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ABSTRACT

We apply the expectation propagation (EP) algorithm to tem-
porally track targets using sensors that produce spurious clut-
ter detections, and may sometimes fail to detect the true tar-
get. The variational inference framework underlying EP al-
lows the tracker to be easily adapted to varying measurement
models. We develop variants of EP based on single Gaus-
sian and Gaussian mixture approximations of posterior target
location distributions, which offer a tradeoff between accu-
racy and computational complexity. Experiments show im-
proved tracking accuracy and uncertainty estimation relative
to widely used baseline tracking algorithms.

Index Terms— target tracking, Bayesian inference, vari-
ational methods, expectation propagation

1. INTRODUCTION

Probabilistic target tracking in the presence of missed and
false (clutter) detections poses a challenging problem, for
which exact Bayesian inference is intractable [1]. There is
thus a rich literature on approximate tracking algorithms.

We focus on deterministic approximate inference algo-
rithms. Particle filters are also used for tracking [2], but lead
to less compact state representations and can be unstable for
high-dimensional problems. The probabilistic data associa-
tion filter (PDAF) [3] incorporates observations sequentially
via a single forward pass, approximating the state’s marginal
distribution as Gaussian with matched mean and covariance.
The probabilistic multi-hypothesis tracker (PMHT) [4, 3] in-
stead adapts the expectation maximization (EM) algorithm
to iteratively estimate smoothed state estimates from a fixed
batch of data. These algorithms are derived from different
measurement models: the PDAF assumes the target produces
at most one true detection per time step, while the PMHT as-
sumes the number of true detections is binomially distributed.

In this paper, we propose a family of alternative tracking
algorithms based on expectation propagation (EP) [5], a so-
phisticated variational approach to approximate inference [6].
This approach is similar in spirit to the PDAF, in that we in-
corporate local evidence and project to a family of tractable
approximate marginal distributions. Unlike PDAF, however,
our EP algorithms can produce accurate smoothed state esti-
mates; be easily adapted to various measurement models; and

employ marginal approximations of varying complexity.
After reviewing exponential families and the EP algo-

rithm (Sec. 2), we propose three tracking algorithms (Sec. 3)
which consider various clutter measurement models, and ap-
proximate marginal distributions by either single Gaussians
or Gaussian mixtures. Sec. 4 validates these algorithms via
Monte Carlo trials on synthetic data.

2. EXPECTATION PROPAGATION

Consider a joint distribution which factorizes according to

p(x | D) ∝ p0(x)
∏
i

ψi(x) (1)

with latent variables x, prior distribution p0(x), and observed
data D encoded via non-negative factors ψi(x). We choose
an approximating distribution q(x) that is in a tractable expo-
nential family [6] of distributions, with matched factorization

q(x) = p0(x)
∏
i

ψ̃i(x) ≈ p(x | D). (2)

We refer to ψ̃i(x) as messages, which can be thought of as
local approximations. EP provides a means for iteratively re-
fining each ψ̃i(x) such that q(x) approximates the true poste-
rior p(x | D). At each iteration, EP updates the posterior and
factor approximations according to the following procedure:

q\i(x) = q(x)/ψ̃i(x) (Cavity Dist.)

p̂(x) ∝ q\i(x)ψi(x) (Augmented Dist.)
qnew(x) = argmin

q
D(p̂(x) ‖ q(x)) (KL Projection)

ψ̃i(x) ∝ qnew(x)/q\i(x) (New Message)
The KL projection can be computed in closed form via
moment-matching [6]. The messages ψ̃i(x), as well as the
cavity distribution q\i(x), are members of an unnormalized
exponential family; EP does nothing to explicitly enforce
their normalizablity. For the KL projection to be well-posed,
the augmented distribution p̂(x) must be normalizable. If
it is not then we “halt” the update, leaving the message un-
changed. For more details on EP in general, see [5, 6].

3. TRACKING IN CLUTTER VIA EP

In this section, we derive EP inference algorithms for the de-
pendent observation assignment model underlying the PDAF,
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Fig. 1. Factor graphs illustrating the joint factorization and messages underlying three EP tracking algorithms. (a) EPD: Dependent observa-
tion assignments, single Gaussian state distributions. (b) EPI: Independent observation assignments, single Gaussian state distributions. (c)
EPD+: Dependent observation assignments, Gaussian mixture state distributions.

and the independent observation assignment model underly-
ing the PMHT. We consider approximations of state distribu-
tions by two exponential families, single Gaussian and Gaus-
sian mixture. We do not apply the mixture approximation to
the independent assignment model, where the mixture size is
exponential in the number of observations per timestep.

For all of the models, the joint distribution factorizes as

p(X,Z) =
1

Z
p0(x0)

T∏
t=1

ψt(xt−1, xt)ϕt(xt, zt) (3)

where the target state at scan t is xt ∈ Rn with prior
p0(x0) = N(x | µ0, V0) and linear Gaussian target dynam-
ics ψt(xt−1, xt) = N(xt | Fxt−1, Q) where F,Q ∈ Rn×n.
The observation likelihoods ϕt(xt, zt) encode the assignment
model, and depend implicitly on observed data yt = {yit}

Mt
i=1.

3.1. Observation Assignment Models

Under the dependent assignment model, at most one detection
per timestep is related to the target state. Assignments are
encoded as zt ∈ {0, . . . ,Mt}, where zt = 0 indicates that all
observations are clutter. Otherwise, yztt is target-generated:

ϕD
t (xt, zt) = δzt,0λ0 +

Mt∑
i=1

δzt,iλiN(yit | Hxt, R) (4)

Here, δ·,· is the Kronecker delta, H ∈ Rm×n and R ∈
Rm×m. The overall potential is a mixture of Mt Gaussians
and a constant. Typically, λ0 = (1 − Pd)N(yit | 0,Σ0) and
λi =

Pd

Mt
p(zt = i) for some probability of detection Pd.

The independent assignment model assumes the Mt de-
tections are marginally independent, where zit = 0 if detec-
tion i is clutter, and zit = 1 if it is related to the target:

ϕI
t (xt, z

i
t) = δzi

t,0
λ0 + δzi

t,1
λ1N(yit | Hxt, R) (5)

The overall observation likelihood at time t is then the prod-
uct
∏Mt

i=1 ϕ
I
t (xt, z

i
t), a mixture of O(2Mt) Gaussians plus a

constant term.

3.2. EPD: Dependent Assignment, Single Gaussian

We begin with a Gaussian marginal posterior approximation
qt(xt) = N(xt | mt, Vt) defined as the product of a forward

message αt(xt), a backward message βt(xt), and a measure-
ment message γt(xt):

qt(xt) ∝ αt(xt)γt(xt)βt(xt) ≈ p(xt | Y T
1 ) (6)

The messages are parameterized as unnormalized Gaussians
in information form,

αt(xt) = sαt exp(−1

2
xTt Λ

α
t xt + xTt η

α
t ), (7)

with similar definitions for βt(xt) and γt(xt). Figure 1(a)
shows a factor graph [6] for this model along with overlays
denoting the direction and type of messages.

The forward pass augmented distribution at scan t yields
a Gaussian density. Dropping explicit dependence on xt,

p̂t(·) ∝ γt(·)βt(·)
∫
X
αt−1(x) γt−1(x)ψt(x, ·) dx (8)

The EP projection step introduces no approximation, so
qnew
t = p̂t. The forward messages αt(xt) are as in a con-

ventional Kalman filter, and the reverse messages βt(xt) as
in a two-pass Kalman smoother. In contrast, the measure-
ment messages γt(xt) involve a projection step since the
augmented distribution is non-Gaussian:

p̂t(xt) ∝
Mt∑
zt=0

αt(xt)ϕ
D
t (xt, zt)βt(xt) (9)

The projection qnew
t ∝ argminq D(p̂t‖q) matches the mean

and variance of the Gaussian mixture p̂t(xt). The measure-
ment message update is γnew

t (xt) =
qnew
t (xt)

αt(xt)βt(xt)
.

A single forward pass of this algorithm, iteratively updat-
ing αt and γt, is equivalent to the PDAF [3]. To see this, note
the correspondence between the PDAF prediction step and the
calculation of the forward messages αt. Similarly, the PDAF
association probabilities correspond to the mixture weights
of the augmented distribution of Eq. (9). The projection step
yields a Gaussian posterior qt(xt), the mean of which cor-
responds to the minimum mean square error (MMSE) state
prediction of PDAF.

Further iterations of EPD provide a novel way of general-
izing PDAF to produce smoothed state estiamtes. Each iter-
ation has linear complexity O(N), where N =

∑T
t=1Mt is

the total number of detections.



3.3. EPI: Independent Assignment, Single Gaussian

As in the EPD algorithm, we approximate the state posterior
via a single Gaussian distribution:

qt(xt) ∝ αt(xt)

(
Mt∏
i=1

γit(xt)

)
βt(xt) ≈ p(xt | Y T

1 ) (10)

Note that we have a separate measurement message γit(xt) for
each observation, and the posterior depends on the product of
all of these messages. Figure 1(b) shows a factor graph for
this model with overlays indicating the forward, backward,
and measurement messages.

The forward pass augmented distribution at scan t yields
a Gaussian density. Dropping explicit dependence on xt,

p̂t(·) ∝ βt(·)
Mt∏
i=1

γit(·)
∫
X
αt−1(x)

Mt−1∏
i=1

γit−1(x)ψt(x, ·) dx

This is Gaussian, so as in EPD the forward and backward
messages correspond to conventional Kalman filters and
smoothers. The measurement message update at each scan is
equivalent to an instance of EP for the clutter problem [5].

One full iteration of EPI has linear complexity O(N),
where N is again the total number of detections. This al-
gorithm does not appear to be equivalent to classical tracking
algorithms, for any message schedule. EPI assumes the same
assignment model as the PMHT, but the algorithm is distinct.

3.4. EPD+: Dependent Assignment, Gaussian Mixture

Returning to the dependent assignment model of EPD, we ex-
tend EP to employ a more flexible, Gaussian mixture marginal
approximation. A closely related algorithm has been used for
inference in switching state-space models [7]. Tractability of
the posterior is maintained by limiting the marginal at scan
t to a mixture approximation with Mt modes, one for each
possible hypothesis zt as to which detection is of the target:

qt(xt, zt) =

Mt∑
j=0

δzt,jpt,jN(xt | mt,j , Vt,j) ≈ p(xt, zt | Y T
1 )

Note that unlike the simpler EPD approximation, qt(xt, zt)
is defined over the target state xt and assignments zt jointly.
Measurement messages are not necessary, because the mea-
surement potential lies in the approximating family. We de-
fine the marginal as the product of forward and backward
messages qt(xt, zt) ∝ αt(xt, zt)βt(xt, zt). The messages are
parameterized as unnormalized Gaussian mixtures,

αt(xt, zt) =

Mt∑
j=0

δzt,jp
α
t,j exp(−

1

2
xTt Λ

α
t,jxt + xTt η

α
t,j) (11)

with a similar definition for βt(xt, zt). Figure 1(c) depicts a
factor graph representation of this model with overlays for the
forward and backward messages.

The augmented distribution in the forward pass at scan t,
again dropping explicit dependence on xt, is now

p̂t(·, k) ∝ βt(·, k)ϕD
t (·, k)

Mt−1∑
j=0

∫
X
αt−1(x, j)ψ(x, ·) dx

For each candidate zt = k, the augmented distribution
p̂t(xt, k) is a Gaussian mixture with Mt−1 components.
We project each of these mixtures to a single Gaussian
qnew
t (xt, zt = k) with matched mean and covariance. The

posterior approximation qnewt is then a mixture of Mt + 1
Gaussians, indexed by zt.

The updates of backward messages βt(xt, zt) proceed
similarly to the forward pass. A single forward pass of EPD+
is similar to the Gaussian Pseudo-Bayesian estimator of
second order (GPB2) [3], which is a forward filter for esti-
mation in a switching linear dynamical system (SLDS). One
or more forward and backward passes of EPD+ correspond
to smoothed generalizations of GPB2, and thus novel algo-
rithms for tracking in clutter. If there are M detections per
time step, one iteration of EPD+ has computational complex-
ity O(TM2) = O(NM). This is greater than EPD but still
linear in T , and often tractable.

3.5. KNN: Nearest Neighbor Association Baseline

The Kalman filter with nearest neighbor association (KNN)
provides a baseline comparison [1]. Given approximate fil-
tered marginals p̂t(xt) = N(xt | mt, Pt), we predict the state
evolution as follows:

p̂(xt+1 | Y t
1 ) = N(xt+1 | Fmt, Q+ FPtF

T )

We refer to x̂t+1|t = Fmt as the predicted target state and
P̂t+1|t = Q + FPt−1F

T as the predicted covariance. The
predicted measurement is given by ŷt+1 = Hx̂t+1|t. Assum-
ing Gaussian noise, the most likely associated measurement
can be selected based on the detection nearest to ŷt+1:

ẑt+1 = argmin
z∈{1,...,Mt}

‖ŷt+1 − yzt+1‖22

The measurement residual is calculated based on the nearest-
neighbor association as νt+1 = y

ẑt+1

t+1 − ŷt+1. Incorporating
the measurement we update the marginal as,
p̂t+1(·) = N(· | x̂t+1|t +Wνt+1, P̂t+1|t −Wt+1St+1W

T
t+1)

where Wt+1 and St+1 are the typical Kalman gain and in-
novation covariance, respectively. The smoothed posterior
marginal p̂(xt | Y T

1 ) is computed as the product of forward
and reverse-time filters, using associations as above.

4. EXPERIMENTAL RESULTS

We conduct a Monte Carlo simulation for a one-dimensional
latent state xt with random walk dynamics xt ∼ N(xt−1, σ

2
p),

initialized uniformly in the observation region. Under either
assignment model, target detections yit ∼ N(xt, σ

2
m) and

clutter detections yit ∼ N(0, σ2
0). The clutter density λ is

proportional to the number of false detections.
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Fig. 2. Data sampled from the dependent assignment model (top) and independent assignment model (bottom). (a) Example scenario with
Pd = 0.7 and λ = 10−4.5. True target detections are red, clutter detections blue. (b) Across 100 instances, we plot the median (solid) and
(0.25, 0.75) quantiles (dashed) of L1 error versus clutter density λ. (c) Close-up track estimates (solid), and one standard deviation error
estimates (dashed), for multiple methods applied to a single instance of each dataset.

We evaluate algorithm performance by the L1 distance
from the true posterior marginals, accurately approximated
by finely discretizing the state space and running the forward-
backward algorithm for hidden Markov models (HMMs) [6].
This numerical baseline is possible with one-dimensional
states, but intractable for higher-dimensional problems where
our EP algorithms remain feasible.

We vary λ ∈ {10−5.5, 10−5.0, 10−4.5, 10−4.0}, fixing the
probability of detection as Pd = 0.7. For every setting of
parameters we sample 100 random instances, each with T =
100 time points. While convergence is not guaranteed in these
models, we achieve adequate convergence for our results by
damping the conventional EP message updates [5, 7], with
damping parameter α = 0.5.

Figure 2 shows results for data sampled from the both the
dependent and independent assignment models. As measured
by L1 error, EP consistently outperforms baseline methods,
and the Gaussian mixture approximation of EPD+ is superior
in almost all cases. In general EP seems robust to model mis-
match, as EPD+ is effective even for data from the indepen-
dent assignment model. EPD clearly improves over PDAF.

Figure 2(c) shows close-up track estimates for particular
instances sampled from each assignment model. KNN consis-
tently underestimates posterior variance, while PDAF overes-
timates it. State estimates among the EP algorithms are gen-
erally comparable or superior to baselines. EPD+ more accu-

rately estimates the posterior variance than other methods.

5. CONCLUSION

We have used EP to develop a family of target tracking al-
gorithms which are significantly more accurate than baseline
methods. Our approach allows significant flexibility in the
choice of observation model, and in choosing the marginal
approximation to tradeoff accuracy and computation.
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