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Abstract—In this work we develop a novel temporal decom-
position scheme for solving data association in multisensor-
multitarget tracking problems. Given a set of noisy measurements
from any number of sensors the data association problem is to
determine which measurements originate from which targets. The
problem is traditionally posed as an N -dimensional assignment
problem, which is NP-hard for N ≥ 3 dimensions. Our approach
limits the dimensionality of the assignment problem and scales
well to all problem instances. The formulation is implemented
as an online algorithm and results are compared to existing
algorithms.

I. INTRODUCTION

At the heart of multitarget tracking is the data association
problem. Given a set of measurements at each detection cycle
the data association problem asks us to associate the mea-
surements with the tracks they originate from. This problem
is typically formulated as an N -dimensional version of the
linear assignment problem known as the multidimensional
assignment problem (MAP), which is NP-hard for N ≥ 3.

In addition to the NP-hard nature of the problem there
are also many other factors prohibiting good results. False
detections make it difficult to determine which measurements
emanate from tracks and they drastically increase the number
of variables in the MAP needed to be solved. In addition
to false detections sensors generally have a probability of
detection PD < 1 causing missed detections to become a
concern. Finally, the existence of measurement noise requires
the use of an estimator, such as the Kalman filter, to estimate
latent state variables.

Multitarget tracking algorithms largely began with the pi-
oneering work of Morefield. In [3] Morefield formulated the
data association problem as linear integer set cover and set
packing problems. Poore extended Morefield’s work in [4] and
formulated the data association problem as a MAP. Existing
techniques for solving the data association problem largely
make use of this MAP formulation.

Current algorithms typically fall into two categories, se-
quential and deferred logic. Two of the most popular sequential
algorithms are the Kalman filter with nearest neighbor (KFNN)
and the joint probabilistic data association (JPDA). Recently
an extension of JPDA known as Interactive Multiple Model
JPDA (IMMJPDA) has also become popular. In general,
sequential algorithms can be thought of as online algorithms.

Deferred logic techniques can be thought of as offline
algorithms which solve the data association problem for some
set of detection periods. Batch processing is a fully offline
algorithm which considers all track hypothesis over all times
and chooses the most likely set of hypotheses. Multiple
hypothesis tracking, on the other hand, was developed by Reid
[5] and solves data association for a subset of detection periods
over time.

We begin in section II with a brief derivation of the
multidimensional assignment formulation introduced in [4]. In
section III we discuss the spatial and temporal decomposition
schemes used in our algorithm. The temporal decomposition
presented in this section is the main contribution of this work.
In section IV we give an introduction to the algorithm along
with a formalization of our temporal decomposition scheme.
Section V contains the results of running our implementation
on simulated data. We conclude in section VI.

II. MULTIDIMENSIONAL ASSIGNMENT FORMULATION

In this section we will briefly derive the multidimensional
assignment formulation used to solve the data association
problem. For a more in-depth discussion of the derivation see
[4] [2]. We begin by introducing some notation.

A. Preliminary Notation

At each time tk we receive a collection of noise contami-
nated measurements denoted Z(k) = {zk

ik
}Mk

ik=1. Assuming all
sensors produce the same types of measurements we do not
need to concern ourselves with which sensors produced which
measurements. The cumulative set of all measurements from
time t1 to tN is denoted ZN = {Z(1), . . . , Z(N)}.

At each time tk we must determine which measurements of
Z(k) are false detections (e.g. noise) and which measurements
emanate from tracks. Of these track measurements, the data
association problem then is to determine which measurements
originated from which tracks. In other words, to find the proper
association of measurements to tracks. This is generally posed
as a maximum likelihood problem

maxγ

{
P (Γ = γ|ZN )
P (Γ = γ0|ZN )

∣∣∣γ ∈ Γ∗
}

(1)



where ZN is the set of all measurements as defined above,
Γ∗ is the set of all track association hypotheses, Γ is a
random variable of the set Γ∗, γ is a particular track asso-
ciation hypothesis, and γ0 is a reference hypothesis where
all measurements emanate from noise. P (Γ = γ0|ZN ) is a
normalizing constant for the likelihood value.

To formalize the idea of a track hypothesis γ consider
the set of indices for measurements at time k denoted
I(k) = {ik}Mk

ik=1. Let the cumulative set of all indices be
IN = {I(1), . . . , I(N)}. Consider a track hypothesis γ as a
partition of the index set IN which induces a partition of the
measurements ZN as

Zγi = {{zk
ik
}ik∈γi}N

k=1 (2)

Zγ = {Zγ1 , . . . , Zγn(γ)}. (3)

Therefore γi ∈ γ is simply the ith track. Similarly, Zγi

are the measurements associated with the ith track. Finally γ
represents a full track association and Zγ is the partition of
measurements induced by the hypothesis γ. The goal of the
data association problem is to find the most likely partition γ.

An implementation detail exists regarding missed detec-
tions. If a sensors’ probability of detection is less than unity
(i.e. PD < 1) then a target may not be detected at a
particular detection period. We ignore this case to simplify the
formulation provided. For details regarding missed detections
and how to account for them see [4].

B. The Formulation

For our MAP formulation we introduce the following set of
boolean variables,

zi1,...,iN
=

{
1 if(i1, . . . , iN ) ∈ γ
0 otherwise (4)

In this formulation each partition γ is represented by a boolean
variable zi1,...,iN

.
Let P (γi|ZN ) denote the posterior probability of the mea-

surements induced by the partition γi ∈ γ conditioned on the
set of measurements up to time tN . Through some indepen-
dence assumptions outlined in [4] and Baye’s formula we have
that

P (Γ = γ|ZN )
P (Γ = γ0|ZN )

≡
∏
γi∈γ

P (γi|ZN )
P (γ0

i |ZN )
(5)

where P (γ0
i |ZN ) is the likelihood that the measurements

induced by γi are noise measurements. We define the cost
of assigning a set of measurements to a track as the negative
log of the posterior probability

ci1,...,iN
= − ln

(
P (γi|ZN )
P (γ0

i |ZN )

)
. (6)

Where (i1, . . . , iN ) = γi are the indices specified in the
partition γi. We then have

− ln
(

P (γ|ZN )
P (γ0|ZN )

)
=

∑
γi∈γ

ci1,...,iN
. (7)

Finally, from (7) we have the objective for assigning a single
track. Extending this we can state the MAP as

Minimize
M1∑

i1=1

M2∑
i2=1

. . .

MN∑
iN=1

ci1,...,iN
zi1,...,iN

Subject To
M2∑

i2=1

M3∑
i3=1

. . .

MN∑
iN=1

zi1,i2,...,iN
≤ 1 ∀i1 ∈ I(1)

M1∑
i1=1

M3∑
i3=1

. . .

MN∑
iN=1

zi1,i2,...,iN
≤ 1 ∀i2 ∈ I(2)

...
M1∑

i1=1

M2∑
i2=1

. . .

MN−1∑
iN−1=1

zi1,i2,...,iN
≤ 1 ∀iN ∈ I(N)

M1∑
i1=1

M2∑
i2=1

. . .

MN∑
iN=1

zi1,i2,...,iN
= NT

zi1,i2,...,iN
∈ {0, 1} ∀i1, . . . , iN . (8)

where the number of tracks NT is assumed known for our
purposes. The number of tracks is also assumed to be constant
throughout the problem, i.e. we do not consider the creation
or deletion of tracks.

Another implementation detail regarding ignoring missed
detections is evident in (8) and worth noting. We have replaced
the constraints normally posed as equality constraints by
inequality constraints. Where most implementations constrain
every measurement to belong to exactly one track, we are
stating that they must belong to no more than one track. The
final equality constraint is added to constrain the number of
hypothesis to the previously known number of tracks NT to
omit the obvious optimal solution of assigning zero tracks.

III. PROBLEM DECOMPOSITION

Looking at the optimization problem in (8) we see that
simply stating the MAP is NP-hard, since the number of
variables zi1,...,iN

is exponential in the size of the problem.
This is an inherent trait of the multidimensional assignment
problem, and one of the reasons why decomposition schemes
become important in making the problem tractable. There
are two types of decomposition considered here, spatial and
temporal.

A. Spatial Decomposition
Spatial decomposition is a method of breaking down the

problem into sub-problems by imposing certain spatial con-
straints. Typical spatial decomposition makes use of two
concepts “gating” and “clustering” which will be discussed
in further detail in this section. The success of spatial decom-
position is contingent upon the quality of an assumed motion
model.



The model used in our approach is a typical discrete time
linear dynamic system described by a vector difference equa-
tion with additive white Gaussian noise. The state transition
and measurement matrices are time invariant. At each time
tk+1 the state of a target can be described by the following
recursive equation

x(k + 1) = Fx(k) + v(k) (9)

where x(k+1) is the target state vector at time tk+1, F is the
time-invariant state transition matrix, and v(k) is the model
noise at time tk assumed to be zero-mean white Gaussian
noise with covariance Q. Similarly the measurement at time
tk is given by

z(k) = Hx(k) + w(k) (10)

where z(k) is the measurement vector at time tk, H is the time
invariant measurement matrix, and w(k) is the measurement
noise at time k also assumed zero mean white Gaussian with
covariance R.

Equations (9) and (10) are in the form necessary for a
Kalman filter. The details of the Kalman filter are beyond the
scope of this paper, but can be found in [1].

The first step in spatial decomposition is gating. Given a
set of measurements hypothesized to belong to a particular
track from t1 to tk−1 gating is the process of determining the
possible measurements at time tk which could be assigned to
the track according to our motion model, within some number
of standard deviations.

We let x(k) be the estimated state of the target at tk
as predicted by the Kalman filter. Also, let P (k) be the
estimated covariance matrix at time tk. Consider a particular
measurement zk

i ∈ Z(k). We measure the covariance of the
random variable ν = zk

i −Hx(k) as

S = HP (k)HT + R (11)

where R is our known measurement covariance. The mea-
surement zk

i is within an “η-sigma” validation region if the
following inequality holds

(zk
i −Hx(k))T S−1(zk

i −Hx(k)) ≤ η2. (12)

Let z(k) = Hx(k) be the estimated measurement at time tk
as predicted by the Kalman filter. We can then simplify (12)
to

(zk
i − z(k))T S−1(zk

i − z(k)) ≤ η2. (13)

Given a track hypothesis γi for measurements in Zk−1 we
use the Kalman filter to predict the measurement z(k). We
then iterate over all measurements in Z(k) and determine if
they are in the η-sigma validation region of the track. This
completes the gating process for the hypothesized track.

Once all tracks are gated we can perform clustering. For
each set of tracks that share a measurement in their gate we
form a cluster containing each of those tracks. If at any time

two clusters share a measurement we form a super cluster
containing all of the tracks in each of the original clusters.

B. Temporal Decomposition

Temporal decomposition, like spatial decomposition, is a
method of limiting the number of hypotheses that need to
be considered, and thus limiting the number of variables in
the MAP. Consider the set of detections ZN for N detection
periods.

Fig. 1. Variables for batch processing

One method of generating variables for the multi-
assignment problem is to use a batch process. Figure 1 shows
an example of some of the hypothesis variables that would
be generated. Ignoring gating effects the batch process would
generate O(NM ) variables, where M is the average number
of detections per detection period.

An existing method of temporal decomposition is known
colloquially as the “sliding window” approach. This approach
generates a “window” of size ωs detection periods. At each
new detection period the window slides forward and solves
a batch problem consisting of the last ωs detection periods.
Figure 2 shows an example when ωs = 3.

Using the sliding window approach breaks the dependency
on previous detection periods. One method used to compensate
for this is to remember the k-best hypotheses from previous
detection cycles. Our method takes this approach a step further
by decomposing the entire problem into a set of variables with
dependency constraints enforced.

Using our approach we consider the entire data set ZN .
The problem is then decomposed into variables representing
ωs sequential measurements. For the case ωs = 3 the variable
zik,ik+1,ik+2 represents measurements ik ∈ I(k), ik+1 ∈ I(k+
2), and ik+2 ∈ I(k + 2).

Dependency between variables is enforced using a conti-
nuity constraint. The constraint states that an ωs variable,
if assigned, must overlap an assigned variable by ωs − 1
measurements. More formally, for ωs = 3, we can only assign
variable zik,ik+1,ik+2 if we assign some variable zik−1,ik,ik+1

for some ik−1 ∈ I(k − 1).
Using this method the number of variables generated is

on the same order of magnitude as with the sliding window



Fig. 2. Variables for MHT with sliding window of 3

Fig. 3. Overlapping variable assignment

Fig. 4. Partial decomposition for ωs = 3

approach. For a data set ZN with a variable size of ωs we
generate O(Mωs+1) assuming N > M . However, for reasons
that will be explained in section IV-C, we are much more likely
to obtain an optimal solution than with the sliding window.

IV. THE ALGORITHM

The tracker is implemented as an online algorithm, as data
arrives it is processed in-situ. The algorithm scales well with
problem size and the goal is a fully online real-time tracker.

Batch processing is performed offline to resolve regions of
interest. Currently there is no limit on the size and number of
regions of interest that can be created so it is conceivable
that tracker performance can fall below real-time in dense
environments. However it would be trivial to impose such a
limit. Figure 5 depicts a high level flowchart of the algorithm.

Fig. 5. Algorithm flowchart

In the following subsection we discuss how the algorithm
creates regions of interest and makes use of them. We then
formalize the temporal decomposition introduced in section
III-B.

A. Unresolved Tracks and Regions of Interest

In target tracking the term region of interest (ROI) is
typically used to refer to a set of measurements, which are
spatially and temporally contiguous, to which we would like
to pay particular attention. For our application we make use
of the concept of unresolved tracks to further refine our use
of ROIs.

Unresolved tracks are those which have come into con-
tention and require further processing. Using the notion of
clustering from section III-A we define tracks to be in con-
tention with one another when they belong to the same cluster.
Figure 6 shows two tracks crossing, a classic example of track
contention.

At any detection period tk if two or more tracks come
into contention that were not previously in contention they are
marked as unresolved. The tracker marks the time at which
these tracks came into contention and a new ROI is formed.
The tracker continues to process updates in the ROI using
a polynomial time tracker which solves the two-dimensional
assignment problem.

If at any point tk′ another track enters the previously created
ROI the new track is also marked as unresolved. The start time
of the ROI remains at the original tk and the new track is added
to the list of unresolved tracks in that ROI.



Fig. 6. Track crossing

The algorithm has the ability to maintain multiple ROIs and
update them in an online fashion. The tracks in these ROIs will
continue to be updated using the polynomial time tracker, but
they remain marked as unresolved tracks.

Fig. 7. Region of interest creation and track resolution

At some point tk′′ either the tracks will drift far enough
apart such that they are no longer in contention, or the tracker
will reach the end of the data scenario. In either case the
tracker will resolve the ROI using the temporal decomposition
from section III-B. At this point the tracks are updated, the
ROI is destroyed, and the new clusters are computed. Figure
7 depicts these events on a simple two-track crossing.

B. Temporal Decomposition Formulation

When an ROI resolution is initiated the algorithm decom-
poses the sub-problem in the manner described in section
III-B. An optimization problem is formulated and solved by

a standard linear optimizer. In this case we are using CPLEX
to solve the ROI sub-problem.

The algorithm decomposes the ROI into a set of ωs-
measurement variables. We will use zik,...,ik+ωs−1 to de-
note a variable consisting of measurements from times
tk, tk+1, . . . , tk+ωs−1 whose indices are ik ∈ I(k), ik+1 ∈
I(k + 1), . . . , ik+ωs−1 ∈ I(k + ωs − 1).

Our objective in the decomposition is identical to that of the
MAP formulation. Namely, we wish to minimize the negative
log likelihood of the association hypothesis. We have,

min
N−2∑
k=1

Mk∑
ik=1

. . .

Mωs−1∑
ik+ωs−1=1

cik,...,ik+ωs−1zik,...,ik+ωs−1

(14)
where N is the number of detection cycles in the ROI. For
notational convenience here we have assumed that the ROI
begins at t1 and ends at tN .

To enforce a track structure of the variable assignments we
constrain the assigned variables to overlap by exactly ωs − 1
measurements. This is called the continuity constraint and is
implemented as,∑

ik

zik,...,ik+ωs−1 ≥
∑

ik+ωs

zik+1,...,ik+ωs
∀k. (15)

We make the assumption that the number of tracks remains
fixed throughout the ROI; no track additions or deletions
are allowed. This is enforced using the following assignment
constraint, ∑

ik
...

iωs−1

zik,...,ik+ωs−1 = NT ∀k (16)

where NT is the number of tracks in the ROI.
An additional assignment constraint states that, for any

two variables sharing a measurement, only one variable may
be assigned. This is equivalent to all of the constraints in
the original MAP formulation (8). The constraints can be
condensed in the following form.

Mj∑
ij

. . .

Mj+k−1∑
ij+k−1

Mj+k+1∑
ij+k+1

. . .

Mj+ωs−1∑
ij+ωs−1

zij ,...,ij+ωs−1 ≤ 1 ∀j, k, ik

(17)
We also assume that the first two measurements of each

track are known. That is, we know measurements i1 and i2
for each track. We use these measurements to determine a
trajectory into the ROI and for calculating likelihoods. Let ij1
and ij2 be the first two measurements, assumed known, for
track j. A prior constraint is enforced as,∑

i3
...

iωs−1

zij
1,ij

2,i3,...,iωs−1
= 1 ∀j ∈ J (18)



where J is our set of known tracks, and |J | = NT . Again, for
notational convenience, we have assumed that the ROI begins
at t1.

From (14),(15),(16), (17), and (18) we have the following
optimization for the temporal decomposition,

Min
N−2∑
k=1

Mk∑
ik=1

. . .

Mωs−1∑
ik+ωs−1=1

cik,...,ik+ωs−1zik,...,ik+ωs−1

Subject To∑
ik

zik,...,ik+ωs−1 ≥
∑

ik+ωs

zik+1,...,ik+ωs
∀k

∑
ik
...

iωs−1

zik,...,ik+ωs−1 = NT ∀k

Mj∑
ij

. . .

Mj+k−1∑
ij+k−1

Mj+k+1∑
ij+k+1

. . .

Mj+ωs−1∑
ij+ωs−1

zij ,...,ij+ωs−1 ≤ 1 ∀j, k, ik∑
i3
...

iωs−1

zij
1,ij

2,i3,...,iωs−1
= 1 ∀j ∈ J

zik,ik+1,ik+2 ∈ {0, 1} ∀k. (19)

To resolve the ROI we first solve this optimization. Knowing
the measurements that each variable represents we then recon-
struct the tracks based on the solution. The computationally
intensive part is actually generating the variables. Once the
variables are constructed the problem is formulated and solved
in milliseconds.

C. Variable Analysis

We first introduce some notation for analysis purposes. As
in Section II let Γ∗ represent the set of all possible track
associations. Let γ ∈ Γ∗ be a particular track association, and
thus a particular feasible solution for an instance of MAP.
Finally, let γi ∈ γ be a particular track, and is therefore
represented by a variable zi1,...,iN

in a MAP instance.
To formalize we let

V , {γi : γi ∈ γ,∀γ ∈ Γ∗} (20)

be the set of all possible hypotheses for each particular
track. Therefore |V | is the number number of possible tracks,
and therefore the number of variables in the MAP instance.
Observe that |Γ∗| is the number of feasible solutions in the
MAP instance, and will be referred to as the size of the
solution space for the MAP instance.

Our goal is to minimize the number of variables |V | in the
MAP instance, but maximize the size of the solution space
|Γ∗|.

Consider a straightforward batch computation for N detec-
tion cycles. For a batch process we have that |V | = O(MN )
where M is the average number of detections per cycle. For
simplicity we have ignored any gating effects. The size of the
solution space in this case is also |Γ∗| = O(MN ).

Now consider the sliding window approach discussed in
section III-B. Let Vωs be the variables created for the each ωs-
cycle sub-problem. We have that |Vωs | = O(Mωs). Since we
must solve O(N) sub-problems we have that |V | = N |V | =
O(Mωs+1) for N ≥ M .

Similarly let Γ∗ωs
be the solution space for each ωs-cycle

MAP instance. We have that |Γ∗ωs
| = O(Mωs). By similar

reasoning we have that |Γ∗| = O(Mωs+1) for N ≥ M .
In the sliding window case we have decreased the number

of variables |V | by N−ωs orders of magnitude. However, we
have also decreased the solution space by the same amount.
It is therefore likely that we have eliminated globally optimal
solutions from the solution space Γ∗.

Finally consider our temporal decomposition approach. The
number of variables required for solving N detection cycles is
|V | = O(Mωs+1), the same as in the sliding window above.
The size of the solution space however is |Γ∗| = O(MN ). We
have minimized the number of variables by N −ωs orders of
magnitude, as in the sliding window approach, but we have
maintained the size of the solution space in the batch problem.
These results are summarized in the following table.

TABLE I
TEMPORAL DECOMPOSITION SCHEME ANALYSIS RESULTS

Algorithm Num. Vars |V | Size Sol. Spc. |Γ∗|
Batch O(MN ) O(MN )
Sliding Window O(Mωs+1) O(Mωs+1)
Our approach O(Mωs+1) O(MN )

V. RESULTS

A. Test Description

Our implementation consists of 2,000 lines of C++ code and
100 lines of MATLAB code. We chose CPLEX as the linear
solver for optimizing the assignment problems. Finally, a
simulator was written to generate test scenarios. The simulator
consists of approximately 1,000 lines of MATLAB code and
can generate data with varying parameters.

We focus our results on data sets with 100 seconds worth
of data and 10 targets in a 200x200 volume. The noise
parameter is specified in noise measurements per volume. A
noise measurement of 8/vol, for instance, would average 8
noise measurements per detection cycle. Noise measurements
are distributed uniformly at random throughout the volume.

A set of 60 random test scenarios were generated for
noise measurements of 8/vol, 16/vol, and 24/vol. Figures 8,
9, and 10 show examples of these scenarios for each of the
noise parameters. Tracks are displayed in green while noise
measurements are in blue.

Each scenario contains 100 seconds worth of data with 10
tracks. We compare the results of three algorithms, the baseline
two-dimensional assignment tracker, the offline batch tracker
using our temporal decomposition, and finally the online fully
adaptive tracker with ROI decomposition. The test machine
consists of two 2.01GHz Athlon 64 processors with 1.9GB of
RAM running Linux version 2.6.18 SMP.



Fig. 8. Sample data set for noise 8/vol

Fig. 9. Sample data set for noise 16/vol

B. Tracker Error

The error metric we chose was mean assignment error
(MAE), which is the average number of erroneous mea-
surement assignments. More formally, at some time tk if
the measurement assigned by the tracker does not exactly
match the ground truth measurement, then it is considered
an assignment error.

Tracking algorithms are typically measured in a distance-
based metric such as mean squared error (MSE). However,
because missed detections are not considered, in observing
the results we found that the algorithm only fails when it
switches tracks. In addition, the tracker rarely follows noise
measurements for any significant period of time. We wish to
focus on failed track crossings and feel that MAE is a better
measurement of this. In retrospect there may be better error
measurements to directly measure this behavior.

Fig. 10. Sample data set for noise 24/vol

Fig. 11. 2D Tracker: Mean Assignment Error

There are a total of 10 tracks in each scenario spanning 100
seconds. Therefore, the total number of assignments is 1000.
The MAE is normalized by this number and reported as a
percentage of the total number of assignments in the scenario.
Therefore an MAE of 0.1 means that 10% of assignments were
erroneous.

1) Two-Dimensional Assignment Tracker: Figure 11 shows
the mean assignment error for the baseline two-dimensional
assignment tracker. On the horizontal axis we have the noise
parameter for the scenario data set. The vertical axis shows
the mean percentage of incorrect assignments.

The two-dimensional tracker showed low error and variance
in scenarios with noise parameter 16/vol and 24/vol. The
results for scenarios with noise 8/vol was less favorable due to
a failed track crossing. The output of the tracker is shown in
Figure 19. Failures in track crossings are analyzed in Section



V-C.
2) Batch Tracker (Without ROI): This section focuses on

our temporal decomposition scheme applied to an offline batch
tracker. The entire scenario is decomposed and solved offline.
Figure 12 shows error results for this tracker.

Fig. 12. Batch Tracker Error

There is a downward trend in error with respect to variable
size ωs as expected. The error measurements for ωs = 5 are
comparable to those of the two-dimensional tracker and fall
below 1% assignment error in all scenarios.

The variance is quite high for scenarios with 8/vol and
16/vol noise. The standard deviation of noise for these sce-
narios is on the order of several percent. This is an open issue
and is the topic of future work.

3) Fully Adaptive Tracker (With ROI): The fully adaptive
tracker is the online version of our algorithm. This tracker uses
the same temporal decomposition as the batch tracker in the
preceding section. Additionally, we use the regions of interest
described in Section IV-A.

Figure 13 shows the error measurements for our fully
adaptive tracker. As with the batch tracker we see similar
variance issues with scenarios of noise 8/vol and 16/vol. This
will be addressed in future work.

Here we notice a slight instability in the tracking algorithm
for scenarios with noise measurements of 8/vol. With ωs = 3
we see an MAE that is less than the MAE for ωs = 4 and
ωs = 5 for the same scenarios.

4) Algorithm Comparison: We compare errors between the
three algorithms. We set our variable length at ωs = 5 because
tracker error is lowest for this setting. Figure 14 shows a
comparison for the three algorithms over each of the noise
settings.

For a noise parameter of 8/vol and 24/vol we see similar
results. In each case the variance is comparable between
all of the algorithms. Also the batch tracker exhibits the
minimum error for these scenarios, with the fully adaptive
tracker showing a slightly higher error. For a noise parameter

Fig. 13. Fully Adaptive Tracker Error

Fig. 14. Algorithm Comparison (ωs = 5)

of 16/vol we see that the two-dimensional tracker performed
the best, both in error and variance.

Next we analyze the effect of variable size on tracker error.
Figure 15 shows an error comparison for scenarios of noise
8/vol between the batch tracker and the fully adaptive tracker.
Figures 16 and 17 show similar results for noise parameters
of 16/vol and 24/vol, respectively.

In general we see that increasing the variable size decreases
the tracker error. The trade-off, of course, is increased com-
putation time. Surprisingly, the fully adaptive tracker exhibits
error below the batch tracker in several instances. Though, for
ωs = 5 the batch tracker consistently shows lower error.

Finally, we compare our algorithm to an implementation of
the sliding window. Figure 18 shows the error comparison for
ωs = 3. Where, ωs is also the size of the sliding window. In



Fig. 15. Mean assignment error, noise 8/vol

Fig. 16. Mean assignment error, noise 16/vol

all cases the sliding window algorithm performed worse than
our algorithm.

C. Track Crossing Analysis

It should be noted that the two-dimensional tracker per-
formed unreasonably well in our results. The reason for this,
we believe, lies in the quality of the simulation data. The noise
is distributed uniformly, which would not be the case in more
realistic data.

Another reason for this behavior lies in a property of the
Kalman filter as a likelihood estimator. As a linear estimator
the Kalman filter assigns higher likelihood to objects moving
in straight lines. Because the two-dimensional tracker relies on
the Kalman filter for longer sequences of data, the tracker also
expects things to move in a linear fashion. As a result, when
two tracks meet, the two-dimensional tracker expects them to
cross.

In most of the scenarios generated this is exactly the case,

Fig. 17. Mean assignment error, noise 24/vol

Fig. 18. Comparison to sliding window for ωs = 3

so the two-dimensional tracker is correct in these instances.
However, when two tracks meet but do not cross, as in figure
19, the two-dimensional tracker fails consistently.

To illustrate this point Figure 20 shows the output of the
two-dimensional tracker on such a crossing. Figure 21 shows
the output of the batch tracker with a variable size of ωs = 3.
Here, the batch tracker failed to correctly solve the track
crossing. However, increasing the variables size to ωs = 5
allows us to receive more informative likelihood estimates
from the Kalman filter. Figure 22 shows the result of the batch
tracker for ωs = 5.

While increasing the variable size allows us to correctly
estimate track crossings more reliably, there is also the trade-
off that track “kissing” is tracked less reliably. A track kissing



Fig. 19. Track switch

Fig. 20. Two-track Crossing: Two-dimensional Assignment Tracker

is when two or more tracks come into contention and then
move away from each other without crossing.

Figure 19 shows such an instance where the two-
dimensional tracker fails to track after these two tracks touch
one another. Figures 23 and 24 show results of the batch
tracker on the same scenario for variable sizes ωs = 3 and
ωs = 5, respectively.

The result of this analysis is that better likelihood estimates
are needed. The Kalman filter makes the implicit assumption
that objects move linearly. When this is the case performance
is generally good. When objects do not move linearly, how-
ever, errors are encountered. Perhaps one approach would
be to incorporate learning techniques to estimate the optimal
variable size in-situ. As tracks begin maneuvers the variable
size would be decreased automatically, to allow for more
non-linear motion dynamics. Another approach would be to

Fig. 21. Two-track Crossing: Batch tracker ωs = 3

Fig. 22. Two-track Crossing: Batch tracker ωs = 5

incorporate an extended Kalman filter or particle filter for
calculating likelihood estimates.

D. Computation Time

The computation time of the two-dimensional tracker is
quadratic. The time for our batch tracker is exponential in
the variable size, namely O(Mωs+1), where M is the average
number of measurements per detection period. In our case
M = noise/vol + # of tracks. The computation time of the
fully adaptive tracker is dependent on the number of ROIs
and the duration of ROIs, but it is equal to that of the batch
tracker in the worst case.

Figures 25, 26, and 27 show computation time for each of
the variable sizes tested. Also in each graph is the computation
time for the two-dimensional tracker, as a reference. The hor-
izontal line at 100 indicates the real-time threshold. Anything



Fig. 23. Two-track Kiss: Batch tracker ωs = 3

Fig. 24. Two-track Kiss: Batch tracker ωs = 5

below this line operates in real-time if the detection period of
the data is considered to be 1 second.

For the batch tracker there is a linear upward trend with
respect to scenario noise. The same also holds for the fully
adaptive tracker, but is dependent on the number of ROIs
created.

The batch tracker also shows an exponential trend with
respect to variable size, as expected. The fully adaptive tracker
shows a much more gradual slope, but is still exponential in the
worst case. However, the fully adaptive tracker makes ωs = 4 a
plausible option for real-time scenarios in dense environments.
Additionally ωs = 5 is possible for less noisy scenarios. It
is conceivable that the algorithm can be made more efficient
to make use of ωs = 5 for real-time computation in noisy
scenarios. This will be a focus of future work.

Fig. 25. Computation time for ωs = 3

Fig. 26. Computation time for ωs = 4

VI. CONCLUSION

We have presented a temporal decomposition scheme for
multisensor multitarget tracking applications. The number of
variables created is exponential in the variable size, rather than
in the total scenario time as in a traditional batch computation.
However, the size of the feasible solution space is on the
same order of magnitude as a traditional batch computation, so
optimal solutions are not likely to be pruned from the feasible
solution space.

The algorithm was implemented with and without region of
interest decomposition. Results were compared between the
two versions of the algorithm and a baseline tracker which
solves the two-dimensional assignment problem. Additionally
a sliding window algorithm was implemented and errors were
compared for ωs = 3. The sliding window failed to track
several scenarios for ωs = 4 and ωs = 5 so these results were
not compared.



Fig. 27. Computation time for ωs = 5

We believe that the methods introduced here show promis-
ing results, but more realistic data is needed for testing. Noise
in our test data was distributed uniformly at random, which
does not simulate realistic data. In more realistic data noise
would be normally distributed around each target, and the two-
dimensional tracker would exhibit a tendency to lose track.
This behavior was not observed on our synthetic test data.

Putting the quality of the test data aside we draw several
conclusions from the experiments conducted. Regarding vari-
able size we conclude that a variable size of ωs = 5 exhibits
the lowest error among our experiments. We expect ωs > 5
to improve accuracy at the cost of computation time.

Computation time is acceptable for ωs = 5 in less noisy
environments. With further optimizations and additional com-
puting resources, we believe that it will be possible to lower
the computation time for ωs = 5 below the real-time threshold
in noisy scenarios. Additionally it would be possible to imple-
ment learning techniques which allow the tracker to gracefully
degrade the variable size to meet real-time limits in noisy
scenarios.

Regarding the comparison between the fully adaptive
tracker and the batch tracker, we found that the difference in
error is negligible. The fully adaptive tracker exhibited slightly
higher error measurements in most cases, but the speedup in
computation time outweighs the incurred error penalty.

Finally, the obvious drawback of relying on a linear esti-
mator for likelihood values is an open issue. As explained in
section V-C the Kalman filter makes the implicit assumption
that objects move linearly. The effect can be minimized by
decreasing the variable size, but the trade-off is made between
correctly solving track crossings and track kissings. Future
work will involve replacing the Kalman filter with an Extended
Kalman filter or particle filter for better nonlinear likelihood
estimation.
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