

The gap between train and test is at most 0.03 bits per dimension, which is
comparable to the gaps reported with other likelihood-based models and
indicates that our diffusion model is not overfitting. Still, while lossless code
lengths are better than the large estimates reported for energy based
models and score matching using annealed importance sampling, they are
not competitive with other types of likelihood-based generative models.
Since used samples are nonetheless of high quality, IT conclude that
diffusion models have an inductive bias that makes them excellent lossy
compressors. Treating the variational bound terms L1 +· · ·+LT as rate and
L0 as distortion, The CIFAR10 model with the highest quality samples has a
rate of 1.78 bits/dim and a distortion of 1.97 bits/dim, which amounts to a
root mean squared error of 0.95 on a scale from 0 to 255. More than half of
the lossless codelength describes imperceptible distortions.

Experiments - Progressive lossy compression

Experiments - Connection to autoregressive decodin

 Now consider setting the diffusion process length T to the dimensionality of the data, defining the
forward process so that q(xt|x0) places all probability mass on x0 with the first t coordinates
masked out (i.e. q(xt|xt−1) masks out the t th coordinate), setting p(xT) to place all mass on a
blank image, and, for the sake of argument, taking pθ(xt−1|xt) to be a fully expressive conditional
distribution. With these choices, DKL(q(xT) k p(xT)) = 0, and minimizing DKL(q(xt−1|xt) k pθ
(xt−1|xt)) trains pθ to copy coordinates t + 1, . . . , T unchanged and to predict the t th coordinate
given t + 1, . . . , T. Thus, training pθ with this particular diffusion is training an autoregressive
model.

interpolate source images x0, x 0 0 ∼ q(x0) in latent space using q as a stochastic encoder, xt, x 0 t ∼ q(xt|x0), then decoding the linearly
interpolated latent x¯t = (1 − λ)x0 + λx 0 0 into image space by the reverse process, x¯0 ∼ p(x0|x¯t). In effect,used the reverse process to
remove artifacts from linearly interpolating corrupted versions of the source images, as depicted in Fig. 8 (left). fixed the noise for different
values of λ so xt and x 0 t remain the same. Fig. 8 (right) shows interpolations and reconstructions of original CelebA-HQ 256 × 256
images (t = 500). The reverse process produces high-quality reconstructions, and plausible interpolations that smoothly vary attributes
such as pose, skin tone, hairstyle, expression and background, but not eyewear. Larger t results in coarser and more varied
interpolations, with novel samples at t = 1000

Experiments - Interpolation

Experiments - Interpolation

Experiments - Progressive generation

 progressive unconditional generation process given by progressive decompression from random bits. In other words, we predict the
result of the reverse process, xˆ0, while sampling from the reverse process using Algorithm 2. Figures 6 and 10 show the resulting
sample quality of xˆ0 over the course of the reverse process. Large scale image features appear first and details appear last. Figure 7
shows stochastic predictions x0 ∼ pθ(x0|xt) with xt frozen for various t. When t is small, all but fine details are preserved, and when t is
large, only large scale features are preserved. Perhaps these are hints of conceptual compression

Experiments - Progressive generation

Diffusion models can be considered as a special form of hierarchical VAEs.

However, in diffusion models:

• The encoder is fixed

• The latent variables have the same dimension as the data

• The denoising model is shared across different timestep

• The model is trained with some reweighting of the variational bound.

Connection to VAEs

Additional References

● Archive Paper → https://arxiv.org/pdf/2006.11239.pdf
● https://generativeai.pub/denoising-diffusion-probabilistic-models-from-scratch-728df8228565
● https://towardsdatascience.com/understanding-the-denoising-diffusion-probabilistic-model-the-socratic-way-445c1bdc5756
● https://towardsdatascience.com/understanding-diffusion-probabilistic-models-dpms-1940329d6048
● https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
● https://medium.com/@gitau_am/a-friendly-introduction-to-denoising-diffusion-probabilistic-models-cc76b8abef25
● https://en.wikipedia.org/wiki/Diffusion_model
● https://en.wikipedia.org/wiki/Inception_score
● https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a

– Peer Reviews on Paper
● https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Review.html
● https://medium.com/@AriaLeeNotAriel/numbynum-denoising-diffusion-probabilistic-models-reviewed-2b1aff8bb9a5

https://arxiv.org/pdf/2006.11239.pdf
https://generativeai.pub/denoising-diffusion-probabilistic-models-from-scratch-728df8228565
https://towardsdatascience.com/understanding-the-denoising-diffusion-probabilistic-model-the-socratic-way-445c1bdc5756
https://towardsdatascience.com/understanding-diffusion-probabilistic-models-dpms-1940329d6048
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://medium.com/@gitau_am/a-friendly-introduction-to-denoising-diffusion-probabilistic-models-cc76b8abef25
https://en.wikipedia.org/wiki/Diffusion_model
https://en.wikipedia.org/wiki/Inception_score
https://medium.com/octavian-ai/a-simple-explanation-of-the-inception-score-372dff6a8c7a
https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Review.html
https://medium.com/@AriaLeeNotAriel/numbynum-denoising-diffusion-probabilistic-models-reviewed-2b1aff8bb9a5

Extended derivations
Alternate version of L

CelebA-HQ 256 × 256 generated samples

CelebA-HQ 256 × 256 nearest neighbors, computed on a 100 × 100 crop surrounding the faces. Generated samples are in
the leftmost column, and training set nearest neighbors are in the remaining columns

CelebA-HQ 256 × 256 nearest neighbors, computed on a 100 × 100 crop surrounding the faces. Generated samples are in
the leftmost column, and training set nearest neighbors are in the remaining columns

Unconditional CIFAR10 generated samples

Unconditional CIFAR10 nearest neighbors. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.

Unconditional CIFAR10 nearest neighbors. Generated samples are in the leftmost column,
and training set nearest neighbors are in the remaining columns.

Figure 17: LSUN Bedroom generated samples, large model. FID=4.90

Figure 17: LSUN Bedroom generated samples, large model. FID=4.90

LSUN Church generated samples. FID=7.89

LSUN Church generated samples. FID=7.89

LSUN Bedroom generated samples, small model. FID=6.36

LSUN Bedroom generated samples, small model. FID=6.36

LSUN Cat generated samples. FID=19.75

LSUN Cat generated samples. FID=19.75

Types of
Uncertainty

• There are two major kinds of uncertainty

• Epistemic Uncertainty describes what the
model doesn’t know. It is attributed to
inadequate knowledge of the model. This is the
uncertainty which can be reduced by having
more data or increasing the model complexity.

• Aleatoric Uncertainty is the inherent
uncertainty which is part of the data generating
process. For example, a paper plane which is
launched by a high precision equipment, which
maintains the same degree of release, speed of
release and a thousand other parameters will
still not fall in the same place each trial. This
inherent variability is Aleatoric Uncertainty.

Epistemic Uncertainty

Aleatoric Uncertainty

Illustration of aleatoric and epistemic uncertainty. Blue dots are
the data points, red lines are the predictions, and the green
shades is the ±3 Standard deviation around the prediction.
Aleatoric uncertainty captures the noise in the dataset and is
thus constat in the case if a data set with homoscedastic noise
pictured above. Meanwhile, epistemic uncertainty captures the
uncertainty of the model and thus decrease when more data
points are observed

