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Abstract

Computing mutual information (MI) of random
variables lacks a closed-form in nontrivial models.
Variational MI approximations are widely used
as flexible estimators for this purpose, but com-
puting them typically requires solving a costly
nonconvex optimization. We prove that a widely
used class of variational MI estimators can be
solved via moment matching operations in place
of the numerical optimization methods that are
typically required. We show that the same mo-
ment matching solution yields variational esti-
mates for so-called "implicit" models that lack a
closed form likelihood function. Furthermore, we
demonstrate that this moment matching solution
has multiple orders of magnitude computational
speedup compared to the standard optimization-
based solutions. We show that theoretical results
are supported by numerical evaluation in fully
parameterized Gaussian mixture models and a
generalized linear model with implicit likelihood
due to nuisance variables. We also demonstrate
on the implicit simulation-based likelihood SIR
epidemiology model, where we avoid costly like-
lihood free inference and observe many orders of
magnitude speedup.

1 INTRODUCTION

In this paper we address a fundamental problem of measur-
ing the information shared between random quantities. The
focus of this work is the mutual information (MI), which
is key in a diverse range of applications. For example,
in Bayesian optimal experiment design (BOED) (Lindley,
1956; Blackwell, 1950; Bernardo, 1979) MI is used to mea-
sure the amount of information provided by each hypothe-
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sized experiment. Additionally, MI plays a key role in mea-
suring and optimizing the amount of information that can be
transmitted along noisy communication channels (Cover and
Thomas, 2006; MacKay et al., 2003). MI is essential in op-
timizing sensor configurations (Krause and Guestrin, 2005),
sensor selection (Williams, 2007), active learning (Settles,
2012), representation learning (Tishby et al., 2000), and
many other applications.

Despite its broad use, exact calculation of MI is typically
not possible. Sample-based estimates of MI can be inef-
ficient both in terms of computation and sample complex-
ity. Such sample-based estimators require Nested Monte
Carlo (NMC) estimation, which exhibits large finite sam-
ple bias that decays slowly (Zheng et al., 2018; Rainforth
et al., 2018). Additionally, straightforward Monte Carlo
estimation cannot be applied in so-called implicit likelihood
models that lack a closed-form data generating distribution.
Such models typically require likelihood-free inference by
ratio estimation (LFIRE) (Thomas et al., 2022), which can
be slow due to repeated fitting of generalized linear models
(GLMs) in an inner-loop (Kleinegesse et al., 2021).

Recent variational approaches provide an appealing alter-
native to MI estimation by recasting the calculation as an
optimization problem (Poole et al., 2019). Such methods
provide convenient bounds (Barber and Agakov, 2004) and
approximations that apply even in the setting of implicit
likelihood models (Foster et al., 2019). These approaches
have proven successful in a range of sequential decision
making tasks (Pacheco and Fisher III, 2019; Foster et al.,
2020). Yet, despite their computational benefits, computing
such estimators can still be prohibitive due to the underlying
nonconvex optimization. In this work we will demonstrate
that such estimators can be calculated efficiently for a class
of variational approximations in the exponential family.

Contributions We provide an overview of our primary
contributions below:

• We prove conditions on exponential family variational
approximations where MI estimates can be solved via
fast moment matching projection. The moment match-
ing projection can be solved more efficiently than stan-
dard gradient-based optimization approaches.
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• For a Gaussian variational approximation we show
a single moment matching projection of the joint is
sufficient to optimize three variational MI estimates: an
upper-bound, lower-bound, and a non-bound (implicit
likelihood) approximation.

• We characterize bias of the empirical estimators when
variational MI quantities cannot be computed analyti-
cally.

• We demonstrate that our approach flexibly adapts to
a variety of models including Gaussian Mixture Mod-
els (Huber et al., 2008), a generalized linear model
“Extrapolation Experiment”, and the SIR epidemiology
model. The latter involves a simulation-based implicit
likelihood.

The focus of this work is to provide fast calculation of exist-
ing estimators. We do not provide any claims on improving
accuracy of said estimators. In all experiments we demon-
strate orders of magnitude speedup over existing gradient-
and simulation-based estimation techniques.

2 COMPUTING & APPROXIMATING MI

Consider an arbitrary joint distribution p(x, y) with latent
variable x and observable variable y. The shared informa-
tion between these can be computed via the mutual informa-
tion (MI) (Cover and Thomas, 2006; MacKay et al., 2003):

I(X;Y ) = H(Y )−H(Y | X). (1)

The marginal entropy is given by
H(Y ) = E[− log p(Y )] while the conditional entropy is
H(Y | X) = E[− log p(Y | X)]. Entropy expectations are
taken with respect to the joint p(x, y).

2.1 Calculating MI : Explicit and Implicit Models

Despite its simple definition (Eqn. (1)) calculating MI is
difficult in practice since entropy terms require exact eval-
uation of the probabilities. For example, calculating the
marginal entropy H(Y ) requires evaluation of log p(y),
which often lacks a closed-form. Similarly, log p(y | x)
may lack a closed-form in so-called implicit likelihood mod-
els that require marginalization of nuisance variables (c.f.
Fig. 1) or are defined by simulation as in the SIR model
of Sec. 8.3. Another option is to use the symmetric form
I(X;Y ) = H(X) − H(X | Y ). But this approach re-
quires evaluation of the posterior log p(x | y), which is also

zx y

Figure 1: Implicit Likelihood via Nuisance Variables Likeli-
hood p(y | x) marginalizes z.

not generally closed-form. For these reasons approxima-
tions must be considered, such as the commonly employed
sample-based estimators discussed next.

2.2 Nested Monte Carlo (NMC) Estimation

Given samples {(xi, yi)}Ni=1 ∼ p one may use a simple
Monte Carlo procedure to estimate MI,

ÎNMC =
1

N

N∑
i=1

log
p(yi | xi)

1
N

∑N
j=1 p(y

i | xj)
(2)

The use of a plug-in estimator for the marginal p(yi) ≈
1
N

∑
j p(y

i | xj) makes this a nested Monte Carlo (NMC)
estimator. The NMC is consistent, but exhibits considerable
finite sample bias, as can be shown by Jensen’s inequal-
ity (Zheng et al., 2018; Rainforth et al., 2018). Due to its
bias NMC is often used as a probabilistic bound on MI,
but the bound gap can be significant as bias decays slowly.
A bigger limitation is that the NMC estimator (Eqn. (2))
requires pointwise evaluation of the conditional probability
p(y | x), which may be impossible for simulation-based
implicit likelihood models, such as the SIR Epidemiology
model in Sec. 8.3.

3 VARIATIONAL MI ESTIMATION

Variational MI estimators (Poole et al., 2019) address the
computational and sample complexity issues of NMC es-
timators by recasting MI calculation as an optimization
problem. In some cases we can obtain MI bounds using
Gibbs’ inequality. The proof is a result of non-negativity
of the Kullback-Leibler divergence, briefly: KL(p ∥ q) =
Hp(q) − H(p) ≥ 0, and so we can bound entropy as
Hp(q) ≥ H(p). In other cases we desire an approxima-
tion, rather than a bound. We discuss both cases.

Entropy Notation. We use several notations for entropy.
Hp(X) is the entropy w.r.t. p(x). When the distribution
is clear from context use the shorthand H(X). Cross-
entropy between distributions p and q is denoted Hp(q)
and Hp(q(X)) when the random variable must be explicit.

3.1 Variational MI Bounds

Applying Gibbs’ inequality to the conditional entropy
H(X | Y ) ≤ Hp(q(X | Y )) we have the lower bound (Bar-
ber and Agakov, 2004),

I(X;Y ) ≥ max
q

H(X)−Hp(q(X | Y )) ≡ Ipost. (3)

which we call the variational posterior lower bound. Ob-
serve that calculation of the lower bound Ipost requires eval-
uation of the marginal entropy H(X) under the model p,
which may be prohibitive. Applying Gibbs’ inequality, in-
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stead, to the marginal entropy H(X) ≤ Hp(q(X)) we ob-
tain the variational marginal upper bound,

I(X;Y ) ≤ min
q

Hp(q(X))−H(X | Y ) ≡ Imarg (4)

Observe that evaluation of the upper bound Imarg requires
evaluation of the conditional entropy H(X | Y ) under the
model p. For this reason, both bounds (Ipost and Imarg) apply
only when the model entropy terms can be calculated or
ignored–typically true for BOED (Pacheco and Fisher III,
2019; Foster et al., 2019, 2020; Barber and Agakov, 2004).

3.2 Variational MI Approximation : Implicit
Likelihood Models

In many cases, the model entropy terms in Eqns. (3) and (4)
cannot be calculated and so we cannot obtain MI bounds.
By replacing both entropy terms with their cross-entropies
we have the following approximation (Foster et al., 2019):

I(X;Y ) ≈ Hp(qm(X))−Hp(qp(X | Y )) ≡ Im+p (5)

where the variational distributions are qm(x)
(marginal) and qp(x | y) (posterior). Reversing
the entropy terms yields an analogous estimator:
Im+ℓ ≡ Hp(qm(Y ))−Hp(qℓ(Y | X)) Both estimators
avoid evaluation of model probabilities, and thus are
useful for implicit likelihood models. We focus on Im+p

for consistency, but note that our results in Sec. 4 apply
equally to Im+ℓ, which is the form discussed in Foster et al.
(2019). In Sec. 4 we will discuss how to find the best such
approximation.

4 MOMENT MATCHING MI
ESTIMATORS

In general, computing the optimal variational estimators
(e.g. Imarg, Ipost, and Im+p) requires solving nonlinear – and
often nonconvex – optimization problems. In the following
sections we demonstrate a class of variational distributions
in the exponential family that correspond to an efficient
convex optimization. For the special case of Gaussian vari-
ational distributions the optimal estimators can be solved
in closed-form by matching expected sufficient statistics
(means and variances). The same efficient moment cal-
culation yields optimal (or optimally bounded) variational
distributions for all three estimators. Unless provided, all
proofs can be found in the Appendix.

4.1 Exponential Families

Our results rely heavily on properties of the exponential
family, which we briefly review here. A distribution q(x) is
a member of the exponential family if the PDF / PMF is of
the following form,

q(x) = h(x) exp
[
ηTT (x)−A(η)

]
. (6)

where η are the natural parameters, h(x) is the base mea-
sure, T (x) are the sufficient statistics, and A(η) is the log-
partition function. In addition to the natural parameters
η each exponential family has an alternate set of mean
parameters µ, defined as the expected sufficient statistics:
µ = Eq[T (x)]. Mean parameters play a key role in find-
ing projections onto the exponential family, as shown in
Lemma 4.1.

Lemma 4.1 (Moment Matching Projection). For any dis-
tribution p(x) and exponential family q(x) whose support
includes that of p the minimum Kullback-Leibler projection:

q∗ = argmin
q

KL(p ∥ q)

is convex and the solution given by moment matching con-
ditions: Ep[T (X)] = Eq[T (X)] = µ∗

The interested reader can consult the texts Bishop (2006);
Murphy (2012) for a proof of Lemma 4.1 and more de-
tails on the exponential family. Fig. 2 shows an example
of a GMM, p(x, y), with a moment matched variational
Gaussian, q(x, y) (left), corresponding marginal projection
(center), and resulting variational estimators (right).

4.2 Variational Marginal (upper bound)

To optimize the variational marginal upper bound, Imarg, we
minimize the marginal cross-entropy,

I(X;Y ) ≤ min
qm

Hp(qm(X))−Hp(X | Y )︸ ︷︷ ︸
const.

, (7)

where the conditional entropy Hp(X | Y ) is constant w.r.t.
qm(x) and can be ignored during optimization. If qm(x) is
in the exponential family, then the minimization is found by
moment matching as stated next.

Theorem 4.2. Let qm(x) be in the exponential family with
statistics T (x), then for any p(x), the optimal I∗marg is given
by moment matching:

Eqm(x) [T (X)] = Ep(x) [T (X)]

Theorem 4.2 is straightforward and is a direct result the
moment matching property in Lemma 4.1. We included it
as a separate statement for later results.

4.3 Variational Posterior (lower bound)

To optimize the variational posterior lower bound, Ipost, we
minimize the conditional entropy,

I(X;Y ) ≥ Hp(X)︸ ︷︷ ︸
const.

− min
qp

Hp(qp(X | Y )) (8)

The Hp(X) term is constant in qp and can be ignored for
optimization. The optimum of Eqn. (8) is occurs at the
condition specified in the following Lemma.
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Figure 2: Moment Matched Gaussian Mixture Model (a) A bimodal GMM p overlaid with the moment matched Gaussian q has its
level curves plotted on top in red. (b) The marginal PDF is plotted for the Gaussian mixture model and the moment matched Gaussian. (c)
The true I(X,Y ) is shown with estimates Imarg, Ipost, and Im+p are all plotted. Notice that Ipost ≤ Im+p ≈ I ≤ Imarg, this ordering is
discussed in Lemma 6.1.

Lemma 4.3. If qp(x | y) takes the form of Eqn. (10), then
the minimization of Eqn. (8) occurs when

Ep(y)
[
Eqp(x|y) [T (X,Y )]

]
= Ep(x,y) [T (X,Y )] (9)

The equation in Lemma 4.3 is seemingly a moment match-
ing condition. However, the l.h.s. of Eqn. (9) is an expecta-
tion w.r.t. mixed distributions p(y)qp(x | y), and is difficult
to satisfy in general. To simplify we consider the joint expo-
nential family distribution q(x, y; η) with natural parameters
η and conditional given by,

qp(x | y) = q(x | y; η) = q(x, y; η)

q(y; η)
(10)

Note that q(y; η) =
∫
q(x, y; η) dx is not necessarily in

the exponential family. We can now show that moment
matching joint statistics of q(x, y; η) yields the optimal Ipost
via the following Lemma.

Theorem 4.4. Let q(x, y) be in the exponential family with
sufficient statistics, T (x, y) = [τ(x), τ(y), τ(x, y)]T where
τ(x) are the sufficient statistics dependent only on x, τ(y)
only on y, and τ(x, y) on both. Further, let the posterior ex-
pected statistics be a linear combination of marginal statis-
tics as in,

Eqp(x|y) [T (X,Y )] =

k∑
i

gi(η)τi(Y ) (11)

where τi(y) is the ith component of τ(y) and gi(η) are
functions of only the parameter η. Then, the optimal varia-
tional distribution, qp, for Ipost is defined by joint moment
matching: Ep(x,y)[T (X,Y )] = Eq(x,y)[T (X,Y )].

The linearity conditions of the sufficient statistics presented
in Theorem 4.4 show that moment matching is equivalent to
the optimality condition presented in Lemma 4.3 for maxi-
mizing the lower bound on Ipost in Eqn. (8). Any distribu-
tion in the exponential family that satisfies these conditions

can be optimized for Ipost lower bound by simply moment
matching the sufficient statistics instead of computing the
optimal via gradient descent.

4.4 Variational Marginal & Posterior (approximation)

Since Im+p is neither an upper nor lower bound we must
minimize the absolute error

I∗m+p = argmin
qm,qp

|I(X;Y )− Im+p(qm, qp)| (12)

which is nonconvex in general and involves our target MI
I(X;Y ). We take the approach proposed in Foster et al.
(2019) and instead minimize the following upper bound,
which is further convex in our case.

Lemma 4.5. For any model p(x, y) and distributions qm(x),
qp(x | y), the following bound holds:

|Im+p − I| ≤ Hp(qm(X)) +Hp(qp(X | Y )) + C

where C = −Hp(p(X))−Hp(p(X | Y )) does not depend
on qm or qp. Further, the RHS is 0 iff qm(x) = p(x) and
qp(x | y) = p(x | y) almost surely.

Previous approaches (Foster et al., 2019) minimize this up-
per bound via (stochastic) gradient descent. The objective
decomposes so that marginal and posterior variational dis-
tributions can be separately optimized:

q∗m =argmax
qm

Ep(x,y)[log(qm(X))]

q∗p =argmax
qp

Ep(x,y)[log(qp(X | Y ))]
(13)

The following theorem states that for appropriately chosen
exponential family approximations the solution to Eqn. (13)
can be solved via moment matching.



Caleb Dahlke, Sue Zheng, Jason Pacheco

Theorem 4.6. Moment Matching = Optimization
Let qm(x) and q(x, y) be exponential family distributions.
Further, let q(x, y) satisfy the linear conditional expecta-
tions property in Eqn. (11).

Eqp(x|y) [T (X,Y )] =

k∑
i

gi(η)τi(Y )

Then, moment matching the joint q(x, y) and marginal
qm(x)

Ep(x,y)[T (X,Y )] = Eq(x,y)[T (X,Y )]

Ep(x)[T (X)] = Eq(x)[T (X)]

yield optimal qp(x | y) ∝ q(x, y) and qm(x) that minimize
the bound on Im+p in Lemma 4.5.

The proof of Theorem 4.6 follows immediately from Theo-
rem 4.2 and Theorem 4.4.

4.5 Variational Gaussian Distribution

Results of the preceding sections show the general condi-
tions of exponential families such that moment matching
yields optimal variational MI approximations. The scenario
further simplifies when q(x, y) is chosen as a joint Gaussian
distribution. In this case all three variational MI approxi-
mations (Imarg, Ipost, Im+p) can be determined by moment
matching the joint distribution. We begin by stating a simple
property of Gaussians, namely moment matching the joint
implies moment matching of the marginals.
Lemma 4.7. Let q(x, y) = N (m,Σ) be a Gaussian and
qm(x) =

∫
q(x, y)dy, then

Ep(x,y)[T (x, y)] = Eq(x,y)[T (x, y)] (14)

implies
Ep(x)[T (x)] = Eqm(x)[T (x)] (15)

By Lemma 4.7, we see that moment matching a joint Gaus-
sian will be the optimal variational distribution for Imarg
as discussed in Theorem 4.2. For Ipost, we show that the
conditions of Lemma 4.3 are satisfied.
Theorem 4.8. Let q(x, y) = N (m,Σ) be a multivariate
Gaussian distribution. Then qp(x | y) is also Gaussian and
satisfies conditions of both Lemma 4.3 and Theorem 4.4.
Furthermore, the optimal Ipost is obtained by joint Gaussian
moment matching conditions,
m∗ = Ep(x,y)

[
(X,Y )T

]
, Σ∗ = covp(x,y)

(
(X,Y )T

)
And moments of qp(x | y) are the corresponding Gaussian
conditional moments of m∗ and Σ∗.

The proof of Theorem 4.8 shows that moment matching a
joint Gaussian will optimize Ipost. Finally, we show that
the general result of moment matching the marginal and
joint to optimize Im+p in Theorem 4.6 is satisfied by simply
moment matching a joint, q(x, y) = N (µ,Σ).

Corollary 4.9. Let q(x, y) = N (µ,Σ), qm(x) =∫
q(x, y)dy, and qp(x | y) = q(x,y)

q(y) . Then by Theorem 4.6
moment matching the joint q(x, y) yields optimal Gaussian
qp and qm that minimize the bound on Im+p in Lemma 4.5.

In summary of these results, for q(x, y) Gaussian moment
matching the joint distribution yields optimal Gaussian ap-
proximations for all three of the variational MI methods
Imarg, Ipost, and Im+p.

5 EMPIRICAL ESTIMATORS OF
VARIATIONAL MI

The results in Sec. 4 assume that moments of the target distri-
bution are available in closed-form. However, we generally
need to estimate these moments via samples. In this section
we discuss the details of computing variational MI using
empirical estimators. Given samples {xi}Ni=1 we define the
Monte Carlo entropy estimators as,

Hp(p(x)) ≈ − 1

N

N∑
i

log(p(xi)) = Ĥp(p(x)) (16)

Hp(q(x)) ≈ − 1

N

N∑
i

log(q(xi)) = Ĥp(q(x)) (17)

The method of moment matching to find optimal variational
estimators requires computing the expectation of sufficient
statistics, which must also be approximated. The notation
for the analytic moment matched variational distribution,
q(x, y), will be defined by the parameters

µ∗ = Ep(x,y)[T (x, y)] (18)

whereas the empirical moment matched variational distribu-
tion, q̂(x, y), is defined by the parameters

µ̂ =
1

N

N∑
i

T (xi, yi) (19)

where xi, yi ∼ p(x, y). The use of a plug-in variational
distribution q̂ based on empirical moments induces bias in
the estimated cross-entropy. The following Lemma provides
an ordering of each of these estimators according to their
biases.

Lemma 5.1. Entropy Ordering
Let x ∈ Rd, p(x) be an arbitrary distribution, and q(x) =
N (µ∗,Σ∗) where µ∗,Σ∗ analytically moment matched to
p(x). Furthermore, let q̂(x) = N (µ̂, Σ̂) be the empirically
moment matched variational distribution. Then,

Hp(p(x))
(a)
= E

[
Ĥp(p(x))

](b)
≤ E

[
Ĥp(q̂(x))

] (c)
≤ Hp(q(x))

To summarize the implication of Lemma 5.1 it shows that
the plug-in empirical cross-entropy estimator is negatively
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Figure 3: Moment Matched Optimum (a) The moment match-
ing solution (red) is the global minimum as a variational apprxi-
mation to a GMM. (b) For a seperate GMM, the moment matched
solution is a local maximum and there is a range of values for ρ
that result in better approximation, and two that result in exact
values of MI.

biased w.r.t. to the true cross-entropy (c) (by Jensen’s in-
equality). This estimator remains an upper bound on the
corresponding empirical estimate of the target entropy (b)
which itself is unbiased (a) by the law of large numbers
(though impractical to compute unless p(x) is known). The
bias induced by (c) can result in bound violations at small
sample sizes, as observed in Fig. 4. Note that when moment
matching conditions are satisfied the cross-entropy is equiv-
alent to the entropy of the exponential family, as established
in the next Lemma.

Lemma 5.2. Analytic Entropy
Let p(x) be any distribution and q(x) be in the exponential
family with constant base measure, h(x) = C, which is an-
alytically moment matched to p(x) and q̂(x) is empirically
moment matched, then

Hp(q(x)) = Hq(q(x)) Ĥp(q̂(x)) = Hq̂(q̂(x)) (20)

The above result is convenient in practice as the exponential
family often has closed form solutions for their entropy.
This allows us to avoid the empirical expectation w.r.t. p in
the cross-entropy.

6 ACCURACY OF VARIATIONAL MI
ESTIMATORS

Previous sections have addressed the efficient computation
of variational MI approximations. However, it remains to
consider the accuracy of each estimator, and under what
conditions one may be preferable over another. This section
provides some preliminary analysis that addresses this issue.
We begin by showing that the MI estimators satisfy a total
ordering.

Lemma 6.1. For any qm(x) and qp(x | y),

Ipost ≤ Im+p ≈ I ≤ Imarg

where I ≡ I(X;Y ) is the true MI and (Imarg, Ipost, Im+p)
are computed from qm and qp.

The above Lemma states that approximation Im+p is never
the least accurate out of all three methods. When Im+p

is an over approximation it is a tighter upper bound than
Imarg. The converse holds if it is an under approximation
(it is a tighter than Ipost). Ideally we would be able to deter-
mine which of the three estimators is most accurate for any
instance. The following Lemma provides these conditions.

Lemma 6.2. For any qm(x) and qp(x | y) the following
statements hold:

1. If KL(p(X | Y ) ∥ q(X | Y )) ≥ 1
2KL(p(X) ∥ q(X))

then Im+p has lower error than Ipost

2. If KL(p(X) ∥ q(X)) ≥ 1
2KL(p(X | Y ) ∥ q(X | Y ))

then Im+p has lower error than Imarg

Unfortunately, the conditions in Lemma 6.2 cannot be eval-
uated in practice as they involve KL w.r.t. the true posterior.
However, these inequalities offer some insight into how one
may determine the most accurate estimator in an online
fashion. For example, if qm(x) approximates p(x) about as
well as qp(x | y) approximates p(x | y) (in KL) then Im+p

is the best approximation to use.

We conclude with an observation on the optimality of the
moment matching estimator for Im+p. Recall that optimiz-
ing Im+p exactly requires minimizing the nonconvex error
|I(X;Y )− Im+p| in Eqn. (12). We instead show that mo-
ment matching minimizes a convex upper bound on this
error in Lemma 4.5. It is then natural to ask under what
conditions is this bound tight. Consider a two-component
Gaussian mixture with moments,

µx = Ep [X] µy = Ep [Y ]

σ2
x = Ep

[
XXT

]
− µ2

x σ2
y = Ep

[
Y Y T

]
− µ2

y

ρ =
(
Ep
[
XY T

]
− µxµy

)
/σxσy.

Fig. 3 shows the relationship between the moment matching
solution of Gaussian Im+p with the above parameters and
the absolute error. We shows this for two mixture models
where we plot the absolute error |I(X;Y ) − Im+p| as a
function of only the correlation parameter ρ. In Fig. 3(a) the
moment matching solution yields the global minimum error.
However in Fig. 3(b) a local maximum is found. We further
observe in this latter case that there exists two values of ρ
that yield the exact MI value (zero error). In conclusion,
there are cases where the moment matching solution of Im+p

may yield a global minimum but other cases where it yields
a local maximum despite the existence of good solutions.
Exploring these conditions in more detail is a topic of future
work.

7 PREVIOUS WORK

In this paper, we focused on the variational methods, Imarg,
Ipost (Barber and Agakov, 2004), and Im+p (Foster et al.,
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Figure 4: High-dimensional GMM. (a). As per our theoretical analysis, moment matching for all variational methods achieves orders
of magnitude computational speedup. Mine is the slowest of all the methods and computation time grows the fastest with respect to
the samples. (b) We see the gradient descent approaches the same value as moment matching but takes around 200 gradient steps to
converge which is where the moment matching solution achieves its drastic computational speed-up. (c) The MI approximation vs samples
illustrates the same ordering of Ipost ≤ I ≈ Im+p ≤ Imarg except for low samples where the bias discussed in Lemma 5.1 adds noticeable
error. “True MI” is calculated via Monte Carlo estimation with exact evaluation of the model probabilities.

2019). The focus of each of these methods was computation
speedups for computing the optimal distribution. We also
briefly discussed the Nested Monte Carlo estimator in Sec. 2
and some of the challenges it faced. Foster et al. (2019) pro-
vides an in-depth analysis of convergence rate and run time
for the variational estimators discussed in this paper. For an
alternative implicit likelihood approximator, we also con-
sider the likelihood-free inference by ratio (LFIRE) used
by Kleinegesse et al. (2021) as a baseline for comparison
purposes. Poole et al. (2019) provides an investigation and
comparison of a variety of variational MI estimators–see
also Foster et al. (2020). Additional estimators are based on
flexible artificial neural network approximators, such as Mu-
tual Information Neural Estimator (MINE) (Belghazi et al.,
2018). This approach optimizes the dual representation of
KL divergence introduced by Donsker and Varadhan (1983),
providing a lower bound. In most cases such density-free
expressions cannot be computed analytically and empiri-
cal estimators are typically biased. McAllester and Stratos
(2020) give an analysis of the fundamental bias of such
high-confidence distribution-free MI lower bounds.

8 EXPERIMENTS
We demonstrate efficacy and efficiency of our moment
matching variational MI estimators in a range of experi-
ments beginning with a Gaussian mixture model (Sec. 8.1).
We then evaluate two implicit likelihood models: one aris-
ing from the non-closed-form marginalization of nuisance
variables in a GLM (Sec. 8.2), and the other is a simulation-
based SIR epidemiology model (Sec. 8.3). In all cases we
find that the proposed moment matching estimators offer
substantial computational speedups while achieving identi-
cal MI bounds and approximations to existing methods.

We also compute MINE (Belghazi et al., 2018) in Sec. 8.1
and Sec. 8.3 as well as LFIRE (Thomas et al., 2022) in
Sec. 8.3 for a comparison of our methods to show the com-

putation speed and accuracy trade off against these other
common MI estimates.

8.1 Multivariate Gaussian Mixture Model

GMMs are pervasive in statistics due to their universal ap-
proximation properties, yet calculating MI for a GMM is
notoriously challenging (Huber et al., 2008). In this section
we extend the two-dimensional example (Fig. 2) to high-
dimensional GMMs. We simulate a 5 component GMM,
p(x, y) =

∑5
i ωiN (mi,Σi), with

∑
ωi = 1 and dimen-

sions X ∈ R60 and Y ∈ R5. We use this setting to demon-
strate efficient MI estimation even in high-dimensional dis-
tributions.

Fig. 4 shows substantial speedups in runtime (left) for all
methods as compared to gradient optimization. Notice that
GD takes approximately 200 gradient steps to converge for
5, 000 samples whereas moment matching found this solu-
tion immediately, independent of any gradient steps (center).
As per our theoretical results we find that Im+p lies between
the MI upper bound Imarg and lower bound Ipost for large
enough of a sample size, however for low samples the fi-
nite sample bias of the empirical estimators discussed in
Lemma 5.1 changes the ordering of the estimators. (right).
For MINE, we utilize code provided by Kleinegesse and
Gutmann (2020) to see that it performs similarly to Im+p in
accuracy however we note at least four orders of computa-
tion speed up by our method with the computation time of
MINE growing the fastest of all the methods with respect to
the number of samples. In this example, we see that Im+p is
the most accurate estimator however this does not hold in
general (Appendix D).

8.2 Extrapolation

We adapt the following experiment from Foster et al. (2019)
intended to evaluate the implicit likelihood MI estimator
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Figure 5: Extrapolation (a) The MI for decisions d ∈ [−3, 3] with variances σ2
x = 3, and σ2

y = 1 for each approximation with 2000
samples is plotted with d = .5 being the maximum decision. Note the negative bias resulting from NMC estimate of the entropy terms. (b)
The convergence rate versus samples is plotted at maximum decision (d = .5). (c) We again observe a substantial computational savings
from moment matching. This is seen for smaller values of samples with Îmarg and Îpost until around 500 samples when NMC becomes
the dominating computation time. Îm+p however maintains the fast computation speedup as it does not need any NMC evaluations.
MINE is orders of magnitude slower than all the other methods for all ranges of sample size taken.

Im+p (or Im+ℓ). Labeled information, y, from a subset of
the design space is used to predict labels at a location x that
can’t be directly observed. The model is as follows,

ψ ∼ N (µψ,Σψ)

θ | ψ ∼ N
(
(XT

θ ψ)
2, σ2

x

)
, y | ψ, d ∼ N

(
(XT

d ψ)
2, σ2

y

)
where Xθ = (1,− 1

2 ) and Xd = (−1, d). The aim is to
choose a design d ∈ R that maximizes I(θ;Y | d). Thus,
ψ is a nuisance variable that must be marginalized. This
marginalization lacks a closed-form and so the likelihood
p(y | θ) is implicit–it cannot be evaluated directly. As a
baseline we draw N samples from the joint and use the
NMC estimator to compute entropies as:

H(θ) =−
∫
p(θ) log(p(θ))dx

≈− 1

N

∑
i

log

 1

N − 1

∑
j ̸=i

p(θi|ψj)

 (21)

Fig. 5 summarizes the proposed estimators and runtime.
We emphasize that Imarg and Ipost are infeasible due to the
need to estimate model entropies in this implicit likelihood
model. We instead augment these methods with the NMC
estimator (e.g. Eqn. (21)), and refer to them as variational
marginal (posterior) plus NMC, denoted as Imarg+NMC

(Ipost+NMC ). It is important to note that this is not the same
as variational NMC in the literature (Foster et al., 2019)
which is a consistent variational estimator. For Ipost+NMC

and Imarg+NMC , the finite sample bias of NMC violates ex-
pected bound properties for few samples–see Fig. 5 (center).
We include these estimators to highlight the difficulty of
estimating MI in implicit likelihood models and to empha-
size their practical limitations. As the theory suggests our
moment matching estimators provide substantial speedup.

We notice that for small number of samples Ipost+NMC

and Imarg+NMC are computed substantially faster with
moment matching compared to their gradient descent coun-
terparts. Once larger samples are taken, the cost of the
NMC term dominates the computation cost. In Im+p we
notice that the multiple orders of magnitude computation
time speed up is maintained across all number of samples
as it can avoid the NMC term and benefits drastically from
the speed-up of moment matching instead of gradient de-
scent. Again, for MINE we have some increased accuracy
at higher number of samples however see that computation
time is one to two order of magnitude slower than INMC ,
Ipost+NMC and Imarg+NMC while Im+p is upwards of 5
orders of magnitude faster.

8.3 SIR Epidemiology Model

The SIR model describes the time-evolution of infection
in a fixed population (Kermack and McKendrick, 1927;
Allen, 2008). At each time t the population is divided into
three components: susceptible S(t), infected I(t), and re-
covered R(t) according to the time-series,

S(t+∆t) = S(t)−∆I(t) (22)
I(t+∆t) = I(t) + ∆I(t)−∆R(t) (23)
R(t+∆t) = R(t) + ∆R(t) (24)

At each time the distribution of change in infected
is ∆I(t) ∼ Binomial(S(t), βI(t)N ) and for recovered is
∆R(t) ∼ Binomial(I(t), γ), with unknown random param-
eters β, γ ∼ Uniform(0, 0.5). Our simulations use a fixed
discrete time interval ∆t = 0.01 with a population N = 50
and boundary conditions S(t = 0) = N − 1, I(t = 0) = 1,
and R(t = 0) = 0. See Fig. 7 for an example of the SIR
simulation.
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Figure 6: SIR Sequetial Design. The top plots show benchmark time and utility evaluation between LFIRE and the Variational estimator
for a fixed design (d = 1.0s) over 10 runs each at a range of sample sizes. The variational estimator is orders of magnitude more efficient
(left) and shows lower variance at each sample (center). The fourth (right) sequential BED iterations yield comparable designs between
both methods (GP posterior MI shown).

Figure 7: SIR Simulation. An example of a single SIR model
simulation (far-right) for β = 0.14, γ = 0.01.

Sequential Design We select a time t > 0 with the
maximal information about the parameters β, γ as in,
argmaxt I ({β, γ}; {S(t), I(t)}). We ignore R in the MI
quantity since it is deterministic via: R(t) = N−I(t)−S(t).
After choosing a time t∗ we observe S(t∗) = s, I(t∗) = ι,
andR(t∗) = r. In stageK of sequential (greedy) design we
condition on K − 1 previously-chosen times t∗1, . . . , t

∗
K−1

and their resulting observations {sK−1
1 , ιK−1

1 }, denoted by
the “history” set HK−1. The K th time is chosen to maxi-
mize,

t∗K = argmax
t>0

I ({β, γ}; {S(t), I(t)} | HK) . (25)

Optimizing Eqn. (25) is complicated since the SIR lacks
an explicit likelihood p(S(t), I(t), R(t) | β, γ)–it is defined
implicitly through simulation of Eqns. (22)-(24). Existing
design approaches to sequential design in this model (Klei-
negesse et al., 2021) rely on LFIRE (Thomas et al., 2022)
estimates of the ratio p(S,I,R|β,γ)

p(S,I,R) for MI in Eqn. (25). Fur-
thermore, we have a continuous decision domain t ∈ [0, 3]
of the duration of the epidemiology simulation. To find
the maximal decision, Bayesian optimization is performed
using a Gaussian process where a limited number of eval-
uations are used to find the maximum. We compare our

moment matched Im+p MI estimator to the LFIRE esti-
mator. For sequential design we use the implementation
of Kleinegesse et al. (2021) which estimates MI based on
importance weighted expectations of the LFIRE ratio esti-
mator.

Fast and accurate variational estimates. Fig. 6 shows
that our moment matching estimates achieve several orders
of magnitude speedup (left). We only use 4 design stages
to match Kleinegesse et al. since the code is prohibitively
slow for further designs with LFIRE. Using our estimator
it is possible to conduct many more design iterations in a
fraction of the time. Furthermore, we notice a significant re-
duction in variance (center) at each sample. The evaluation
points chosen for Bayesian optimization are chosen using
different estimators (LFIRE and Im+p) hence the differnce
in evaluation locations in the two methods (right). The goal
however is not to match MI estimation across the entire
continuous design domain, but instead to approximate the
decision with maximal MI. The two methods have compara-
ble maximum decisions with LFIRE choosing around t ≈ .5
and Im+p around t ≈ .75. We note that the true maximal
decision point is unknown and compare only the relative
accuracy of each method to each other and the computation
speed up achieved by moment matched Im+p.

9 DISCUSSION

In this paper, we prove conditions that allow for fast mo-
ment matching projections to obtain optimal variational
distributions in the exponential family. This substantially
reduces the computation time compared to previous meth-
ods. For the Gaussian case, we show the result simplifies
for all three variational methods, Imarg, Ipost, and Im+p, to
be moment matching the same joint Gaussian distribution.
We demonstrate the substantial computational speed up, rel-
ative accuracy, and wide use-case of Im+p. For future work,
we would like to explore other exponential family distribu-
tions besides the Gaussian case that satisfy the necessary
conditions.
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Appendix : Fast Variational Estimation of MI for Implicit and Explicit Models

A PROOFS FOR RESULTS IN SECTION 4

The sections below provide all proofs for results in the main text.

A.1 Section 4.2 Proofs

Theorem 4.2. Let qm(x) be in the exponential family with statistics T (x), then for any p(x), the optimal I∗marg is given by
moment matching:

Eqm(x) [T (X)] = Ep(x) [T (X)]

Proof. Since Hp(X) is constant in qm we have,

argmin
qm

Hp(qm(X)) = argmin
qm

Hp(qm(X))−Hp(X) = argmin
qm

KL(p(X) ∥ q(X)) (26)

By Lemma 4.1, Eqm(x) [T (X)] = Ep(x) [T (X)] minimizes KL(p(X) ∥ q(X)).

A.2 Section 4.3 Proofs

Lemma 4.3. If qp(x | y) takes the form of Eqn. (10), then the minimization of Eqn. (8) is when

Ep(y)
[
Eqp(x|y) [T (X,Y )]

]
= Ep(x,y) [T (X,Y )] (27)

Proof. The goal is to minimize Hp(qp(X|Y )) where qp(x|y) is generated from q(x, y; η) in the exponential family.
We will find the minimizing parameters of this distributions. We appeal to the property of exponential families that
∂
∂ηA(η) = Eq(x,y) [T (x, y)]

∂

∂η
(Hp(qp(X|Y ))) = − ∂

∂η

∫
p(x, y) log (qp(X|Y )) = −

∫
p(x, y)

∂

∂η
log

(
q(X,Y ; η)

q(Y ; η)

)
(28)

=−
∫
p(x, y)

∂

∂η

(
log(h(x, y)) + ηTT (x, y)−A(η)− log (q(y; η))

)
dxdy (29)

=−
∫
p(x, y)

(
T (x, y)− ∂

∂η
A(η)− ∂

∂η
log (q(y; η))

)
dxdy (30)

=− Ep(x,y) [T (x, y)] + Eq(x,y) [T (x, y)] +∫
p(x, y)

1

q(y; η)

∂

∂η

(∫
h(x′, y) exp

(
ηTT (x′, y)−A(η)

)
dx′
)
dxdy (31)

=− Ep(x,y) [T (x, y)] + Eq(x,y) [T (x, y)] +∫
p(x, y)

1

q(y; η)

(∫
q(x′, y; η)

(
T (x′, y)− ∂

∂η
A(η)

)
dx′
)
dxdy (32)

=− Ep(x,y) [T (x, y)] + Eq(x,y) [T (x, y)] +∫
p(x, y)

(∫
q(x′|y)

(
T (x′, y)− Eq(x,y) [T (x, y)] dx′

)
dxdy

)
(33)

=− Ep(x,y) [T (x, y)] + Ep(y)
[
Eqp(x|y) [T (x, y)]

]
(34)

The zero derivative yields the stationary condition Ep(x,y) [T (x, y)] = Ep(y)
[
Eqp(x|y) [T (x, y)]

]
. It now remains to show
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that the objective is convex in η. Expanding the form of Hp(q(X | Y )) we have the objective,

min
η

−Ep
[
log(h(X,Y )) + ηTT (X,Y )−A(η)− log(q(Y ; η))

]
(35)

The term ηTT (X,Y ) is linear in η. Convexity of A(η) in η is a standard property of the exponential family, however we
will show a constructive proof that A(η)+ log(q(y; η)) is convex using Hölder’s inequality. Let η = λη1 +(1−λ)η2 where
λ ∈ [0, 1] and η1, η2 in the convex set of valid exponential family parameters of q then:

A(η) + log(q(y; η)) = A(η) + log

(∫
h(x, y) exp(ηTT (x, y)−A(η)) dx

)
(36)

= A(η) + log

(
exp(−A(η))

∫
h(x, y) exp(ηTT (x, y)) dx

)
(37)

= log

(∫
h(x, y) exp(ηTT (x, y)) dx

)
(38)

= log

(∫
(h(x, y) exp(ηT1 T (x, y)))

λ (h(x, y) exp(ηT2 T (x, y)))
(1−λ) dx

)
(39)

≤ λ log

(∫
h(x, y) exp(ηT1 T (x, y)) dx

)
+ (1− λ) log

(∫
h(x, y) exp(ηT2 T (x, y)) dx

)
(40)

= λ(A(η1) + log q(y; η1)) + (1− λ)(A(η2) + log q(y; η2)) (41)

Thus convexity holds in η and the stationary conditions Ep(x,y) [T (x, y)] = Ep(y)
[
Eqp(x|y) [T (x, y)]

]
are globally optimal.

Theorem 4.4. Let q(x, y) be in the exponential family with sufficient statistics, T (x, y) = [τ(x), τ(y), τ(x, y)]T where τ(x)
are the sufficient statistics dependent only on x, τ(y) only on y, and τ(x, y) on both. Further, let the posterior expected
statistics be a linear combination of marginal statistics as in,

Eqp(x|y) [T (X,Y )] =

k∑
i

gi(η)τi(Y ) (42)

where τi(y) is the ith component of τ(y) and gi(η) are functions of only the parameter η. Then, the optimal variational
distribution, qp, for Ipost is defined by joint moment matching: Ep(x,y)[T (X,Y )] = Eq(x,y)[T (X,Y )].

Proof. From Lemma 4.3, we know that Ep(x,y) [T (x, y)] = Ep(y)
[
Eqp(x|y) [T (x, y)]

]
is the optimality condition. Let us

now show that the condition in Eqn. (11) implies that joint moment matching satisfies the optimality condition of Eqn. (9)

Ep(x,y) [T (x, y)] =Eq(x,y) [T (x, y)] (43)

=Eq(y)
[
Eqp(x|y) [T (x, y)]

]
= Eq(y)

[
k∑
i

gi(η)τi(y)

]
(44)

=

k∑
i

gi(η)Eq(y) [τi(y)] =
k∑
i

gi(η)Ep(y) [τi(y)] (45)

=Ep(y)

[
k∑
i

gi(η)Ti(y)

]
= Ep(y)

[
Eqp(x|y) [T (x, y)]

]
(46)

So with Lemma 4.3 and the assumption of the posterior expected statistics being a linear combination of joint statistics
(Eqn. (11)) results in Ep(x,y)[T (X,Y )] = Eq(x,y)[T (X,Y )] being the optimal conditions.

A.3 Section 4.4 Proofs

Lemma 4.5. For any model p(x, y) and distributions qm(x), qp(x | y), the following bound holds:

|Im+p − I| ≤ Hp(qm(X)) +Hp(qp(X | Y )) + C

where C = −Hp(p(X)) − Hp(p(X | Y )) does not depend on qm or qp. Further, the RHS is 0 iff qm(x) = p(x) and
qp(x | y) = p(x | y) almost surely.
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Proof. We reproduce the proof from Foster et al. (2019).

|Im+p(X,Y )− I(X,Y )| = |Hp(qm(X))−Hp(qp(X|Y ))−Hp(p(X)) +Hp(p(X|Y ))| (47)
= |−Hp(p(X)) +Hp(qm(X)) +Hp(p(X|Y ))−Hp(qp(X|Y ))| (48)
= |KL(p(X) ∥ qm(X))−KL(p(X|Y ) ∥ qp(X|Y ))| (49)
≤ |KL(p(X) ∥ qm(X))|+ |KL(p(X|Y ) ∥ qp(X|Y ))| (50)
=−Hp(p(X)) +Hp(qm(X))−Hp(p(X|Y )) +Hp(qp(X|Y )) (51)
=Hp(qm(X)) +Hp(qp(X|Y )) + C (52)

Where C = −Hp(p(X))−Hp(p(X | Y )).

Theorem 4.6. Let qm(x) and q(x, y) be exponential family distributions. Further, let q(x, y) satisfy the linear conditional
expectations property in Eqn. (11).

Eqp(x|y) [T (X,Y )] =

k∑
i

gi(η)τi(Y )

Then, moment matching the joint q(x, y) and marginal qm(x)

Ep(x,y)[T (X,Y )] = Eq(x,y)[T (X,Y )]

Ep(x)[T (X)] = Eq(x)[T (X)]

yield optimal qp(x | y) ∝ q(x, y) and qm(x) that minimize the bound on Im+p in Lemma 4.5.

Proof. We break this down into the two cases of Theorem 4.2 and Theorem 4.4. Notice that the variational distributions
qm(x) and qp(x | y) need not share a common joint q(x, y). So, let us use different natural parameters, η1 and η2, for
each (i.e. qm(x) = q(x; η1) and qp(x|y) = q(x|y; η2)). We optimize the bound in Lemma 4.5 with respect to both natural
parameters, beginning with η1:

∂

∂η1

(
−Ep(x,y) [log q(x; η1) + log q(x | y; η2)] + C

)
= − ∂

∂η1
Ep(x,y) [log q(x; η1)]

This is exactly the condition in Theorem 4.2 which we know is solved by moment matching the marginal. Likewise, for η2:

∂

∂η2

(
−Ep(x,y) [log q(x; η1) + log q(x | y; η2)] + C

)
= − ∂

∂η2
Ep(x,y) [log q(x | y; η2)]

The above is the start of the proof for Lemma 4.3 in Eqn. (28) and along with Eqn. (11) in Theorem 4.4, we get that moment
matching the joint finds the optimal qp. Therefore, the optimization of Lemma 4.5 simply reduces to moment matching the
marginal and the joint.

A.4 Section 4.5 Proofs

Lemma 4.7. Let q(x, y) = N (m,Σ) be a Gaussian and qm(x) =
∫
q(x, y)dy, then

Ep(x,y)[T (x, y)] = Eq(x,y)[T (x, y)] (53)

implies
Ep(x)[T (x)] = Eqm(x)[T (x)] (54)

Proof. We can break down the moment matching operation of the joint into its components, τ(x), τ(x, y) and τ(y).

Ep(x) [τ(x)] = Eq(x) [τ(x)] (55)
Ep(x,y) [T (x, y)] = Eq(x,y) [T (x, y)] =⇒ Ep(x,y) [τ(x, y)] = Eq(x,y) [τ(x, y)] (56)

Ep(y) [τ(y)] = Eq(y) [τ(y)] (57)

The Gaussian has the property that the sufficient statistics of a marginal are τ(x), the components of the joint sufficient
statistics, T (x), dependent on only x. We see that Eqn. (55) is exactly the condition for marginal moment matching, so

Ep(x,y)[T (x, y)] = Eq(x,y)[T (x, y)] =⇒ Ep(x)[T (x)] = Eqm(x)[T (x)] (58)
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Theorem 4.8. Let q(x, y) = N (m,Σ) be a Gaussian. Then qp(x | y) is also Gaussian and satisfies conditions of both
Lemma 4.3 and Theorem 4.4. Furthermore, the optimal Ipost is obtained by joint Gaussian moment matching conditions,

m∗ = Ep(x,y)
[
(X,Y )T

]
, Σ∗ = covp(x,y)

(
(X,Y )T

)
And moments of qp(x | y) are the corresponding Gaussian conditional moments of m∗ and Σ∗.

Proof. We first see the conditions of Lemma 4.3 are satisfied by the setup of the problem as

qp(x | y) = q(x, y)

q(y)

It suffices to verify the assumption of the posterior expected statistics being a linear combination of joint statistics (Eqn. (11))
is satisfied. Recall the sufficient statistics of a multivariate Gaussian

T (x, y) =


x
y

vec(xxT )
vec(xyT )
vec(yyT )


In this case τ1(y) = y and τ2(y) = vec(yyT ). We now verify that the expected value under q(x|y) of each term in the
sufficient statistic is a linear function of τ1(y) and τ2(y)

1. x
Eq(x|y) [x] = µx|y = µx +ΣxyΣ

−1
yy (y − µy)

2. y
Eq(x|y) [y] = y

3. xxT

Eq(x|y)
[
xxT

]
=Σx|y + µx|yµ

T
x|y

=Σxx − ΣxyΣyyΣ
T
xy + (µx +ΣxyΣ

−1
yy (y − µy))(µx +ΣxyΣ

−1
yy (y − µy))

T

=Σxx − ΣxyΣyyΣ
T
xy + µxµ

T
x + . . .

µx(y − µTy )Σ
−1
yy Σ

T
xy +ΣxyΣ

−1
yy (y − µy)µx + . . .

ΣxyΣ
−1
yy (y − µy)(y − µy)

TΣ−1
yy Σ

T
xy

4. xyT

Eq(x|y)
[
xyT

]
=(µx +ΣxyΣ

−1
yy (y − µy))y

T

=(µx − ΣxyΣ
−1
yy µy)y

T +ΣxyΣ
−1
yy yy

T

5. yyT

Eq(x|y)
[
yyT

]
= yyT

So the statistics are linear functions of τ1(y) = y and τ2(y) = yyT so p(x|y) satisfies the conditions of Theorem 4.4 and
moment matching the joint q(x, y) = N (m,Σ) yields the optimal Ipost.

Corollary 4.9. Let q(x, y) = N (µ,Σ), qm(x) =
∫
q(x, y)dy, and qp(x | y) = q(x,y)

q(y) . Then by Theorem 4.6 moment
matching the joint q(x, y) yields optimal Gaussian qp and qm that minimize the bound on Im+p in Lemma 4.5.

Proof. This Corollary holds by Theorem 4.8 to show q(x, y) satisfies the linear conditional expectation property, so moment
matching the joint yields the optimal qp(x | y). To see that moment matching the joint implies moment matching the
marginal, note that the sufficient statistics of the joint Guassian are

T (x, y) =
[
x, y, vec(xxT ), vec(xyT ), vec(yyT )

]T
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and the sufficient statistics of a marginal distribution are

T (x) =
[
x, vec(xxT )

]T
which are simply the first and third sufficient statistic from the joint. Therefore moment matching the joint Gaussian trivially
moment matches the marginal and Theorem 4.6 applies.

B PROOFS FOR RESULTS IN SECTION 5

Lemma 5.1. Entropy Ordering
Let x ∈ Rd, p(x) be an arbitrary distribution, and q(x) = N (µ∗,Σ∗) where µ∗,Σ∗ analytically moment matched to p(x).
Furthermore, let q̂(x) = N (µ̂, Σ̂) be the empirically moment matched variational distribution. Then,

Hp(p(x))
(a)
= Ep

[
Ĥp(p(x))

](b)
≤ Ep

[
Ĥp(q̂(x))

] (c)
≤ Hp(q(x))

Proof. (a) Ĥp(p(x)) is an empirical mean estimator so by law of large numbers is an unbiased estimator of Hp(p(x)). (b)
Gibbs’ Inequality. (c) Uses the fact that log(det(·)) is a concave function

Ep
[
Ĥp(q̂(x))

]
= Ep [Hq̂(q̂(x))]

=Ep
[
1

2
log(det(2πeΣ̂))

]
=
1

2

(
d log(2πe) + Ep

[
log(det(Σ̂))

])
≤1

2

(
d log(2πe) + log(det(Ep

[
Σ̂
]
))
)

=
1

2
(d log(2πe) + log(det(Σ∗))) = Hp(q(x))

We see that Ĥp(q̂(x)) is a biased estimator from below of Hp(q(x)).

Lemma 5.2. Analytic Entropy
Let p(x) be any distribution and q(x) be in the exponential family with constant base measure, h(x) = C, which is
analytically moment matched to p(x) and q̂(x) is empirically moment matched, then

Hp(q(x)) = Hq(q(x)) Ĥp(q̂(x)) = Hq̂(q̂(x)) (59)

Proof. • Hp(q(x)) = Hq(q(x))

Hp(q(x)) =− Ep(x) [log(q(x))] = −Ep(x)
[
log(h(x)) + ηTT (x)−A(η)

]
=−

(
C + ηTEp(x) [T (x)]−A(η)

)
= −

(
C + ηTEq(x) [T (x)]−A(η)

)
=− Eq(x)

[
log(h(x)) + ηTT (x)−A(η)

]
= −Eq(x) [log(q(x))] = Hq(q(x))

• Ĥp(q̂(x)) = Hq̂(q̂(x))

Ĥp(q̂(x)) =− 1

N

N∑
i

log(q̂(xi)) = − 1

N

N∑
i

(
log(h(xi)) + η̂TT (xi)−A(η̂)

)
=−

(
C + η̂T

1

N

N∑
i

(T (xi))−A(η̂)

)
= −

(
C + η̂TEq̂(x) [T (x)]−A(η̂)

)
=− Eq̂(x)

[
log(h(x)) + η̂TT (x)−A(η̂)

]
= −Eq̂(x) [log(q̂(x))] = Hq̂( ˆq(x))

note that xi ∼ p(x).
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C PROOFS FOR RESULTS IN SECTION 6

Lemma 6.1. For any qm(x) and qp(x | y),
Ipost ≤ Im+p ≈ I ≤ Imarg

where I ≡ I(X;Y ) is the true MI and (Imarg, Ipost, Im+p) are computed from qm and qp.

Proof. We prove the lower bound on Im+p first and then the upper
1) Ipost ≤ Im+p

Ipost =Hp(p(x))−Hp(q(x | y)) ≤ Hp(p(x))−Hp(q(x | y)) + KL(p(x) ∥ q(x))
=Hp(p(x))−Hp(q(x | y))−Hp(p(x)) +Hp(q(x)) = Hp(q(x))−Hp(q(x | y)) = Im+p

2) Imarg ≥ Im+p

Imarg =Hp(q(x))−Hp(p(x | y)) ≥ Hp(q(x))−Hp(p(x | y))−KL(p(x | y) ∥ q(x | y))
=Hp(q(x))−Hp(p(x | y)) +Hp(p(x | y))−Hp(q(x | y)) = Hp(q(x))−Hp(q(x | y)) = Im+p

In both of these, we simply appeal to KL(p ∥ q) ≥ 0 and KL(p ∥ q) = −Hp(p) +Hp(q).

Lemma 6.2. For a variational qm(x) and qp(x | y), if

1. If KL(p(X | Y ) ∥ q(X | Y )) ≥ 1
2KL(p(X) ∥ q(X)) then Im+p has lower error than Ipost

2. If KL(p(X) ∥ q(X)) ≥ 1
2KL(p(X | Y ) ∥ q(X | Y )) then Im+p has lower error than Imarg

Proof. We will look at the error of each of the statements

1. |Im+p − I| ≤ |Ipost − I|

|Im+p − I| ≤ |Ipost − I|
|KL(p(x) ∥ qm(x))−KL(p(x | y) ∥ qp(x | y))| ≤ |KL(p(x | y) ∥ qp(x | y))|

KL(p(x) ∥ qm(x)) ≤2KL(p(x | y) ∥ qp(x | y))
1

2
KL(p(x) ∥ qm(x)) ≤KL(p(x | y) ∥ qp(x | y))

2. |Im+p − I| ≤ |Imarg − I|

|Im+p − I| ≤ |Imarg − I|
|KL(p(x) ∥ qm(x))−KL(p(x | y) ∥ qp(x | y))| ≤ |KL(p(x) ∥ qm(x))|

KL(p(x | y) ∥ qp(x | y)) ≤2KL(p(x) ∥ qm(x))

1

2
KL(p(x | y) ∥ qp(x | y)) ≤KL(p(x) ∥ qm(x))

D ADDITIONAL EXPERIMENTS FOR GAUSSIAN MIXTURE MODEL

Our focus of the GMM experiment in Sec. 8.1 was to demonstrate improved computation of estimators computed via moment
matching relative to standard optimization-based approaches. We demonstrated this speedup in a relatively high-dimensional
setting (X ∈ R60, Y ∈ R5). See Fig. 4 for details. We further noted that while Im+p yielded lowest approximation error,
this conclusion does not hold in general.

To emphasize the above observation we conduct a variety of additional GMM experiments for various settings here. We
conduct two alternative forms of the GMM experiment; where we increase the dimension of the scenario to X ∈ R100 and
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Figure 8: High-dimensional 10 Component GMM. (a). We again see multiple orders of magnitude time save by moment matching
Im+p, Imarg, and Ipost instead of gradient descent. (b) Again, the gradient descent approach to Im+p converges to the solution found by
moment matching. (c) We see the same ordering and behavior of Im+p, Imarg, and Ipost in comparison to the true mutual information as we
did in Sec. 8.1.
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Figure 9: Low-dimensional 100 Component GMM. (a). We again see a computational speed up by moment matching over gradient
descent by about an order of magnitude. It is less of a speed up in this case because gradient descent can handel the lower dimensional case
better than It did the large. (b) Gradient descent takes a more direct approach to the MM solution in this case due to lower dimensionality.
(c) We again see the same ordering of Im+p, Imarg, and Ipost in comparison to the true mutual information as we did in Sec. 8.1, this time
however, the 400 samples is more than adequate fully approximate the integrals compared to the high dimensional case which needed a
few thousand to adequately approximate the integrals.

Y ∈ R200 (using 10 components in the GMM), and another experiment where we increase the number of components to
100 done in a low dimensional setting (X ∈ R5 and Y ∈ R10).

For the high dimensional 10-component GMM we again observe multiple orders of magnitude speed up by moment
matching, relative to gradient optimnization–see Fig. 8(a). Yet we find in Fig. 8(c) that Ipost and Im+p have much higher
finite sample bias (for less than a 1000 samples) as discussed from Lemma 5.1 and the Imarg is the most accurate estimator
overall.

For the 100-component case we again see a computational improvement from moment matching–see Fig. 9(a). As would be
expected, the time savings is less dramatic due to the lower dimensional setting, resulting in faster convergence of gradient
optimization (Fig. 9(b)). Yet, We notice almost no finite sample bias in any of the estimators, suggesting that bias is heavily
driven by dimension of the model. Fig. 9(c) shows that in this scenario that Imarg is again the most accurate estimator.

In practice, we do not know which will be the most accurate estimator among Imarg, Ipost, Im+p. However, Lemma 6.2
provides conditions for identifying the most accurate estimate. As we note in the postscript to Lemma 6.2, these conditions
cannot practically be computed in general. It is a topic of ongoing work to determine surrogate conditions that approximate
those of Lemma 6.2 and thus enable selection of the most accurate estimate in an online manner.
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